Modelling and measurement of AC loss in a superconducting transformer

Enric Pardo¹, Mike Staines², Zhenan Jiang², Neil Glasson³, Bob Buckley²

1 Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia 2 Robinson Research Institute, Victoria University of Wellington, Wellington, New Zealand **3 Callaghan Innovation, Christchurch, New Zealand**

AC loss in superconducting windings:

Reduces efficiency Increases cost of cooling system Reduces thermal stability

IS YOUR TRANSFORMER **DESIGN FEASIBLE?**

Modelling required

Roebel cable in LV winding

Numerical model

Minimum Magnetic Energy Variation

- Assumes critical-state E(J) relation
- Interaction of magnetization currents taken into account
- application to coils:
- E. Pardo 2008 SuST **21** 065014 J. Souc et al. 2009 SuST 22 015006 E. Pardo et al 2012 SuST 25 035003 E. Pardo 2013 SuST **26** 105017

Axi-symmetrical model of coil made of Roebel cable

Assumed cable cross-section:

We approximate Roebel cable as two stacks of tapes

LV winding modelling for constant J_c

taken from measured cable critical current _c=2350 A at 70 K

as stand-alone coil

1 MVA 11 kV/415 V 3-phase transformer modelling and measurement

Full transformer parameters

	1.0.7
	HV
Voltage rms [V]	11000
Rated current amplitude [A]	42.9
Internal diameter [mm]	345
No. turns axial direction	48
No. turns radial direction	19
Total turns	912
Conductor width [mm]	4
Axial gap between turns [mm]	2.130
Roebel strand number	-
Strand width [mm]	-
Gap between Roebel stacks [mm]	-
Superconducting layer thickness [µm]	-

M. Staines *et al.* 2012 SuST **25** 104002 M. D. Glasson et al. 2013 IEEE TAS 23 5500206

Air-core transformer for testing (1 phase)

Modelling of complete one phase for $J_{c}(B,\theta)$

Strands I present low anisotropy SuperPower tape

Assume isotropic J and take Jc(B) of most typical strands (mid Ic sample #1) at perpendicular applied field.

J_(B=0) scaled to average J_j of strands at self-field

Callaghan

40 MVA 110 kV/11 kV 3-phase transformer modelling

Loss distribution in the axial direction

Loss at central turns or pancakes is not negligible

Tape requirements for transformer feasibility

1.5 kW AC loss goal per phase equivalent to 135 kW 3-phase conductor loss assuming 30x cooling penalty

Required critical current 656 A/cm at 65 K and 400 mT

Fujikura projecting 700 A/cm 77K s.f. production I for 2015 I_c(77K,s.f) ~ I_c(65K,400mT)

perconducting HV uperconducting LV winding

approximated J_c(B)

2LPO2C-01: 128

	HV	LV
oltage rms [V]	110000	6350
ated current amplitude [A]	171.4	2969
ternal diameter [mm]	880	830
o. turns axial direction	114	64
 turns radial direction 	10	1
otal turns	1140	64
onductor width [mm]	4	10
kial gap between turns [mm]	2.2	1
bebel strand number	-	16
rand width [mm]	-	4.5
ap between Roebel stacks [mm]	-	1
perconducting layer thickness [μm]	-	1.4
onducting HV		

[lijima, ISIS22, 2013]

AC loss modelling with constant J

Jc taken from cable critical current I_c=3500A at 70 K

ELÚ

Critical current obtained by load line with present Fujikura tape

HV winding dominates AC loss

Transformer modelling results: comparison between 1 MVA and 40 MVA

Assumed same I for both transformers 1 MVA transformer prototype has lower I

AC loss only around **12 times higher** for 40 times rating

CONCLUSION

Model agrees with measurements of 1 MVA transformer

40 MVA transformer will have efficiency better than conventional transformers

Critical current required to surpass efficiency of conventional transformers is achievable