Projects

National

TMD2DCOR – Metalické 2D dichalkogenidy prechodných kovov: príprava, štúdium vlastností a korelované stavy
Fabrication, physics and correlated states in metallic 2D transition metal dichalcogenides
Program: SRDA
Project leader: Dr. rer. nat. Hulman Martin
Annotation: The discovery of graphene in 2004 has brought a massive interest of scientists active in condensed-matter physicson research of 2D materials. Even though these materials have a long history starting already in the twenties of the20th century, the past years have seen an intensive renascence of interest in 2D materials. Ultra-thin samples ofmany 2D materials have been successfully prepared with electronic properties that may exhibit correlatedelectronic phenomena such as charge density waves and superconductivity. One of the well-studied families of the2D materials are transition metal dichalcogenides (TMDs). TMDs consist of hexagonal layers of metal atomssandwiched between two layers of chalcogen atoms with a MX2 stoichiometry.In this project, we focus on those materials from the TMD family that exhibit strongly correlated electronic states:NbSe2, TiSe2, TaS2, TaSe2 and PtSe2. The goal of the project is to prepare ultrathin (≤ 10 nm) layers and bulksamples and characterise them thoroughly in terms of the thickness, crystallinity, homogeneity, optical andelectronic properties. A special attention will be paid to charge density wave states and superconductivity in thesematerials and how they evolve with the sample thickness, doping, external electric and magnetic fields and detailsof the growth process.The scientific program also aims at preparing heterostructures built up of these materials as well as hybrid systemscombining TMDs with other materials. This research also includes a detailed characterisation of heterostructures toprovide a feedback to optimise the growth process.
Duration: 1.7.2020 – 30.6.2023
Časovo-rozlíšené štúdium rastu hybridných van der Waalsových heteroštruktúr
Real-time grow studies of hybrid van der Waals heterostructures
Program: SRDA
Project leader: Dr. rer. nat. Hulman Martin
Duration: 1.8.2018 – 30.6.2022
Tribologické vlastnosti 2D materiálov a príbuzných nanokompozitov
Tribological properties of 2D materials and related nanocomposites
Program: SRDA
Project leader: Dr. rer. nat. Hulman Martin
Duration: 1.8.2018 – 30.6.2022
2DMOSES – 2D materiály iné ako grafén: monovrstvy, heteroštruktúry a hybridné vrstvy
2D materials beyond graphene: monolayers, heterostructures and hybrids
Program: SRDA
Project leader: Dr. rer. nat. Hulman Martin
Annotation: Two-dimensional (2D) materials have been one of the most extensively studied classes of materials due to their unusual physical properties. The best example is graphene – a single layer of carbon atoms arranged in a two dimensional (2D) honeycomb lattice. Many graphene´s extraordinary properties have been reported including excellent electronic and thermal conductivities and mechanical properties. Its discovery has also stimulated an extensive research on other 2D materials. It has been shown that it is not only possible to exfoliate stable, single-atom thick 2D materials, but that these materials can exhibit unique and fascinating physical properties. The 2D structure determines the electronic properties that may exhibit correlated electronic phenomena such as charge density waves and superconductivity. In this project, we focus on preparation of ultrathin (< 10 nm) films and monolayers of materials from the family of transition metal dichalcogenides (TMDs). The goal is to prepare those layers on a centimetre-large scale. For that, pulsed laser deposition and magnetron sputtering are the methods of our choice. As-prepared layers will then be thoroughly characterised in terms of their thickness, crystallinity, homogeneity, optical and electrical properties. As a next logical step, we will proceed in preparation of heterostructures and hybrids – systems where different TMDs materials and TMDs and graphene or graphene oxide are stacked on top of each other, respectively.
Duration: 1.7.2016 – 31.12.2019
Rast 2D materiálov: grafén a diselenid titánu
Growth of 2D materials: graphene and titanium diselenide
Program: VEGA
Project leader: Dr. rer. nat. Hulman Martin
Duration: 1.1.2015 – 31.12.2017