Projects

International

SAFEMOST – Vysokobezpečný GaN MOS spínací tranzistor
Highly Safe GaN Metal-Oxide-Semiconductor Transistor Switch
Program: International Visegrad Found (IVF)
Project leader: Ing. Kuzmík Ján DrSc.
Project webpage: http://www.safemost.sav.sk/
Duration: 1.10.2015 – 30.3.2019
HiPoSwitch – Normálne zatvorené spínacie tranzistory na báze GaN pre efektívne prevodníky výkonu
GaN-based normally-off high power switching transistor for efficient power converters
Program: FP7
Project leader: Ing. Kuzmík Ján DrSc.
Project webpage: http://www.hiposwitch.eu/
Duration: 1.9.2011 – 30.8.2014
Technológia a vlastnosti MOS HFET tranzistorov na báze GaN s dielektrikami s vysokou konštantou
Technology and properties of GaN-based MOS HFET transistors with high-k dielectric
Program: Inter-governmental agreement
Project leader: Ing. Kuzmík Ján DrSc.
Annotation: no description
Duration: 1.1.2005 – 31.12.2006

National

Vertikálny GaN MOSFET pre výkonové spínacie aplikácie
Vertical GaN MOSFET for power switching applications
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Annotation: Owing the ever growing demand for the energy volume, energy attainability represents one of the most important issues of today’s society. However, there are great reserves in the energy savings available. According to available analyses, more than 10% of all electricity is ultimately lost in the form of conversion losses. Clearly, even partial improvement in the conversion efficiency can have strong economic impact. As the most of energy is now used for the electronics, corresponding scale of the losses forms at the end-user side, where the electricity is converted into a form suitable for a particular appliance. The main effort towards the conversion efficiency improvements therefore targets the area of power AC/DC and DC/DC converters for consumer and industrial electronics. Significant improvement in the conversion efficiency can be achieved by using GaN based transistors, as they are capable to operate at much higher frequencies with almost three times lower switching losses compared to Si devices.The main goal of the project is the research and development of vertical GaN MOSFET without using p-doping, and gaining the original knowledge on electrical and physical properties of the developed devices. From the quantitative point of view, our proof-of-concept device will target RON<2 mOhm/cm2 and VBD>600 V. An original feature of the proposed concept is utilization of the semi-insulating (SI) GaN as a channel layer (instead of p-type GaN), which blocks the current flow through the transistor at zero gate voltage. To open the transistor channel, positive voltage applied to the gate will be needed to induce down bend-bending in the SI GaN, allowing electron injection from the source to the drift region (along the side walls of SI GaN). This concept therefore represents a unipolar enhancement-mode transistor, while drift region is formed of un-doped GaN with extremely low density of dislocation grown directly on GaN substrate.
Duration: 1.7.2019 – 30.6.2022
Pokročilé III-N súčiastky pre prenos informácie a energie
Advanced III-N devices for energy and information transfer
Program: VEGA
Project leader: Ing. Kuzmík Ján DrSc.
Annotation: Gallium Nitride (GaN) and related compounds commonly referred as III-N have significantly more flexible energy gap, higher breakdown electric field intensity, a large spontaneous polarization, high thermal and radiation resistance, but also the high mobility of electrons. Therefore there is an effort to develop III-N semiconductor devices, mainly HFETs, which have the potential to gradually replace Si, Si/SiGe, GaAs and InP devices in microwave and power applications, switches, switching amplifiers, logic circuits and mixed-signal electronics. Consequently, in this manner we aspire to develop HFETs with InN channel for ultra-fast information transfer, advanced GaN-based transistor switches for energy conversion, technology of GaN-based fast mixed-signal electronics, and GaN-based UV sensors for space applications.
Duration: 1.1.2018 – 31.12.2021
MioGaN – GaN monolitické integrované obvody
GaN Monolithic Integrated Circuits
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Duration: 1.7.2016 – 30.6.2019
Tranzistory s InN-kanálom pre THz mikrovlny a logiku
Transistors with InN channel for THz microwaves and logic
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Duration: 1.7.2016 – 30.6.2019
HiPoSwitch – Normálne zatvorené spínacie tranzistory na báze GaN pre efektívne prevodníky výkonu
GaN-based normally-off high power switching transistor for efficient power converters
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Duration: 1.1.2016 – 31.12.2016
Monolitická integrácia ochudobňovacích a obohacovacích InAlN/GaN HFET
Monolithic integration of depletion- and enhancement-mode InAlN/GaN HFET transistors
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Duration: 1.7.2012 – 30.6.2015
Heteroštruktúry na báze InN pre vysoko-frekvenčné tranzistory
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Duration: 1.1.2011 – 31.12.2014
GETRATRON – Vývoj novej generácie III-N tranzistorov s vysokou pohybivosťou elektónov
Towards next generation of III-N high-electron-mobility transistors
Program: SRDA
Project leader: Ing. Kuzmík Ján DrSc.
Duration: 1.5.2011 – 30.4.2014