Dynamika magnetizácie s narušenou symetriou
Symmetry broken magnetization dynamics
Program: Other
Project leader: Ing. Tóbik Jaroslav PhD.
Project webpage:
Duration: 1.1.2018 – 31.12.2019


Robustné spinové vlny pre budúce magnonické aplikácie
Robust spin waves for future magnonic applications
Program: SRDA
Project leader: Dr. Mruczkiewicz Michal
Annotation: In this project we will focus on the theoretical and experimental investigation of spin wave dynamics at nanoscale. Spin wave is considered as candidate for an information carrier in ultrafast and energy efficient information processing devices. It is due the unique properties of spin waves, namely low heat dissipation, possible manipulation at nanoscale or reconfigurability. We are going to investigate specific spin wave systems, that can host robust, unidirectional and reprogrammable spin waves. Therefore, the results of this project will contribute to the field of modern magnetism, magnonics.
Duration: 1.7.2020 – 30.6.2023
Adaptácia algoritmu metadynamiky na problémy mikromagnetizmu
Application of the metadynamics algorithm to micromagnetism
Program: VEGA
Project leader: Ing. Tóbik Jaroslav PhD.
Annotation: The subject of micro-magnetism studies are phenomena which are possible to describe on classicallevel of the theory. Micromagnetism describes processes in devices like bit-patterned media in harddisks,magnetic memories, magnetic radio-waves detectors, or bio and medical applications. Typicaldimensions of the devices active parts are order from micro-meter to few nanometers. Typical operationtemperature is room temperature. Usual model for these condition is classical physics. The mainproblem of the magnetic state stability simulation is the time-scale on which the magnetic statetypically persist. The magnetic state in memories is stable for years. There are several effectivealgorithms for finding lowest energy paths among metastable states. In order to search for stablemagnetic states effectively, we decided to implement matadynamics algoritm into micro-magneticsolvers.
Duration: 1.1.2018 – 31.12.2021
NanoSky – Skyrmióny vo feromagnetických nanoobjektoch
Skyrmions in ferromagnetic nanoobjects
Program: SRDA
Project leader: RNDr. Cambel Vladimír DrSc.
Annotation: In this project we will focus on the numerical and experimental study of skyrmions in ferromagnetic nanoobjects. The skyrmions were found in structures with multilayer configuration and the confinement due to geometry can increase stability of the skyrmion significantly. Thus nanoobject structures can lead to room temperature stable, reconfigurable magnetic elements. Still a control and experimental investigation of such structures is chalenge. We will concentrate on the facilitation of generation and develop methods for identification and characterization of the skyrmion states. The study will pave the way towards the implementation of skyrmion in magnetic devices based on the patterned nano-objects (single or arrays).
Duration: 1.7.2017 – 31.12.2020
Termodynamické vlastností mikromagnetických objektov
Thermodynamic properties of the micro-magnetic objects
Program: VEGA
Project leader: Ing. Tóbik Jaroslav PhD.
Duration: 1.1.2014 – 31.12.2016
Perzistentné prúdy v mezoskopických prstencoch z izolantov a kovov: Mikroskopické výpočty metódou tesnej väzby
Persistent currents in mesoscopic rings made of insulators and metals: Microscopic calculations by means of the tight-binding method
Program: VEGA
Project leader: Ing. Tóbik Jaroslav PhD.
Duration: 1.1.2011 – 31.12.2013