Ťapajna, M., Hilt, O., Bahat-Triedel, E., Würfl, H., Kuzmík, J., : Gate reliability investigation in normally-off p-type-gan cap/AlGaN/GaN HEMTs under forward bias stress. IEEE Electron Device Lett. 37 (2016) 385 - 388.

       1. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
       2. Bahl, S.R.: IEEE Inter. Reliab. Phys. Symp. 2016. Art. No. 7574528, p. 4A31.
       3. Meneghesso, G.: Proc. SPIE 10104 (2017) UNSP 1010419.
       4. Tallarico, A.N.: IEEE Electron Device Lett. 38 (2017) 99.
       5. Efthymiou, L.: Applied Phys. Lett. 110 (2017) 123502.


Ťapajna, M., Hilt, O., Bahat-Triedel, E., Würfl, H., Kuzmík, J., : Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors. Applied Phys. Lett. 107 (2015) 193506. (HiPoSwitch). (VEGA 2/0138/14). .

       1. De Santi, C.: IEEE Electron Device Lett. 37 (2016) 611.
       2. Meneghini, M.: Electronics 5 (2016) 14.
       3. Marek, J.: ASDAM 2016. P. 173.
       4. Zhang, K.: Applied Phys. Express 9 (2016) 121002.
       5. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
       6. Dong, B.: AIP Adv. 6 (2016) 095021.
       7. De Santi, C.: Proc. SPIE 10124  (2017) UNSP 101240F.
       8. Xie, R.: IEEE Trans. Power Electron. 32 (2017) 6416.
       9. Efthymiou, L.: Applied Phys. Lett. 110 (2017) 123502.


Blaho, M., Gregušová, D., Haščík, Š., Jurkovič, M., Ťapajna, M., Fröhlich, K., Dérer, J., Carlin, J., Grandjean, N., Kuzmík, J., : Self-aligned normally-off metal-oxide-semiconductor n+++GaN/InAlN/GaN high-electron mobility transistors. Phys. Status Solidi A 112 (2015) 1086-1090. . (APVV 0367-11). (VEGA 2/0138/14). .

       1. Yeh, P.-C.: Applied Phys. Express 8 (2015) 084101. 
       2. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
       3. Freedsman, J.: IEEE Electron Device Lett. 38 (2017) 497.


Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., Kuzmík, J., : Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506. (HiPoSwitch). (APVV 0367-11). (VEGA 2/0105/13).

      1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
      2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
      3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
      4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
      5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
      6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
      7. Zhang, K.: IEEE SSLChina - IFWS 2016. P. 64.
      8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.


Kuzmík, J., Jurkovič, M., Gregušová, D., Ťapajna, M., Brunner, F., Cho, E., Meneghesso, G., Würfl, H., : Degradation of AlGaN/GaN high-electron mobility transistors in the current-controlled off-state breakdown. J. Applied Phys. 115 (2014) 164504. (HiPoSwitch). (CENTE II). (APVV 0104-10).

#      1. Ren, F.: Advances in Photonics Engn., Nanophoton. Biophotonics. Nova Sci Publ., Inc. 2016 ISBN: 978-163484530-4. P. 57-117.


Ťapajna, M., Killat, N., Palankovski, V., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Kuball, M., Kuzmík, J., : Hot-electron-related degradation in InAlN/GaN high-electron-mobility transistors,. IEEE Trans. Electron Dev. 61 (2014) 2793-2801. (KCMTE). . (APVV 0104-10).

          1. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
          2. Petitdidier, S.: Microelectron. Reliab. 55 (2015) 1719.
          3. Bisi, D.: IEEE Electron Device Lett. 36 (2015) 1011.
          4. Dyson, A.: IEEE Trans. Electron Dev. 62 (2015) 3613.
          5. Downey, B.P.: IEEE Trans. Device Mater. Reliab. 15 (2015) 474.
          6. Berthet, F.: IEEE RADECS 2015.
          7. Chiu, H.-C.: Japan. J. Applied Phys. 55 (2016) 056502.
          8. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
          9. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
        10. Guo, L.: Sci Reports 6 (2016) 37415.
        11. Lang, A.C.: Applied Phys. Lett. 109 (2016) 133509.
        12. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
        13. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
        14. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
        15. Berthet, F.: Solid-State Electr. 127 (2017) 13.
        16. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.


Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., Hashizume, T., Kuzmík, J., : Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations. J. Applied Phys. 116 (2014) 104501. (HiPoSwitch). . (APVV 0367-11). (VEGA 2/0138/14).

         1. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
         2. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
         3. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
         4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
         5. Liu, X.: J. Applied Phys. 119 (2016) 015303.
         6. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
         7. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
         8. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
         9. Son, P.L.: J. Applied Phys. 119 (2016) 204503.
       10. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
       11. Colon, A.: J. Vacuum Sci Technol. A 34 (2016) 06K901.
       12. Colon, A.: J. Vacuum Sci Technol. A 35 (2017) 01B132.


Ťapajna, M., Válik, L., Kotara, P., Zhytnytska, R., Brunner, F., Hilt, O., Bahat-Triedel, E., Würfl, H., Kuzmík, J., : Impact of the buffer structure on trapping characteristics of normally-off p-GaN/AlGaN/GaN HEMTs for power switching applications In: ASDAM 2014. Eds. J. Breza et al. IEEE 2014. ISBN 978-1-4799-5474-2. P. 121-124.. (HiPoSwitch). (APVV 0367-11). (VEGA 2/0138/14).

      1. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.


Kuzmík, J., Ťapajna, M., Válik, L., Molnár, M., Donoval, D., Fleury, C., Pogany, D., Strasser, G., Hilt, O., Brunner, F., Würfl, H., : Self-heating in GaN transistors designed for high-power operation,. IEEE Trans. Electron Dev. 61 (2014) 3429-3434. (HiPoSwitch).

        1. Rodriguez, R.: Phys. Status Solidi A 212 (2015) SI1130.
        2. Nazari, M.: IEEE Trans. Electron Dev. 62 (2015) 1467.
        3. Zhao, X.: IEEE ICCP 2015. P. 261.
        4. Nagahisa, T.: Japan. J. Applied Phys. 55 (2016) SI04EG01.
        5. Nazari, M.: Applied Phys. Lett. 108 (2016) 031901.
        6. Guo, H.: Diamond Related Mater. 73 (2017) 260.


Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., Kuzmík, J., : Bulk and interface trapping in the gate dielectric of GaN based metal–oxide–semiconductor high-electron mobility transistors. Applied Phys. Lett. 102 (2013) 243509. (HiPoSwitch). (APVV 0367-11). (APVV 0104-10).

    1. Hori, Y.: J. Applied Phys.114 (2013) 244503.
    2. Liao, W. C.: Applied Phys. Lett. 104 (2014) 033503.
    3. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
    4. Ye, D.: J. Phys. D 47 (2014) 255101.
    5. Meneghesso, G.: IEEE Inter. Reliab. Phys. Symp. 2014.
    6. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
    7. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
    8. Wu, T.-L.: Solid-State Electron. 103 (2015) 127.
    9. Wang, Y.-H.: Applied Phys. Lett. 108 (2016) 233507.
  10. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
  11. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
  12. Colon, A.: J. Vacuum Sci Technol. B 34 (2016) 06K901.
  13. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
   14. Curatola, G.: Power Electron. Power Systems (2017) 165.


Ťapajna, M., Kuzmík, J., : Control of threshold voltage in GaN based metal–oxide–semiconductor high-electron mobility transistors towards the normally-off operation. Japan. J. Applied Phys. 52 (2013) 08JN08. (HiPoSwitch). (APVV 0104-10). (APVV 0367-11). (VEGA 2-0147-11).

      1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
      2. Swain, R.: Superlatt. Microstr. 84 (2015) 54.
      3. Osvald, J.: Physica Status Solidi B 252 (2015) SI996.
      4. Kim, J.-J.: Japan. J. Applied Phys. 54 (2015) 038003.
      5. Swain, R.: J. Comput. Electron. 14 (2015) 754.
      6. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
#    7. Nagy, L.: IEEE 18th Inter. Symp. Design Diagnostics of Electron. Circuits and Systems - DDECS 2015. Art. no. 7195673, p. 83.
       8. Jena, K.: Inter. J. Numerical Modell. 29 (2016) 83.
       9. Du, J.: Japan. J. Applied Phys. 55 (2016) 054301.
     10. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
#   11. Nagy, L.: ICETA 2015. IEEE 2016. Art. No. 7558501.
      12. Jena, K.: IET Circuits, Devices and Systems 10 (2016) 423.
      13. Swain, R.: Pramana-J. Phys.88 (2017) 3.


Ťapajna, M., Kuzmík, J., : A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors. Applied Phys. Lett. 100 (2012) 113509. (HiPoSwitch). (VEGA 2-0147-11). (APVV 0104-10).

         1. Osvald, J.: ASDAM 2012. (2012) art. no. 6418555, pp. 59.
#      2.  Stafmiak, A.: ASDAM 2012. (2012) art. no. 6418226, pp. 271.
#      3. Sagatova, A.: ASDAM 2012. (2012) art. no. 6418581, pp. 147.
        4. Chou, B.-Y.: Semicond. Sci Technol. 28 (2013) SI3UNSP074005.
        5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
        6. Osvald, J.: Phys. Status Solidi A 210  (2013) 1340.
        7. Zhang, Y.: Applied Phys. Lett. 103 (2013) 033524.
        8. Osvald, J.: Japan. J. Applied Phys. 52 (2013) 08JN09.
        9. Gregusová, D.: Japan. J. Applied Phys. 52 (2013) 08JN07.
       10. Akazawa, M.: Japan. J. Applied Phys. 52 (2013) 08JN23.
       11. Johnson, D.W.: IEEE Trans. Electron Dev. 60 (2013) 6605590.
       12. Van Hove, M.: IEEE Trans. Electron Dev. 60 (2013) 6605590.
       13. Wang, Y.-H.: Semicond. Sci Technol. 28 (2013) 125010.
       14. Wang, Y.-H.: IEEE ECCE Asia Downunder 2013, Art. no. 6579124.
       15. Stoklas, R.: Semicond. Sci Technol.  29 (2014) 045003.
       16. Capriotti, M.: Applied Phys. Lett. 104 (2014) 113502.
       17. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
       18. Tang, C.: Semicond. Sci Technol. 29 (2014) 125004.
       19. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
       20. Chou, B.-Y.: Semicond. Sci Technol.  30 (2015) 015009.
       21. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
       22. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
       23. Capriotti, M.: J. Applied Phys. 117 (2015) 024506.
       24. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
       25. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
       26. Yatabe, Z.: Physica Status Solidi A 212 (2015) 1075.
       27. Downey, B. P.: Solid-State Electr. 106 (2015) 12.
       28. Raj, B.: In Fakhfakh, M. et al.: Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design.  IGI Global 2015.  ISBN-13: 978-1466666276. P. 399-418.
        29. Winzer, A.: J. Applied Phys. 118 (2015) 124106.
        30. Swain, R.: TENCON IEEE Region 10 Conf. Proc. (2015).
        31. Swain, R.: J. Comput. Electron. 14 (2015) 754.
        32. Capriotti, M.: European Solid-State Device Research Conf. 2015. Art. no. 7324713, p. 60.
        33. Swain, R.: IEEE EDSSC 2015. P. 399.
        34. Swain, R.: IEEE EDSSC 2015. P. 567.
        35. Du, J .: Japan. J. Applied Phys. 55 (2016) 054301.
        36. Zhu, J.-J .: Japan. J. Applied Phys. 55 (2016) SI05FH01.
        37. Zervos, Ch .: Applied Phys. Lett. 108 (2016) 142102.
        38. Jena, K .: J. Electron. Mater. 45 (2016) 2172.
        39. Swain, R.: Semiconductors 50 (2016) 384.
        40. Hahn, H .: IEEE Trans. Electron Dev. 63 (2016) 606.
        41. Swain, R .: IEEE Trans. Electron Dev. 63 (2016) 2346.
        42. Li, L .: Chinese Phys. B 25 (2016) 038503.
        43. Swain, R.: Mater. Sci in Semicond. Process. 53 (2016) 66.
        44. Sun, R.: IEEE J. Emerging Selec Topics in Power Electron. 4 (2016) SI720.
        45. Matys, M.: J. Applied Phys. 120 (2016) 225305.
        46. Capriotti, M.: Solid-State Electron. 125 (2016) 118.
        47. Reddy, M.S.P.: J. Electron. Mater. 45 (2016) 5655.
#      48. Swain, R.: IEEE TENCON 2016. Art. No. 7373087.
        49. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2017) Q284.
        50. Florovic, M.: Semicond. Sci Technol. 32 (2017) 025017.
        51. Stoklas, R.: Semicond. Sci Technol. 32 (2017) 045018.
        52. Matys, M.: Applied Phys. Lett. 110 (2017) 243505.
        53. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
        54. Wang, H.: Chinese Phys. B 26 (2017) 047305.
        55. Lee, C.-S.: Mater. Sci in Semicond. Process. 66 (2017) 39.


Válik, L., Ťapajna, M., Gucmann, F., Fedor, J., Šiffalovič, P., Fröhlich, K., : Distribution of fixed charge in MOS structures with ALD grown Al2O3 studied by capacitance measurements. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 227-230.

         1. Freedsman, J.J.: IEEE Trans. Electron Dev. 60 (2013) 6579632.


Ťapajna, M., Gregušová, D., Čičo, K., Fedor, J., Carlin, J., Grandjean, N., Killat, N., Kuball, M., Kuzmík, J., : Early stage degradation of InAlN/GaN HEMTs during electrical stress. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 7-10.

       1. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
       2. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.


Moereke, J., Ťapajna, M., Uren, M., Pei, Y., Mishra, U., Kuball, M., : Effects of gate shaping and consequent process changes on AlGaN/GaN HEMT reliability. Phys. Status Solidi A 209 (2012) 2646-2652.

       1. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
       2. Chini, A.: Microelectr. Reliab. 53 (2013)1461.
       3. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
       4. Hahn, H.: J. Applied Phys. 117 (2015) 104508.


Ťapajna, M., Killat, N., Moereke, J., Paskova, T., Evans, K., Leach, J., Li, X., Ozgur, U., Morkoc, H., Chabak, K., Crespo, A., Gillespie, J., Fitch, R., Kossler, M., Walker, D., Trejo, M., Via, G., Blevins, J., Kuball, M., : Non-arrhenius degradation of AlGaN/GaN HEMTs grown on bulk GaN substrates. IEEE Electron Device Lett. 33 (2012) 1126-1128.

         1. Zanoni, E.: IEEE Trans. Electron Dev. 60 (2013) 6564457.
         2. Stocco, A.: Microelectron. Reliab. 54 (2014) SI2237.
#      3. Janke, W.: Przeglad Elektrotechn. 91 (2015) 65.
         4. Meneghini, M.: Devices Circuits Systems 47 (2016) 327.
         5. Meneghini, M.: IEEE Trans. Electron Dev. 64 (2017) 1032.


Ťapajna, M., Jimenez, J., Kuball, M., : On the discrimination between bulk and surface traps in AlGaN/GaN HEMTs from trapping characteristics. Phys. Status Solidi A 209 (2012) 386-389.

        1. Li, B.: Applied Phys. Lett. 106 (2015) 093505.
        2. Meneghini, M.: IEEE Trans. Electron Dev. 62 (2015) 782.
        3. Shi, Y.: Nanoscale Res. Lett. 12 (2017) 342.


Ťapajna, M., Killat, N., Chowdhury, U., Jimenez, J., Kuball, M., : The role of surface barrier oxidation on AlGaN/GaN HEMTs reliability. Microelectr. Reliab. 52 (2012) 29-32.(not IEE SAS).

     1. Gao, F.: Applied Phys. Lett. 99 (2011) 223506.
     2. Wohlmuth, W.:  IEEE COMCAS 2013.
     3. Eller, B.S.: J. Vacuum Sci Technol. A 31 (2013) 050807.
     4. Bisi, D.: IEEE Trans. Electron Dev. 60 (2013) 6605590.
#    5. Wang, W.-C.: CS MANTECH 2013. P. 143.
      6. Meneghini, M.: IEEE Trans. Power Electr. 29 (2014) 6558779.
      7. Lee, N.-H.: Japan. J. Applied Phys. 53 (2014) SI04EF10.
      8. Weng, M.-H.: Microelectr. Reliab. 54 (2014) 2697.
      9. Kim, J. J.: J. Korean Phys. Soc 65 (2014) 421.
#   10. Lee, N.-H.: CS MANTECH 2014. P. 245.
#   11. Wang, W.-C.: CS MANTECH 2014. P. 65.
      12. Tang, C.: Microelectr. Reliab. 55 (2015) 347.
      13. Baeumler, M.: Proc. SPIE 9555 (2015) 95550Y.
      14. Sun, S.: Applied Phys. Lett. 108 (2016) 013507.
      15. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
      16. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.


Fröhlich, K., Hudec, B., Ťapajna, M., Hušeková, K., Rosová, A., Eliáš, P., Aarik, J., Rammula, R., Kasikov, A., Arroval, T., Aarik, L., Murakami, K., Rommel, M., Bauer, A., : TiO2-based metal-insulator-metal structures for future DRAM storage capacitors ECS Transactions 50 (2012) 79-87.

       1. Austin, D.Z.: Chem. Mater. 29 (2017)  1107.


Kuball, M., Ťapajna, M., Simms, R., Faqir, M., Mishra, U., : AlGaN/GaN HEMT device reliability and degradation evolution: Importance of diffusion processes. Microelectr. Reliab. 51 (2011) 195.(not IEE SAS).

       1. Gao, F.: Applied Phys. Lett. 99 (2011) 223506.
       2. Dammann, M.: IEEE Inter. Integrated Reliability Workshop Final Report (2011) 42.
       3. Guetle, F.: Semicond. Sci Technol. 27 (2012) 125003.
       4. Whiting, P. G.: Microelectr. Reliab. 52 (2012) 2542.
       5. Guetle, F.: Mater. Sci Forum 725 (2012) 79.
#     6.  Wang, X.: Proc. MMWCST 2012 (2012) art. no. 6238124, pp. 370.
       7. Holzworth, M.R.: Applied Phys. Lett. 103 (2013) 023503.
       8. Choi, S.: J. Korean Phys. Soc 62 (2013) 954.
       9. Zanoni, E.: IEEE Trans. Electron Dev. 60 (2013) 6564457.
      10. Brunel, L.: Microelectr. Reliab. 53 (2013) 1450.
      11. Choi, S.: J. Applied Phys. 114 (2013) 164501.
      12. Ando, Y.: IEEE Trans. Electron Dev. 60 (2013) 6656913.
      13. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
      14. Meneghini, M.: IEEE Inter. Reliab. Phys. Symp. 2014.
      15. Liao, W.-C.: J. Electrochemical Soc 162 (2015) H522.
      16. Baeumler, M.: Proc. SPIE 9555 (2015) 95550Y.
      17. Dammann, M.: Microelectr. Reliab. 55 (2015) 1667.
      18. Hilton, A.M.: J. Electron. Mater. 44 (2015) 3259.
      19. Tang, C.: Microelectr. Reliab. 55 (2015) 347.
      20. Kajen, R.S.: J. Electron. Mater. 45 (2016) 493.
      21. Meneghini, M.: Devices Circuits and Systems 47 (2016) 327.
      22. Rosenberger, M.R.: IEEE Trans. Electron Dev. 63 (2016) 2742.
      23. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
      24. Guo, C.: AER-Adv. in Engn. Research 73 (2016)  995.
      25. Jayawardena, A.: Microelectr. Reliab. 66 (2016) 22.
      26. Joglekar, S.: IEEE Trans. Semicond. Manufact. 29 (2016) 349.
#    27. Knetzger, M.: Solid State Phenomena 242 (2016) 417.
#    28. Joglekar, S.: CS MANTECH 2016. P. 237.
#    29. Ando, Y.: IEEJ Trans. Electron. Inf. Systems 136 (2016) 449.
      30. Brunel, L.: IEEE Trans. Electron Dev. 64 (2017) 1548.
      31. Whiting, P.G.: Microelectron. Reliab. 70 (2017) 32.
      32. Whiting, P.G.: Microelectron. Reliab. 70 (2017) 41.
      33. Lee, J.-M.: Current Applied Phys. 17 (2017) 157.


Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., Fröhlich, K., : Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics. J. Vacuum Sci Technol. B 29 (2011) 01A808.

       1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
       2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
       3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
       4. Bera, M.K.: ECS Trans. 53 (2013) 65.
       5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
       6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
       7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
       8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
       9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
     10. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
     11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
     12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
     13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
     14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
#   15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280. 


Killat, N., Ťapajna, M., Faqir, M., Palacios, T., Kuball, M., : Evidence for impact ionisation in AlGaN/GaN HEMTs with InGaN back-barrier. Electronics Lett. 47 (2011) 405-U75. (not IEE SAS).

      1. Meneghini, M.: Applied Phys. Lett. 100 (2012) 233508.
      2. Guetle, F.: Semicond. Sci Technol. 27 (2012) 125003.
      3. Wong, M.H.: IEEE Trans. Electron Dev. 59 (2012) 2988.
      4. Meneghini, M.: IEEE Inter. Reliability Phys. Symp. (IRPS) (2012).
      5. Jin, D.: IEEE Trans. Electron Dev. 60 (2013) 6574269.
      6. Baeumler, M.: Proc. SPIE 9555 (2015) 95550Y.
      7. Albahrani, S.A.: Solid-State Electron. 126 (2016) 143.
      8. Swain, S.K.: Superlattices Microstr. 97 (2016) 258.
      9. Albahrani, S.A.: IEEE Trans. Electron Dev. 63 (2016) 3693.
   10. Albahrani, S.A.: IEEE Trans. Electron Dev. 64 (2017) 102.
   11. Berthet, F.: Solid-State Electron. 127 (2017) 13.


Ťapajna, M., Kaun, S., Wong, M., Gao, F., Palacios, T., Mishra, U., Speck, J., Kuball, M., : Influence of threading dislocation density on early degradation in AlGaN/GaN high electron mobility transistors. Applied Phys. Lett. 99 (2011) 223501.(not IEE SAS).

     1. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
     2. Johnson, M.R.: J. Vacuum Sci Technol. B 30 (2012) 062204.
     3. D'Evelyn, M. P.: ECS Trans. 58 (2013) 287.
     4. Cheney, D.J.: Semicond. Sci Technol. 28 (2013) 074019.
     5. Ghassemi, H.: J. Applied Phys. 114 (2013) 064507.
     6. Eller, B.S.: J. Vacuum Sci Technol. A 31 (2013) 050807.
     7. Wan, X.: J. Semicond. 34 (2013) 104002.
     8. Faramehr, S.: Semicond. Sci Technol. 29 (2014) 025007.
     9. Katsuno, T.: Applied Phys. Lett. 104 (2014) 252112.
     10. Loganathan, R.: J. Alloys Comp. 616 (2014) 363.
     11. Sangghaleh, A.: Applied Phys. Lett. 105 (2014) 102102.
#   12. Igić, P.: Proc. Inter. Conf. Microelectr. - ICM 2014. 6842089, p. 77.
     13. Lee, I.H.: J. Korean Phys. Soc 66 (2015) 61.
     14. Polyakov, A.Y.: Mater. Sci Engn. R 94 (2015) 1.
     15. Cheng, J.: Applied Phys. Lett. 106 (2015) 142106.
     16. Yakimov, E. B.: Applied Phys. Lett. 106 (2015) 132101.
     17. Puzyrev, Y.S.: Applied Phys. Lett. 106 (2015) 053505.
     18. Kubo, T.: Japan. J. Applied Phys. 54 (2015) 020301.
     19. Zeng, C.: J. Applied Phys. 118 (2015) 124511.
     20. Sasangka, W.A.: IEEE Inter. Reliab. Phys. Symp. Proc. 2015. Art. no. 7112768, p. 6C31.
      21. Zadeh, D.H.: Japan. J. Applied Phys. 55 (2016) SI05FH06.
      22. Atmaca, G.: Solid-State Electron. 118 (2016) 12.
      23. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
      24. Chen, C.: J. Applied Phys. 119 (2016) 064302.
      25. Narita, T.: Japan. J. Applied Phys. 55 (2016) SI05FB01.
      26. Tanabe, S.: Japan. J. Applied Phys. 55 (2016) SI05FK01.
      27. Yakimov, E.B.: Japan. J. Applied Phys. 55 (2016) SI05FM03.
      28. Podlipskas, Z.: Current Applied Phys. 16 (2016) 633.
      29. Sasangka, W. A.: AIP Adv. 6 (2016) 095102.
      30. Ji, Q.: ACS Applied Mater. & Interfaces 8 (2016) 21480.
      31. Gong, J.-M.: Chinese Phys. Lett. 33  (2016) 117303.
#    32. Ren, F.: In Advances in Photonics Engn., Nanophotonics and Biophoton. Nova Sci Publ. 2016. ISBN 978-163484530-4. P. 57-117.


Paskaleva, A., Ťapajna, M., Dobročka, E., Hušeková, K., Atanassova, E., Fröhlich, K., : Structural and dielectric properties of Ru-based gate/Hf-doped Ta2O5 stacks. Applied Surface Sci 257 (2011) 7876-7880. (APVV 0133-07). (VEGA 2/0031/08).

      1. Liu, S.-S.: J. Theoret. Comput. Chem. 11 (2012) 895.
      2. Lorenzi, P.: Microelectr. Reliab. 53 (2013) 1203.
      3. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
      4. Carretero, E.: Applied Surface Sci 359 (2015) 669.
      5. Mahata, C.: J. Mater. Chem. C 3 (2015) 10293.


Gong, Y., Ťapajna, M., Bakalova, S., Zhang, Y., Edgar, J., Dudley, M., Hopkins, M., Kuball, M., : Demonstration of boron arsenide heterojunctions: A radiation hard wide band gap semiconductor device. Applied Phys. Lett. 96 (2010) 223506.(not IEE SAS).

       1. Ektarawong, A.: Phys. Rev. B 95 (2017) 064206.


Ťapajna, M., Paskaleva, A., Atanassova, E., Dobročka, E., Hušeková, K., Fröhlich, K., : Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures Semicond. Sci Technol. 25 (2010) 075007.

       1. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
       2. Vijayakumar, V.: Mater. Res. Express 2 (2015) 046302.


Ťapajna, M., Simms, R., Faqir, M., Kuball, M., Pei, Y., Mishra, U., : Identification of electronic traps in AlGaN/GaN HEMTs using UV light-assisted trapping analysis. In: Inter. Reliability Phys. Symp. (2010) P. 152- 155. (Not IEE SAS).

         1. Wong, H.Y.: IEEE Inter. Conf. on Simulation of Semicond. Processes Devices (SISPAD). IEEE 2014. ISBN: 978-1-4799-5288-5. P. 97-100.
         2. Hu, J.: Japan. J. Applied Phys. 54 (2015) SI 04DF07.
         3. Kang, T.S.: J. Vacuum Sci Technol. B 34 (2016) 011203.
         4. Ubochi, B.: Microelectron. Reliab. 71 (2017) 35.
         5. Brunel, L.: IEEE Trans. Electron Dev. 64 (2017) 1548. 


Ťapajna, M., Mishra, U., Kuball, M., : Importance of impurity diffusion for early stage degradation in AlGaN/GaN high electron mobility transistors upon electrical stress. Applied Phys. Lett. 97 (2010) 023503. (not IEE SAS).

      1. Lo, C.-F.: Electrochem. Solid State Lett. 14 (2011) H264.
      2. Zhu, C.: IEEE Electron Device Lett. 32 (2011) 1513.
      3. Fang, Z.Q.: J. Electronic Mater. 40 (2011) 2337.
      4. Lo, C. F.: ECS Trans. 41 (2011) 63.
      5. Zhu, C.: Proc. SPIE 8262 (2012) 826225.
      6. Marko, P.: Applied Phys. Lett. 100 (2012) 143507.
      7. Xu, W.: Applied Phys. Lett. 100 (2012) 223504.
      8. Marko, P.: Microelectr. Reliability 52 (2012) 2194.
      9. Joh, J.: Microelectr. Reliab. 52 (2012) 33.
#   10.  Wang, X.: Proc. MMWCST 2012 (2012) art. no. 6238124, pp. 370.
     11. Horton, D.: IEEE Inter. Reliability Phys. Symp. (IRPS) (2012).  
     12. Ancona, M. G.: J. Applied Phys. 111 (2012) 074504.
     13. Cullen, D.A.: IEEE Trans. Device. Mater. Reliab. 13 (2013) 126.
     14. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1456.
     15. Fleury, C.: Microelectr. Reliab. 53 (2013) 1444.
     16. Zhu, C.Y.: Applied Phys. Lett. 103 (2013) 163504.
     17. Yan, D.: J. Applied Phys. 114 (2013) 144511.
     18. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
     19. Law, M.: ECS Trans. 61 (2014) 21.
     20. Zhang, K.: Sci Reports 4 (2014) 6322.
     21. Katsuno, T.: Microelectr. Reliab. 54 (2014) SI2227.
     22. Ando, Y.: IEEE Trans. Electron Dev. 62 (2015) 1440.
     23. Puzyrev, Y.S.: Applied Phys. Lett. 106 (2015) 053505.
     24. Zeng, C.: J. Applied Phys. 118 (2015) 124511.
     25. Gao, Z.: IEEE Trans. Electron Dev. 63 (2016) 2729.
     26. Wang, C.: Chinese Phys. B 25 (2016) 108504.


Ťapajna, M., Simms, R., Pei, Y., Mishra, U., Kuball, M., : Integrated optical and electrical analysis: identifying location and properties of traps in AlGaN/GaN HEMTs during electrical stress. IEEE Electron Device Lett. 31 (2010) 662. (not IEE SAS).

       1. Fu, L.: Applied Phys. Lett. 98 (2011) 173508.
       2. Zhu, C.: IEEE Electron Device Lett. 32 (2011) 1513.
       3. Joh, J.: IEEE Trans. Electron Dev. 58 (2011)132.
       4. Zhu, C.: Proc. SPIE 8262 (2012) 826225.
       5. Caesar, M.: IEEE Inter. Reliability Phys. Symp. (IRPS) (2012).  
       6. Hu, C.-Y.: J. Applied Phys. 111 (2012) 084504.
       7. DasGupta, S.: IEEE Trans. Electron Dev. 59 (2012) 2115.
       8. Chini, A.: Microelectr. Reliability 52 (2012) SI2153.
       9. Zhu, C. Y.: Applied Phys. Lett. 101 (2012) 103502.
     10.  Faramehr, S.: ASDAM 2012.  (2012) art. no. 6418566,  pp. 11.
     11. Cullen, D.A.: IEEE Trans. Device. Mater. Reliab. 13 (2013) 126.
     12. Katsuno, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF08.
     13. Zhu, C.: Proc. SPIE 8625 (2013) 86252H.
     14. Dasgupta, S.: IEEE Inter. Reliab. Phys. Symp. Proc. (2013) 6531986.
     15. Soci, F.: IEEE Inter. Reliab. Phys. Symp. Proc. (2013) 6531988.
     16. Brunel, L.: Microelectr. Reliab. 53 (2013) 1450.
     17. Chini, A.: Microelectr. Reliab. 53 (2013) 1461.
     18. Chini, A.: IEEE Trans. Electron Dev. 60 (2013) 6589142.
     19. Wan, X.: J. Semicond. 34 (2013) 104002.
     20. Bisi, D.: IEEE Trans. Electron Dev. 60 (2013) 6605590.
     21. Wakejima, A.: IEEE Trans. Electron Dev. 60 (2013) 6571198.
     22. Marinella, M. J.: ECS Trans. 58 (2013) 365.
#   23. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electr. 33 (2013) 305.
     24. Ferrer-Perez, J.A.: J. Electr. Mater. 43 (2014) 341.
     25. DasGupta, S.: Solid-State Electr. 91 (2014) 59.
     26. Faramehr, S.: Semicond. Sci Technol. 29 (2014) 025007.
     27. Meneghini, M.: IEEE Trans. Power Electr. 29 (2014) 6558779.
     28. Goswami, A.: IEEE Trans. Electron Dev. 61 (2014) 1014.
     29. Keum, D.-M.: J. Semicond. Technol. Sci 14 (2014) SI682.
     30. Chini, A.: Microelectr. Reliab. 54 (2014) SI2222.
     31. Ghosh, S.: Applied Phys. Lett. 105 (2014) 073502.
     32. Kaplar, R. J.: IEEE 26th Inter. Symp. Power Semicond. Dev. 2014. P. 209.
     33. Meneghini, M.: IEEE Inter. Reliab. Phys. Symp. 2014.
#   34. Šatka, A.: ASDAM 2014. 6998666, p. 339.
#   35. Stuchlíková, L.: ASDAM 2014. 6998675, p. 181.
      36. Igić, P.: Proc. Inter. Conf. Microelectr. - ICM 2014. 6842089, p. 77.
      37. Polyakov, A.Y.: Mater. Sci Engn. R 94 (2015) 1.
      38. Gustafsson, S.: IEEE Trans. Electron Dev. 62 (2015) 2162.
      39. Lee, Y-C.: Semicond. Sci Technol. 30 (2015) 045010.
      40. Martin-Horcajo, S.: Semicond. Sci Technol. 30 (2015) 035015.
      41. Hu, J.: Applied Phys. Lett. 106 (2015) 083502.
      42. Puzyrev, Y.S.: Applied Phys. Lett. 106 (2015) 053505.
      43. Divay, A.: Microelectron. Reliab. 55 (2015) 1703.
      44. Woo, H.: Current Applied Phys. 15 (2015) 1027.
      45. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 1124.
      46. Benvegnu, A.: IEEE MTT-S Inter Microwave Symp. 2015.
      47. Baba, T.:  WiPDA (2015) 125.
      48. Benvegnu, A.: IEEE Trans. Microwave Theory Techniq. 64 (2016) 767.
      49. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
      50. Meneghini, M.: Devices Circuits Systems 47 (2016) 327.
      51. Divay, A.: J. Semicond. 37 (2016) 014001.
      52. Florovic, M.: Electronics 5 (2016) 20.
      53. Podlipskas, Z.: Current Applied Phys. 16 (2016) 633.
      54. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
      55. Xu, X.: AIP Adv. 6 (2016) 115016.
      56. Divay, A.: IEEE MIKON 2016.
      57. Liang, Y.: Applied Phys. Lett. 109 (2016) 182103.
      58. Chini, A.: IEEE Trans. Electron Dev. 63 (2016) 3473.
      59. Zheng, X.: Microelectr. Reliab. 63 (2016) 46.
      60. Benvegnu, A.: Inter. J. Microwave Wireless Technol. 8 (2016) SI663.
      61. Benvegnu, A.: IEEE Trans. Electron Dev. 64 (2017) SI2135.
      62. Zheng, X.: IEEE Trans. Electron Dev. 64 (2017) 1498.
      63. Gudkov, A.G.: Russian J. Phys. Chem. B 11 (2017) 112.


Ťapajna, M., Simms, R., Pei, Y., Mishra, U., Kuball, M., : On the identification of trap location in AlGaN/GaN HEMTs during electrical stress. In: ASDAM '10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 119-122. (Not IEE SAS).

        1. Kang, T.-S.: J.Vacuum Sci Technol. B 33 (2015) 061202.


Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A., Dobročka, E., Hušeková, K., : Epitaxial growth of high-κ TiO2 rutile films on RuO2 electrodes. J. Vacuum Sci Technol. B 27 (2009) 266-270. (APVV 0133-07). (VEGA 2/0031/08).

        1. Kim, S.K.: Adv. Functional Mater. 20 (2010) 2989.
        2. Lee, S.W.: Chem. Mater. 23 (2011) 976.
        3. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
        4. Kim, S.K.: J. Mater. Res. 28 (2013) 313.
        5. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
        6. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
        7. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
        8. Clima, S.: IEEE Electron Device Lett. 34 (2013) 6425405.
#      9. Jithin, M.A.: Mater. Research Soc Symp. Proc. 1561 (2013) 13.
       10. Popovici, M.: Applied Phys. Lett. 104 (2014) 082908.
       11. Wang, C.: ACS Nano 8 (2014) 2658.
       12. Jeon, W.: J. Mater. Chemistry C 2 (2014) 9993.
       13. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
       14. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
       15. Xie, Y.: J. Alloys Compounds 683 (2016) 439.
       16. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
       17. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
       18. Agashe, K.: Nuclear Instrum. Methods in Phys. Res. B 403 (2017) 38.


Ťapajna, M., Kuzmík, J., Čičo, K., Pogany, D., Pozzovivo, G., Strasser, G., Abermann, S., Bertagnolli, E., Carlin, J., Grandjean, N., Fröhlich, K., : Interface states and trapping effects in Al2O3- and ZrO2/InAlN/AlN/GaN metal-oxide-semiconductor heterostructures. Japan. J. Applied Phys. 48 (2009) 090201.

     1. Simoen, E.: J. Phys. D 44 (2011) 475104.
     2. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.


Ťapajna, M., Čičo, K., Kuzmík, J., Pogany, D., Pozzovivo, G., Strasser, G., Carlin, J., Grandjean, N., Fröhlich, K., : Thermally induced voltage shift in capacitance–voltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al2O3/InAlN/GaN heterostructures. Semicond. Sci Technol. 24 (2009) 035008.

        1. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
        2. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
        3. Pandey, S.: J. Applied Phys. 112 (2012) 123721.
        4. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
        5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
        6. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
        7. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
        8. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
        9. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
      10. Charfeddine, M.: J. Optoelectron. Adv. Mater. 16 (2014) 820.
      11. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
      12. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
      13. Jena, K.: J. Electron. Mater. 45 (2016) 2172.
      14. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
      15. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
      16. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
      17. Panda, J.: J. Semicond. 37 (2016) 044003. 


Paskaleva, A., Ťapajna, M., Atanassova, E., Fröhlich, K., Vincze, A., Dobročka, E., : Effect of Ti doping on Ta2O5 stacks with Ru and Al gates. Applied Surface Sci 254 (2008) 5879-5885.

      1. Thangadurai, P.: Thin Solid Films 518 (2010) 4467.
      2. Huang, J.H.: Chem. Mater. 22 (2010) 2582.
      3. Mahata, C.: Electrochem. Solid State Lett. 14 (2011) H80.
      4. Lu, L.: Applied Phys. A 112 (2013) 425.


Ťapajna, M., Dobročka, E., Paskaleva, A., Hušeková, K., Atanassova, E., Fröhlich, K., : Electrical characterization of Ru- and RuO2/Ta2O5 gate stacks for nanoscale DRAM technology. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 267-270.

       1. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 189.


Fröhlich, K., Ťapajna, M., Rosová, A., Dobročka, E., Hušeková, K., Aarik, J., Aidla, A., : Growth of high-dielectric-constant TiO2 films in capacitors with RuO2 electrodes. Electrochem. Solid-State Lett. 11 (2008) G19-G21. (VEGA 2/0031/08).

       1. Niinisto, J.: Advanced Engn. Mater. 11 (2009) 223.
       2. Han, J.H.: ECS Trans. 19 (2009) 717.
       3. Kim, K.M.: Electrochem. Solid State Lett. 13 (2010) G1.
       4. Wang, H.T.: Electrocem. Solid-State Lett. 13 (2010) G75.
       5. Lee, W.J.: J. Phys. Chem. C 114 (2010) 6917.
       6. Han, J.H.: Chem. Mater. 22 (2010) 5700.
       7. Popovici, M.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 19.
       8. Han, J.H.: Applied Phys. Lett. 99 (2011) 022901.
       9. Leskela, M.: MRS Bull. 36 (2011) 877.
     10. Kim, S.K.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 262.
     11. Popovici, M.: Microelectr. Engn. 88 (2011) 1517.
#   12. Kim, M.-S.: IMW 2011. IEEE 2011, art. no. 5873203. ISBN 978-145770-2259.
     13. Over, H.: Chem. Rev. 112 (2012) 3356.
     14. Han, J. H.: Chem. Mater. 24 (2012) 1407.
     15. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
     16. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
     17. Zhu, L.: Solar Energy Mater. Solar Cells  111 (2013) 141.
     18. Wang, X.: Crystal Growth & Design  13 (2013) 1316.
     19. Popovici, M.: ECS J. Solid State Sci Technol. 2 (2013) N23.
     20. Ko, C.-T.: J. Phys. Chem. C 117 (2013) 26204.
     21. Van Den Berg, J.A.: Applied Surface Sci 281 (2013) 8.
     22. Pu, H.: ECS Solid State Lett. 2 (2013) N35.
#   23. Hwang, C.S.: In Atomic Layer Deposition for Semiconductors. Springer 2013. ISBN: 978-1-4614-8053-22013. P. 73.
      24. Yang, Z.: IEEE Electron Device Lett. 35 (2014) 557.
      25. Park, J.-Y.: J. Alloys Comp.610 (2014) 529.
      26. Hernandez-Torres, E.M.: Chem. Pap. 68 (2014) 1257.
      27. Ko, C.-T.: ACS Applied Mater. Interfac. 6 (2014) 4179.
      28. Jeon, W.: ACS Applied Mater. Interf. 6 (2014) 21632.
      29. Peng, J.: J. Sol-Gel Sci Technol. 71 (2014) 458.
      30. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
      31. Cho, K.: J. Semicond. Technol. Sci 16 (2016) 346.
      32. Mondal, J.: Corrosion Sci 105 (2016) 161.
      33. Head, A.R.: J. Phys. Chem. C 120 (2016) 243.
      34. Wang, M.: RSC Adv. 6 (2016) 4867.
     35. Saric, I.: Thin Solid Films  628 (2017) 142.


Hudec, B., Ťapajna, M., Hušeková, K., Aarik, J., Aidla, A., Fröhlich, K., : Low equivalent oxide thickness metal/insulator/metal structures for DRAM applications. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 123-126.

      1. Paskaleva, A.: J. Applied Phys. 106 (2009) 054107.
      2. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 155. 


Ťapajna, M., Rosová, A., Dobročka, E., Štrbik, V., Gaži, Š., Fröhlich, K., Benko, P., Harmatha, L., Manke, C., Baumann, P., : Work function thermal stability of RuO2-rich Ru–Si–O p-channel metal-oxide-semiconductor field-effect transistor gate electrodes. J. Applied Phys. 103 (2008) 073702.

     1. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
     2. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
     3. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.
     4. Kaczmarski, J.: J. Display Technol. 11 (2015) 528.
     5. Popovici, M.: Chem. Mater. 29 (2017) 4654.


Ťapajna, M., Rosová, A., Hušeková, K., Roozeboom, F., Dobročka, E., Fröhlich, K., : Evidence of hafnia oxygen vacancy defects in MOCVD grown HfxSi1-xOy ultrathin gate dielectrics gated with Ru electrode. Microelectr. Engn. 84 (2007) 2366-2369.

      1. Das, N.C.: J. Applied Phys. 110 (2011) 063527.
      2. Zhang, H.Y.: Applied Surface Sci 311 (2014) 117.


Pozzovivo, G., Kuzmík, J., Golka, K., Schrenk, W., Strasser, G., Pogany, D., Čičo, K., Ťapajna, M., Fröhlich, K., Carlin, J., Gonschorek, M., Feltin, E., Grandjean, N., : Gate insulation and drain current saturation mechanism in InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors. Applied Phys. Lett. 91 (2007) 043509.

        1. Iliopoulos, E.: Applied Phys. Lett. 92 (2008) 191907.
        2. Huang, L.H.: J. Electronic Materi. 38 (2009) 529.
        3. Shiozaki, N.: J. Applied Phys. 105 (2009) 064912.
        4. Arslan, E.: Applied Phys. Lett. 94 (2009) 142106.
        5. Selvaraj, J.: Japan. J. Applied Phys. 48 (2009) 04C102.
        6. Rigutti, L.: Semicond. Sci Technol. 24 (2009) 055015.
        7. Chen, Z.T.: Applied Phys. Lett. 94 (2009) 213504.
        8. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
*      9. Chabak, K.: Proc. CS Mantech Conf. 2009. Tampa, Florida.
      10. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
      11. Wu, M.: J. Vacuum Sci Technol. B 94 (2010) 908.
      12. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
      13. Lee, C.S.: J. Electrochem. Soc 158 (2011) H452.
      14. Arslan, E.: Microelectr. Reliab. 51 (2011) 370.
      15. Chiou, Y.L.: J. Electrochem. Soc 158 (2011) H477.
      16. Corrion, A. L.: IEEE Electron Devices Lett. 32  (2011) 1062.
      17. Son, J.: Applied Phys. Lett. 101 (2012) 102905.
      18. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
#    19. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
#    20. Pardeshi, H.: Proc. CODIS 2012 (2012) art. no. 6422233, pp. 441.
#     21. Ahmed, I.:  2012 IEEE Inter. Conf. Electronic Dev., Systems, and Appl. 6507820, pp. 75.
       22. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
       23. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
       24. Hiroki, M.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF02.
       25. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI10MA05.
       26. Pardeshi, H.: Superlatt. Microstr. 60 (2013) 47.
       27. Bera, M. K.: ECS Trans. 53 (2013) 65.
       28. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs (2013) 207.
       29. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
       30. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
       31. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
       32. Karaoglan-Bebek, G.: J. Vacuum Sci Technol. B 32 (2014) 011213.
       33. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2013. P.
07.
       34. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
#     35. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
       36. Son, J.: J. Vacuum Sci Technol. A 33 (2015) 020602.
       37. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
       38. Freedsman, J.J.: IEEE DRC 2015. P. 55.
       39. Neufeld, O.: J. Chem. Theory Comput. 12 (2016) 1572.
       40. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
       41. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
       42. Jena, K.: Inter. J. Numerical Modell.-Electron. Networks Dev. Fields 30  (2017) e2117.
       43. Adak, S.: NANO 12 (2017) 1750009.


Machajdík, D., Kobzev, A., Hušeková, K., Ťapajna, M., Fröhlich, K., Schram, T., : Thermal stability of advanced gate stacks consisting of a Ru electrode and Hf-based gate dielectrics for CMOS technology. Vacuum 81 (2007) 1379-1384.

   1. Kwon, J.: Applied Phys. Lett. 96 (2010) 151907.
   2. Kwon, J.: J. Applied Phys. 107 (2010) 123505.


Ťapajna, M., Hušeková, K., Machajdík, D., Kobzev, A., Schram, T., Lupták, R., Harmatha, L., Fröhlich, K., : Electrical properties and thermal stability of MOCVD grown Ru gate electrodes for advanced CMOS technology. Microelectr. Engn. 83 (2006) 2412.

      1. Ozben, E.D.: Applied Phys. Lett. 93 (2008) 052902.
      2. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.
      3. Lakshminarayana, G.: J. Mater. Sci: Mater. Electron. 27 (2016) 10791.


Manke, C., Boissiere, O., Weber, U., Barbar, G., Baumann, P., Lindner, J., Ťapajna, M., Fröhlich, K., : Growth of Ru/RuO2 layers with atomic vapor deposition on plain wafers and into trench structures. Microelectr. Engn. 83 (2006) 2277.

    1. Li, Z.: J. Applied Phys. 101 (2007) Art. No. 034503.
    2. Vasilyev, V.: Solid State Technol. 50 (2007) 53.
    3. Lukosius, M.: Chemical Vapor Depos. 14 (2008) 123.
    4. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
    5. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
    6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
    7. Salauen, A.: Chemical Vapor Depos. 17 (2011) 114.
    8. Hong, T.E.: ECS J. Solid State Sci Technol. 2 (2013) P47.
    9. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.


Ťapajna, M., Harmatha, L., Hušeková, K., : Measurement of generation parameters on Ru/HfO2/Si MOS capacitor. Solid-State Electr. 50 (2006) 177-180.

      1. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
      2. Mukhopadhyay, A.B.: J. Phys. Chem. C 111 (2007) 9203.
      3. Mukhopadhyay, A.B.: J. Mater. Sci 45 (2010) 4924.
      4. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.


Franta, M., Rosová, A., Ťapajna, M., Dobročka, E., Fröhlich, K., : Microstructure of HfO2 and HfxSi1-xOy dielectric films prepared on Si for advanced CMOS application. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 47-50.

     1. Chang, Y.-H.: Microelectr. Engn. 96 (2012) 61.


Ťapajna, M., Hušeková, K., Espinos, J., Harmatha, L., Fröhlich, K., : Precise determination of metal effective work function and fixed oxide charge in MOS capacitors with high-κ dielectric. Materials Sci Semicond Process. 9 (2006) 969-974.

     1. Rhee, S.W.: J. Materials Chem. 18 (2008) 5437.
     2. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
     3. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
     4. Chandra, S.V.J.: J. Electrochem. Soc. 157 (2010) H546.
     5. Chandra, S.V.J.: Microelectr. Engn. 89 (2012) 76.
     6. Jelenkovic, E.V.: ECS Solid State Lett. 2 (2013) P42.
     7. Ahmad, S.: J. Polymer Engn. 34 (2014) 279.


Fröhlich, K., Lupták, R., Hušeková, K., Čičo, K., Ťapajna, M., Weber, U., Baumann, P., Lindner, J., Espinos, J., : Properties of Ru/HfxSi1-xOy/Si metal oxide semiconductor gate stack structures grown by atomic vapor deposition. J. Electrochem. Soc. 153 (2006) F176-F179.

     1. Son, J.Y.: Thin Solid Films 517 (2009) 3892.
     2. Kawano, K.: Electrochem. Solid State Lett. 12 (2009) D80.
     3. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.


Lupták, R., Fröhlich, K., Rosová, A., Hušeková, K., Ťapajna, M., Machajdík, D., Jergel, M., Espinos, J., Mansilla, C., : Growth of gadolinium oxide films for advanced MOS structure. Microelectr. Engn. 80 (2005) 154-157.

      1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
#    2. Barreca1, D.: Surf. Sci. Spectra 14 (2007) 60.
#    3. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
      4. Kao, C.H.: J. Electrochem. Soc 157 (2010) H915.
      5. Laha, A.: Applied Phys. Lett. 99 (2011) 152902.
      6. Yang, S.: Mater. Res. Bull. 48 (2013) 37.
      7. Tien, C.-Y.: J. Electr. Engn. Technol. 10 (2015) 1720.
      8. Mishra, M.: Surface Coat. Technol. 262 (2015) 56.


Ťapajna, M., Harmatha, L., Hušeková, K., Fröhlich, K., : Measurement of generation parameters on Ru/HfO2/Si MOS capacitor, Measurement Sci Rev. 5 (2005) 42.

     1. Hur’yeva, T.: Chemical Vapour Deposition 12 (2006) 429.
     2. Mukhopadhyay, A.B.: J. Phys. Chemistry C 111 (2007) 9203.


Ťapajna, M., Písečný, P., Lupták, R., Hušeková, K., Fröhlich, K., Harmatha, L., Hooker, J., Roozeboom, F., Jergel, M., : Application of Ru-based gate materials for CMOS technology. Materials Sci Semicond. Process. 7 (2004) 271-276.

    1. Manke, C.: Microelectr. Engn. 82 (2005) 242.
#   2. Manke C.: Electrochemical Society Proc. 5 (2005) 207.
#   3. Weber U.: Electrochemical Society Proc. 5 (2005) 293.
    4. Lu, Y.K.: Microelectr. Engn. 83 (2006) 371.
    5. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
    6. Yim, S.-S.: Applied Phys. Lett. 89 (2006) Art. No. 093115.
    7. Zhang, M.: J. Vacuum Sci Technol. A 25 (2007) 775.
    8. Li, H.: J. Electrochem. Soc. 154 (2007) D642.
    9. Park, S.J.: Microelectr. Engn. 85 (2008) 39.
   10. Park, S.J.: Thin Solid Films 513 (2008) 7345.
   11. Yim, S.S.: J. Applied Phys. 103 (2008) 113509.
   12. Lee, D.J.: Electrochem. Solid State Lett. 11 (2008) K61.
   13. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
   14. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
   15. Lee, W.K.: Applied Phys. A 100 (2010) 561.
*  16. Kumar, B.R.: Inter. J. Pure Appl. Sci Technol. 4 (2011) 105.
   17. Park, T.: J. Vacuum Sci Technol. A 30 (2012) 01A139.
   18. Noh, Y.: Korean J. Metals Mater. 50 (2012) 243.
   19. Park, T.: Phys. Status Solidi A 209 (2012) 302.
   20. Park, J.: Korean J. Metals Mater. 50 (2012) 557.
   21. Scheuermann, A.G.: Energy & Environmen. Sci 6 (2013) 2487.
   22. Park, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 05FB05.
   23. Noh, Y.: Korean J. Metals Mater. 51 (2013) 239.
   24. Kim, J.W.: Nanotechnol. 25 (2014) 435404.
   25. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.
   26. Nomura, K.: ECS Solid State Lett. 4 (2015) N1.
   27. Zhang, H.-X.: China Semicond. Technol. Inter. Conf. - CSTIC 2015. Art. no. 7153392.
   28. Hwang, S.M.: Thin Solid Films 615 (2016) 311.


Ťapajna, M., Harmatha, L., : Determining the generation lifetime in a MOS capacitor using linear sweep techniques, Solid-State Electr. 48 (2004) 2339-2342. (Not IEE SAS).

    1. Stuchlikova, L.: Proc. Distance Learning, Simulation Comm. (2009) 173.
#   2. Malik, O.: 7th Inter. Conf. Electr. Engn., Comp. Sci Automatic Control, CCE 2010 (2010)  art. no. 5608591, pp. 531.
#     3. Malik, O.: Inter. J. Smart Sens. Intelligent Systems 4 (2011) 686.
#     4. Malik, O.: Proc. Inter. Conf. Sensing Technol. ICST (2011) art. no. 6136993, pp. 325.
       5. Malik, O.: J. Applied Res. Technol. 11 (2013) 18.


Ťapajna, M., Pjenčák, J., Vrbický, A., Harmatha, L., Kúdela, P., : Determining the generation lifetime in a MOS capacitor using linear sweep techniques, J. Electr. Engn. 55 (2004) 239-244. (Not IEE SAS).

      1. Khatir Z: Microelectr. Reliab. 50 (2010) 1506.
      2. Dalapati, P.: Optical Quantum Electron. 47 (2015) 1227.
      3. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
      4. Winzer, A.: Physica Status Solidi A 213 (2016) 1246.


Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., : Growth and properties of ruthenium based metal gates for pMOS devices. In: ASDAM 2004. Eds. J.Osvald and Š.Haščík. Piscataway: IEEE 2004. ISBN 0-7803-8535-7. P. 163-166.

      1. Zhang, H.-X.: China Semicond. Technol. Inter. Conf.  2015.


Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., Roozeboom, F., Kobzev, A., Wiemer, C., Ferrari, C., Fanciulli, M., Rossel, C., Cabral, C., : Preparation of SrRuO3 films for advanced CMOS metal gates. Materials Sci Semicond. Process. 7 (2004) 265-269.

       1. Ito, A.: J. European Ceramic Soc. 30 (2010) 435.
       2. Imangholi, B.: IEEE Trans. Electron Dev. 57 (2010) 877.
       3. van Zalk, M.: Phys. Rev. B 82 (2010) 134513.
#     4. Khan, M.K.R.: Frontiers Mater. Sci China 4 (2010) 387.
       5. Choi, C.: Applied Physics Lett. 98 (2011) 083506.
       6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
       7. Choi, C.: Japan. J. Applied Phys. 51 (2012) 02BA05.
       8. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
       9. Kumar, V. S.: J. Phys. D 49 (2016) 255302.