Projects

National

Kritické aspekty rastu polovodičových štruktúr pre novú generáciu III-N súčiastok
Critical aspects of the growth for a new generation of III-N devices
Program: VEGA
Project leader: Ing. Kuzmík Ján, DrSc.
Annotation: Gallium Nitride (GaN) compounds are investigated for a new generation of high-frequency transistors, powerelectronics and post CMOS logic circuits. Flexibility in this area is given by a miscibility of In and Al with GaN,providing a wide spectra of semiconductors with a possibility of setting an energy band-gap from 0.65 eV to 6.2eV, with countless combinations of heterostructures. Basis of our project is given by study and mastering of thegrowth of unique material concepts using a metal-organic chemical-vapour deposition (MOCVD) technique. Weaim to investigate: i/ transistors with N-polar InN channel, ii/ MOS contacts on N-polar heterostructures, iii/transistors with a hole conduction, as well as iv/ vertical structures on GaN substrate. Part of the project will berepresented by characterisation activities, like investigation of the electron transport properties in N-polar InN, in MOS structures, study on the 2-dimensional hole gas as well as transient effect in C-doped vertical transistors.
Duration: 1.1.2022 – 31.12.2025
PEGANEL – p-GaN elektronika pre úsporu energie a post-CMOS obvody
p-GaN electronics for energy savings and beyond-CMOS circuits
Program: SRDA
Project leader: Ing. Kuzmík Ján, DrSc.
Annotation: III-N semiconductors are probably the most versatile and promising semiconductor family, consisted of artificialcompounds made of GaN, AlN and InN. In the project proposal we describe new technological concepts withsufficient freedom to solve main problems of the III-N post-beyond CMOS age: in transistors co-existence of theparasitic n-channel along with the p-channel, as well as low hole gas density and mobility. Similarly, we aim todemonstrate scalable threshold voltage in the enhancement-mode p-doped power transistors, which are needed bythe industry for efficient, energy-saving convertors. In these aspects, our laboratories already showed verypromising results proving the competence to reach described targets. If successfully implemented, results of ourproposed project would represent a significant step forward not only from the world-wide point of view but is also infull agreement with the RIS3 SK (perspective areas of specialization of the Slovak economy), particularly in thefield of semiconductors for electric cars of automotive industry, as well as in information and communicationsciences.
Duration: 1.7.2022 – 30.6.2025
Výskum a vývoj kontaktov pre nové materiály a súčiastky
Contact engineering for advanced materials and devices
Program: VEGA
Project leader: RNDr. Gregušová Dagmar, DrSc.
Annotation: Intensive research has so far been done into metallic contacts to semiconductors. However, new types ofconductivity, materials and devices, and new contact formation mechanisms require new insights into theformation of such contacts. Our aim is to determine the processes and physics behind metallization schemes fornormally-off InAlN-based heterostructure high electron mobility transistors with hole conductivity. InAlN with ahigh molar fraction of InN will be doped with Mg, and the ohmic and Schottky metallic stacks will be optimized. New transition metal dichalkogenide materials (TMDCs) are very promising for new device applications. However,metallization schemes for TMDCs are very challenging. TMDCs exhibit varying band gap widths in dependenceof their thickness. Our aim is to study metallization schemes for TMDCs, their topology, and explain differences between ex-foliated and grown samples, and differences between back-gated and top-gated devices in correlation with basic TMDCs properties.
Duration: 1.1.2021 – 31.12.2024