Modelling current-voltage characteristics of practical superconductors

A. Badía1, C. López2

1Departamento de Física de la Materia Condensada
I.C.M.A.–C.S.I.C., Universidad de Zaragoza, SPAIN
2Departamento de Física y Matemáticas
Universidad de Alcalá, SPAIN
Outline

1. **Statement of the problem**
 - Motivation
 - The underlying physical problem
 - Macroscopic *material law*

2. **(Numerical) modelling**
 - Thermodynamic model: general framework
 - The power-law-like $\mathcal{F}(\mathbf{J})$ formulation
 - The power-law-like $\mathbf{E}(\mathbf{J})$ formulation

3. **Application**
 - Approximations to the *helical cable* geometry
 - Fingerprints of the $\mathbf{E}(\mathbf{J})$ law

4. **Conclusions**
1. Statement of the problem

1.1 Motivation

The Macroscopic Maxwell Equations must be supplied with a sound and practical expression of the superconducting material law.

In quasi-static conditions:

\[
\mathbf{E}(\mathbf{J}) = \rho(\mathbf{J}) \mathbf{J}
\]

\[
\downarrow
\]

\[
\left(\mu_0 \frac{\partial}{\partial t} - \rho(\mathbf{J}) \nabla^2 \right) \mathbf{H} = (\nabla \times \mathbf{H}) \times \nabla \rho(\mathbf{J})
\]

★ A number of particular choices exist for \(\rho(\mathbf{J}) \), but FE codes lack an implementation for general purpose.

★ \(\rho(\mathbf{J}) \) is not always a scalar, neither a tensor!!
1. Statement of the problem

1.1 Motivation

The Macroscopic Maxwell Equations must be supplied with a **SOUND** and **PRACTICAL** expression of the superconducting material law

In quasistatic conditions:

\[
\begin{align*}
\mathbf{E}(\mathbf{J}) &= \rho(\mathbf{J})\mathbf{J} \\
\downarrow \\
\left(\mu_0 \frac{\partial}{\partial t} - \rho(\mathbf{J})\nabla^2\right) \mathbf{H} &= (\nabla \times \mathbf{H}) \times \nabla \rho(\mathbf{J})
\end{align*}
\]

⋆ A number of particular choices exist for \(\rho(\mathbf{J}) \), but FE codes lack an implementation for general purpose

⋆ \(\rho(\mathbf{J}) \) is not always a scalar, neither a tensor!!
1. Statement of the problem

1.1 Motivation

The Macroscopic Maxwell Equations must be supplied with a **SOUND** and **PRACTICAL** expression of the superconducting material law

In quasistatic conditions:

\[
\begin{align*}
E(J) &= \rho(J)J \\
\downarrow \\
\left(\mu_0 \frac{\partial}{\partial t} - \rho(J) \nabla^2 \right) H &= (\nabla \times H) \times \nabla \rho(J)
\end{align*}
\]

★ A number of particular choices exist for \(\rho(J)\), but FE codes lack an implementation for general purpose

★ \(\rho(J)\) is not always a scalar, neither a tensor !!
1.2. The underlying physical problem

LOCAL GEOMETRY OF AMPÈRE’S LAW \((J\parallel, J\perp)\)

\[
1 \equiv \frac{H}{H} \quad ; \quad 2 \equiv \frac{\nabla H}{\|\nabla H\|} \quad ; \quad 3 \equiv 1 \times 2
\]

\[
\Rightarrow \quad J = H(-\partial_2 \theta + \partial_3 \phi)1 + (H\partial_1 \theta)2 + (H\partial_1 \phi - \partial_2 H)3
\]

EXAMPLE 1: uniform current density + axial field

\[
1 = (-y, x, 1)/\sqrt{1 + \rho^2}
\]
\[
2 = (x, y, 0)/\rho
\]
\[
3 = (-y, x, -\rho^2)/\rho \sqrt{1 + \rho^2}
\]

\[
J_1 = J_0/\sqrt{1 + \rho^2} = -H\partial_2 \theta
\]

\[
J_2 = 0
\]

\[
J_3 = -J_0 \rho \sqrt{1 + \rho^2} = -\partial_2 H
\]
1.3. The underlying physical problem

Local Geometry of Ampère’s law \((J_\parallel, J_\perp)\)

\[
1 \equiv \frac{H}{H} ; \quad 2 \equiv \frac{\nabla H}{\|\nabla H\|} ; \quad 3 \equiv 1 \times 2
\]

\[
\Rightarrow \quad J = H(-\partial_2 \theta + \partial_3 \phi)1 + (H\partial_1 \theta)2 + (H\partial_1 \phi - \partial_2 H)3
\]

Example 1: uniform current density + axial field

\[
1 = (y, -x, 1)/\sqrt{1 + \rho^2}
\]

\[
2 = (x, y, 0)/\rho
\]

\[
3 = (y, -x, -\rho^2)/\rho \sqrt{1 + \rho^2}
\]

\[
J_1 = J_0/\sqrt{1 + \rho^2} = -H\partial_2 \theta
\]

\[
J_2 = 0
\]

\[
J_3 = -J_0 \rho \sqrt{1 + \rho^2} = -\partial_2 H
\]
EXAMPLE 2: planar sample in rotating field

\[
\begin{align*}
J_\parallel & \text{ only comes from the tilt between adjacent layers } (-\partial_2 \theta)
\end{align*}
\]
The appearance of J_\parallel ...
THE DISAPPEARANCE OF $J_{\parallel} \ldots$
Partial conclusions

A) ★ Rotations of the magnetic field are shielded by J_\parallel
B) ★ In MQS, when rotation ceases J_\parallel disappears

Here, we have solved: $\nabla^2 H = (\mu_0/\rho_0) \frac{\partial H}{\partial t}$

then

$J \cdot H = 0 \Rightarrow \frac{\partial (H_x/H_y)}{\partial t} = 0$

In a superconductor
A) is true
B) both J_{\parallel} and J_{\perp} persist in MQS regime
Partial conclusions

A) ★ Rotations of the magnetic field are shielded by J_{\parallel}

B) ★ In MQS, when rotation ceases J_{\parallel} disappears

Here, we have solved:

$$\nabla^2 \mathbf{H} = \left(\frac{\mu_0}{\rho_0} \right) \frac{\partial \mathbf{H}}{\partial t}$$

then

$$\mathbf{J} \cdot \mathbf{H} = 0 \Rightarrow \frac{\partial (H_x/H_y)}{\partial t} = 0$$

In a superconductor

A) is true

B) both J_{\parallel} and J_{\perp} persist in MQS regime
Partial conclusions

A) ★ Rotations of the magnetic field are shielded by J_{\parallel}
B) ★ In MQS, when rotation ceases J_{\parallel} disappears

Here, we have solved: \[\nabla^2 H = \left(\frac{\mu_0}{\rho_0}\right) \frac{\partial H}{\partial t} \]

then

\[J \cdot H = 0 \Rightarrow \frac{\partial (H_x/H_y)}{\partial t} = 0 \]

In a superconductor

A) is true
B) both J_{\parallel} and J_{\perp} persist in MQS regime
1.3. Material law in type-II superconductors

★ Electromagnetic energy of the Vortex Lattice

\[W_{SC} = \frac{1}{\mu_0} \int_{\Omega} \mathbf{V} \cdot \left(\mathbf{b}_1 + \frac{1}{2} \mathbf{b}_2 - \mu_0 \mathbf{H} \right) \]

\[\mathbf{V} = \sum_i \Phi_0 \delta^2(\mathbf{r} - \mathbf{r}_i) \mathbf{n}_i: \text{ vorticity} \]

\[\mathbf{b}_2 \text{ flux density of the equilibrium Vortex Lattice} \]

\[\mathbf{b}_1 \text{ flux related to other sources} \]

\[\mathbf{H} \text{ field intensity: } \nabla \times \mathbf{H} = \mathbf{J}_0 \]

★ The equilibrium (\(\partial_\eta W_{SC} = 0 \)) is given by a triangular vortex lattice with a uniform macroscopic field \(\mathbf{B} \) parallel to \(\mathbf{H} \). Then \(\mathbf{B} = \mu_0 \mathbf{H} \) and \(\nabla \times \mathbf{B} = 0 \) well within the sample.
In non-ideal (practical) superconductors, \(B \) may vary in intensity (\(J_\perp \)) and orientation (\(J_\parallel \)).

Then: \(W_{\text{Full}} = W_{\text{SC}} + W_{\text{Pinning}} \)

Equilibrium: \(\partial_\eta W_{\text{SC}} + \partial_\eta W_{\text{Pinning}} \) (forces + constraints = 0)

\[
J_\perp \propto F_p^{\perp} = F_p \cos \alpha; \quad J_\parallel \propto \tau_p \propto F_p^{\parallel} = F_p \sin \alpha \Rightarrow \frac{J_\perp^2}{a^2} + \frac{J_\parallel^2}{b^2} = 1
\]
Clarifying E(J): CWDC experiment

An elliptic $J_\parallel(J_\perp)$ law has been reported
Clarifying $E(J)$: CWDC experiment

Eq. (25) corresponds to the Critical State Theory ...

that postulates a non-functional relation \(\{E, J\} \Rightarrow J \in \Delta \)
2. Numerical Modelling \(\rightarrow \) \(E(J) \)

2.1. Thermodynamic model (SST 2012)

Minimize \(C \equiv \frac{\mu_0}{2} \int_{\mathbb{R}^3} \| H_{n+1} - H_n \|^2 + \Delta t \int_{\Omega} \mathcal{F}[J] \)

\[
E = \nabla J \mathcal{F}
\]
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Academic 1D example: transport along type-II cylinder with quasi-linear E(J)
Academic 1D example: transport along type-II cylinder with quasi-linear \(E(J) \)
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Academic 1D example: transport along type-II cylinder with quasi-linear E(J)
Academic 1D example: transport along type-II cylinder with quasi-linear $E(J)$
Towards 3D modelling: expanding the yield region

SST 2012, Badía & López
Expanded yield region: first example

Transport along crossed tapes
Expanded yield region: first example

Transport along crossed tapes
2.2. The power-law-like $\mathcal{F}(J)$ formulation

In SST 2012 it was shown that

$$\mathcal{F}_{\text{QLL}}(J) = \frac{1}{2} \rho \Theta(T)(J \pm J_{c\perp})^2 \quad \text{(Quasi-linear-law)}$$

$\&$

$$\mathcal{F}_{\text{PL}}(J) = F_0 \left(\frac{J}{J_{c\perp}} \right)^M, \quad M \gg 1 \quad \text{(Power-law)}$$

are equivalent in 1D

\star Here, we generalize \mathcal{F}_{PL} to 3D

$$\mathcal{F}_{\text{PL}}(\mathbf{J}) = F_0 \left[\left(\frac{J_{\parallel}}{J_{c\parallel}} \right)^2 + \left(\frac{J_{\perp}}{J_{c\perp}} \right)^2 \right]^M$$
2.3. The power-law-like $E(J)$ formulation

$$E_{PL}(J) = \nabla_J \mathcal{F}_{PL}(J)$$

\[\downarrow\]

$$e(j) = \left(j^2 + \gamma j^2 \right)^{M-1} \left(j + \gamma j_\parallel \right)$$

with the definitions:

$$\gamma \equiv J^2_{c\perp}/J^2_{c\parallel} - 1 \equiv \Gamma^2 - 1$$

$$j \equiv J/J_{c\perp}$$

$$e \equiv E/(2MF_0J_{c\perp})$$

* Applied to CWDC experiment:

$$\frac{e_y}{e_z} = \frac{\gamma \sin \alpha \cos \alpha}{1 + \gamma \cos^2 \alpha} = \frac{(\Gamma^2 - 1) \tan \alpha}{\Gamma^2 + \tan^2 \alpha}$$
2.3. The power-law-like $E(J)$ formulation

$$E_{PL}(J) = \nabla_J F_{PL}(J)$$

\downarrow

$$e(j) = \left(j^2 + \gamma j_\parallel^2\right)^{M-1} \left(j + \gamma j_\parallel\right)$$

with the definitions:

$$\gamma \equiv J_{c\perp}^2 / J_{c\parallel}^2 - 1 \equiv \Gamma^2 - 1$$

$$j \equiv J / J_{c\perp}$$

$$e \equiv E / \left(2 M F_0 J_{c\perp}\right)$$

* Applied to CWDC experiment:

$$\frac{e_y}{e_z} = \frac{\gamma \sin \alpha \cos \alpha}{1 + \gamma \cos^2 \alpha} = \frac{(\Gamma^2 - 1) \tan \alpha}{\Gamma^2 + \tan^2 \alpha} \quad \checkmark$$
3. Application
3.1. Approximations to the helical problem

In all cases $I_{tr}(t) = I_0 \sin \omega t$ along each layer

and we obtain $j(z, t)$ across the layers
Model A: influence of the power-law exponent

In this case $\Gamma = 1$
Model A: influence of the anisotropy ratio

In this case $M = 10$ & $\alpha = 67.5^\circ$
Model B: the current flow \((2\alpha = 2\beta = 45^\circ)\)

Anisotropic \(\Rightarrow\) inhomogeneous
4. Conclusions

* Elliptic yield region of current density $J_\perp(J_{\parallel})$

 Experimental evidence (CWDC)

 The minimal physical model (unique F_p)

* Numerical modelling: the “power-law” $E(J)$

 Equivalent $F(J)$ formulation fully tested

 A feasible and sound form of $E(J)$ given

 Next: implementation of $E(J)$ in FE codes . . .
Many thanks for your attention!

http://fmc.unizar.es/people/anabadia/