Moderné nanoštruktúry pripravené sofistikovanou MOVPE technológiou
Advanced nanostructures prepared by sophisticated MOVPE technology
Program: VEGA
Project leader: doc. Ing. Novák Jozef DrSc.
Annotation: This project is focused on the preparation of advanced nanowires and nanocones prepared by MOVPEtechnology. The main goal of the project is to study the growth and properties of GaP and GaN based nanowiresprepared by vapour-liquid-solid (VLS) technique. In addition we will concentrate our efforts on improvements andenhancement of the most recent experience obtained within previous projects. Our research will be focused intothree areas: (i) stemming from the expected application a most suitable material system will be applied (ii) themodification of the growth conditions (mainly diameter of seeds, growth temperature andV/III ratio) with the aim tomodify mechanical dimension of the nanowires (i.e. transfer from nanowires to nanocones) (iii) acquire newknowledge on the deposition of the metallic nanograins on the top of the nanocones and nanowires with aim tooptimize their properties for the SERS experiments.
Duration: 1.1.2017 – 31.12.2020
Opracovanie povrchu polovodiča ako cesta k novým III-As a III-N elektronickým súčiastkám
Surface processing of semiconductors as the way towards new III-As and III-N electronic devices
Program: VEGA
Project leader: RNDr. Gregušová Dagmar DrSc.
Annotation: Surfaces of III-V semiconductors exhibit large densisties of surface states that limit the use of the semicondutorsin electronics. Native oxides on III-V surfaces do not match the qualiy of oxides on the surface of silicon. Thesurface states have been studied and manipulated by many researchers with the aim to eliminate their infuence.Our aim is to find out how technology is used to eliminate or passivate the states. We intend to useheterostrucutres whose surface will be manipulated to allow for the preparation of high quality MOSHFETs.Manipulation with surface states leads to new types of device. It will thus be possible to integrate various types oftransistor on a single wafer. To explore properties of individual layers of heterostructure by optical measurementwill necessite their release from original substrates and transfer to host substrates. Procedures of heterostructurerelease and transfer will be used in the integration of other semiconductor devices on planar and non-planarsubstrates.
Duration: 1.1.2017 – 31.12.2020
SENAD – Polovodičové nanomembrány pre hybridné súčiastky
Semiconductor nanomembranes for hybrid devices
Program: SRDA
Project leader: Ing. Kúdela Róbert CSc.
Annotation: The project deals with GaAs and GaN-based nanomembranes, including their preparation, study of physical properties, application in new hybrid devices that cannot be effectively prepared with present monolithic technologies. A "GaAs-based (or GaN-based) nanomembrane" can be defined as a monocrystalline structure that was released from its original substrate, is either free-standing or bonded to a host substrate, and its thickness is up to hundreds nanometers and lateral dimensions are more than two orders magnitude larger. Thin organic films, which can modify properties of nanomembranes, will be deposited on some samples.
Duration: 1.7.2016 – 31.12.2019