TMD2DCOR – Metalické 2D dichalkogenidy prechodných kovov: príprava, štúdium vlastností a korelované stavy
Fabrication, physics and correlated states in metallic 2D transition metal dichalcogenides
Program: SRDA
Project leader: Dr. rer. nat. Hulman Martin
Annotation: The discovery of graphene in 2004 has brought a massive interest of scientists active in condensed-matter physicson research of 2D materials. Even though these materials have a long history starting already in the twenties of the20th century, the past years have seen an intensive renascence of interest in 2D materials. Ultra-thin samples ofmany 2D materials have been successfully prepared with electronic properties that may exhibit correlatedelectronic phenomena such as charge density waves and superconductivity. One of the well-studied families of the2D materials are transition metal dichalcogenides (TMDs). TMDs consist of hexagonal layers of metal atomssandwiched between two layers of chalcogen atoms with a MX2 stoichiometry.In this project, we focus on those materials from the TMD family that exhibit strongly correlated electronic states:NbSe2, TiSe2, TaS2, TaSe2 and PtSe2. The goal of the project is to prepare ultrathin (≤ 10 nm) layers and bulksamples and characterise them thoroughly in terms of the thickness, crystallinity, homogeneity, optical andelectronic properties. A special attention will be paid to charge density wave states and superconductivity in thesematerials and how they evolve with the sample thickness, doping, external electric and magnetic fields and detailsof the growth process.The scientific program also aims at preparing heterostructures built up of these materials as well as hybrid systemscombining TMDs with other materials. This research also includes a detailed characterisation of heterostructures toprovide a feedback to optimise the growth process.
Duration: 1.7.2020 – 30.6.2023