doc. RNDr. Dobročka Edmund, CSc.

Šichman, P., Hasenöhrl, S., Stoklas, R., Priesol, J., Dobročka, E., Haščík, Š., Gucmann, F., Vincze, A., Chvála, A., Marek, J., Šatka, A., and Kuzmík, J.: Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure, Mater. Sci Semicond. Process. 118 (2020) 105203.

1. Mochizuki, K.: Japan. J. Applied Phys. 60 (2021) 018002.

Kolenčík, M., Ernst, D., Urík, M., Ďurišová, Ľ., Bujdoš, M., Šebesta, M., Dobročka, E., Kšiňan, S., Illa, R., Qian, Y., Feng, H., Černý, I., Holišová, V., and Kratošová, G.: Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions, Nanomater. 10 (2020) 1619.

1. Elshayb, O.M.: Molecules 26 (2021) 584.

Kováčová, Z., Orovčík, Ľ., Sedláček, J., Bača, Ľ., Dobročka, E., Kitzmantel, M., and Neubauer, E.: The effect of YB4 addition in ZrB2-SiC composites on the mechanical properties and oxidation performance tested up to 2000 °C, J. Europ. Cerami. Soc 40 (2020) 3829-3843.

1. Simonenko, E.P.: J. Europ. Ceramic Soc‏ 41 (2021)‏ 1088.

Šebesta, M., Nemček, L., Urík, M., Kolenčík, M., Bujdoš, M., Vávra, I., Dobročka, E., and Matúš, P.: Partitioning and stability of ionic, nano- and microsized zinc in natural, Sci Total Environ. 700 (2020) 134445.

1. Gallego-Hernandez, A.L.: Environmen. Pollut. 260 (2020) 114006.
2. Li, J.: Adv. Mater. Sci Engn. 2021 (2021) 6649691.

Hutár, P., Španková, M., Sojková, M., Dobročka, E., Végso, K., Hagara, J., Halahovets, Y., Majková, E., Šiffalovič, P., and Hulman, M.: Highly crystalline MoS2 thin films fabricated by sulfurization, Phys. Status Solidi B 256 (2019) 1900342.

1. Johari, M.H.: Nanomater. Nanotechnol.‏ 11 (2021) 1847980420981537.

Kolenčík, M., Ernst, D., Komár, M., Urík, M., Šebesta, M., Dobročka, E., Černý, I., Illa, R., Kanike, R., Qian, Y., Feng, H., Orlová, D., and Kratošová, G.: Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions, Nanomaterials 9 (2019) 1559.

1. Bashir, A.: Environmen. Sci Pollut. Res. 27 (2020) SI23926.
2. Adhikari, S.: CHEMOSPHERE 249 (2020) 126197.
3. Shahhoseini, R.: Acta Physiologiae Plant. 42 (2020) 52.
4. Perez Velasco, E.A.: Molecul. 25 (2020) 1282.
5. Sabir, S.: Dose-Response 18 (2020) 1559325820958911.
6. Doolette, C. L.: Sci Total Environ. 749 (2020) 142369.
7. Tang, L.: Environment Inter.‏ 145 (2020) 106122.
8. Hernandez-Diaz, Jose A.: J. Sci Food Agricult. 101 (2021) 1270.

Hasenöhrl, S., Chauhan, P., Dobročka, E., Stoklas, R., Vančo, Ľ., Veselý, M., Bouazzaoui, F., Chauvat, M.-P., Reterana, P., and Kuzmík, J.: Generation of hole gas in non-inverted InAl(Ga)N/GaN heterostructures, Applied Phys. Express 12 (2019) 014001.

1. Murugapandiyan, P.: J. Electronic Mater. ‏49 (2020) SI524.

Sojková, M., Šiffalovič, P., Babchenko, O., Vanko, G., Dobročka, E., Hagara, J., Mrkývková, N., Majková, E.,  Ižák, T., Kromka, A., and Hulman, M.: Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond, Sci Rep. 9 (2019) 2001.

1. Ou, N. C.: Organometall. 39 (2020) 956.

Kučera, M., Adikimenakis, A., Dobročka, E., Kúdela, R., Ťapajna, M., Laurenčíková, A., Georgakilas, A., and Kuzmík, J.: Structural, electrical, and optical properties of annealed InN films grown on sapphire and silicon substrates, Thin Solid Films 672 (2019) 114-119.

1. Andreev, B.A.: Semiconductors 53 (2019) 1357.
2. Cross, G. B.: J. Crystal Growth 536 (2020) 125574.
3. Wang, S.: Coatings 10 (2020) 1185.

Chauhan, P., Hasenöhrl, S., Dobročka, E., Chauvat, M.-P., Minj, A., Gucmann, F., Vančo, Ľ., Kováč, J.jr., Kret, S., Ruterana, P., Kuball, M., Šiffalovič, P., and Kuzmík, J.: Evidence of relationship between strain and In-incorporation: growth of N-polar In-rich InAlN buffer layer by OMCVD, J. Applied Phys. 125 (2019) 105304.

1. Biswas, D.: J. Applied Phys. 125 (2019) 225707.

Vilamová, Z., Konvičková, Z., Mikeš, P., Holišová, V., Mančík, P., Dobročka, E., Kratošová, G., and Seidlerová, J.: Ag-AgCl nanoparticles fixation on electrospun PVA fibres: technological concept and progress, Sci Rep. 9 (2019) 15520.

1. Sharifi-Rad, M.: Nanomater. 10 (2020) 638.
2. Wang, Z.: Adv. Therapeut.‏ 4 (2021) SI2000096.

Ušák, E., Ušáková, M., Dosoudil, R., Šoka, M., and Dobročka, E.: Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites, AIPAdvan. 8 (2018) 047805.

1. Hu, F.: J. Supercond. Novel Magnet. 33 (2020) 2779.

 Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Dobročka, E., Kováč, J.jr., Kováč, J., Ďurišová, J., and Pudiš, D.: Nanorods and nanocones for advanced sensor applications, Applied Surface Sci 461 (2018) 61-65.

1. Rajkumar, C.: Results in Phys. 15 (2019) 102647.
2. Rajkumar, C.: Vacuum 168 (2019) UNSP 108856.
3. Chen, Y.: Adv. Mater. 32 (2021) 2001668.

Chromik, Š., Španková, M., Talacko, M., Dobročka, E., and Lalinský, T.: Some peculiarities at preparation of Bi4Ti3O12 films for bolometric applications, Applied Surface Sci 461 (2018) 39-43.

1. Shirokov, V.: Acta Crystall. B 75 (2019) 978.
2. Huang, Y.: Applied Surface Sci 495 (2019) UNSP 143640.

Rosová, A., Hušek, I., Kulich, M., Melišek, T., Kováč, P., Dobročka, E., Kopera, L., Scheiter, J., and Haessler, W.: Microstructure of undoped and C-doped MgB2 wires prepared by an internal magnesium diffusion technique using different B powders, J. Alloys Comp. 764 (2018) 437e445.

1. Maeda, M.: J. Alloys Comp. 787 (2019) 1265.
2. Iida, K.: Supercond. Sci Technol. 33 (2020) 043001.

Neilinger, P., Ščepka, T., Mruczkiewicz, M., Dérer, J., Manca, D., Dobročka, E., Samardak, A.S., Grajcar, M., and Cambel, V.: Ferromagnetic resonance study of sputtered Pt/Co/Pt multilayers, Applied Surface Sci 461 (2018) 202-205.

1. Stebliy, M. E.: Phys. Rev. Applied 11 (2019) 054047.
2. Tavares, M. A. B.: AIP Adv. 9 (2019) Iss. 12.

Brunner, B., Kováč, P., Rosová, A., Reissner, M., and Dobročka, E.: Properties of MgB2 wires doped with BaZrO3 nanopowder made by a modified internal magnesium diffusion process, Supercond. Sci Technol. 30 (2017) 115003.

1. Yetis, H.: Physica B 593 (2020) 412277.
2. Zhang, D.: Physica C 578 (2020) 1353749.

Kuzmík, J., Fleury, C., Adikimenakis, A., Gregušová, D., Ťapajna, M., Dobročka, E., Haščík, Š., Kučera, M., Kúdela, R., Androulidaki, M., Pogany, D., and Georgakilas, A.: Current conduction mechanism and electrical break-down in InN grown on GaN, Applied Phys. Lett. 110 (2017) 232103.

1. Shen, L.: Applied Surface Sci 476 (2019) 418.

Brunner, B., Rosová, A., Kováč, P., Reissner, M., and Dobročka, E.: Effect of Dy2O3 doping on phase formation and properties of MgB2 wires made by the modified internal magnesium diffusion process, Supercond. Sci Technol. 30 (2017) 025004.

1. Zhang, D.: IOP Conf. Ser. 279 (2017) UNSP 012025.
2. Li, W.: J. Rare Earths 37 (2019) 124.

Dobročka, E., Novák, P., Búc, D., Harmatha, L., and Murín, J.: X-ray diffraction analysis of residual stresses in textured ZnO thin films, Applied Surface Sci 395 (2017) 16-23.

1. Li, J.: PLOS ONE 12 (2017) e0188197.
2. Xi, Y.: Ceram. Inter. 43 (2017) 11992.
3. Qian, J.: Shock Vibration (2018) 6905073.
4. Gao, W.: Optical Mater. Express 8 (2018) 2625.
5. Yang, W.: Superlatt. Microstr. 136 (2019) 106291.
6. Motazedian, F.: Mater. Design 181 (2019) UNSP 108063.
7. Wang, J.: J.Thermoplast. Comp. Mater. 32 (2019) 1445.
8. Pinto, R.M.R.: Adv. Engn. Mater. 21 (2019) 1900663.
9. Mishurova, T.: J. Applied Phys. 128 (2020) 025103.
10. Peng, Y.: J. Construct. Steel Res. 176 (2021) 106346.

Sojková, M., Chromik, Š., Rosová, A., Dobročka, E., Hutár, P., Machajdík, D., Kobzev, A.P., and Hulman, M.: MoS2 thin films prepared by sulfurization, Proc. SPIE 10354 (2017) 103541K-1.

1. Kokalj, D.: Coatings 10 (2020) 755.
2. Ghosh, S.: Energy 203 (2020) 117918.

Soták, T., Hronec, M., Gál, M., Dobročka, E., and Škriniarová, J.: Aqueous-phase oxidation of furfural to mateic acid catalyzed by copper phosphate catalysts, Catal. Lett. 147 (2017) 2714-2723.

1. Wang, M.: ACS Catal. 8 (2017) 2129.
2. Sestakova, I.: J. Electroanalyt. Chem. 821 (2018) SI92.
3. Rezaei, M.: J. Environmen. Chem. Engn. 7 (2019) 102855.
4. Lee, Y.: Rev. Environmen. Sci Bio-Technol. 18 (2019) 317.
5. Teong, S.P.: Green Chem. 21 (2019) 5753.
6. Roman, A.M.: ACS Catal. 9 (2019) 10305.
7. Iglesias, J.: Chem. Soc Rev. 49 (2020) 5704.
8. Iriondo, A.: Catal. 10 (2020) 895.
9. Hu, A.: J. Theoret. Comput. Chem. 19 (2020) 2050019.
10. Malibo, P.M.: CHEMISTRYSELECT 5 (2020) 6255.
11. Arias, P.L.: Catal. Sci Technol. 10 (2020) 2721.
12. Yu, Q.: J. Chem. Technol. Biotechnol. 95 (2020) 751.
13. Agirre, I.: Biomass Conver. Biorefin. 10 (2020)‏ 1021.

Druga, J., Kašiarová, M., Dobročka, E., and Zemanová, M.: Corrosion and tribological properties of nanocrystalline pulse electrodeposited Ni-W alloy coatings, Trans. IMF 95 (2017) 39-45.

1. Shreeram, D.D.: Surface Coatings Technol. 325 (2017) 386.
2. He, T.: Ceramics Inter. 44 (2018) 9188.
3. Lv J.: Surface Coatings Technol. 337 (2018) 516.
4. Costa, J.D.: Inter. J. Electrochem. Sci 13 (2018) 2969.
5. Shreeram, D.D.: JOM 70 (2018) 2603.
#    6. Vernickaite, E.: Proc. 9th Inter. Sci Conf. BALTTRIB 2017. 2018, pp. 207.
7. Mulone, A.: Coatings 9 (2019) 66.
8. Hosseini, M.G.: Metall. Mater. Trans. A 50A (2019) 5510.
9. Sadat, T.: Materials 13 (2020) 4027.

Chromik, Š., Sojková, M., Vretenár, V., Rosová, A., Dobročka, E., and Hulman, M.: Influence of GaN/AlGaN/GaN (0001) and Si (100) substrates on structural properties of extremely thin MoS2 films grown by pulsed laser deposition, Applied Surface Sci 395 (2017) 232-236.

1. Li, D.: Applied Surface Sci 421 (2017) 884.
2. Hao, L.: Nanoscale Research Lett. 12 (2017) 567.
3. Yao, J.: ACS Applied Mater. Interfaces 10 (2018) 38166.
4. Rozenfeld, S.: Bioelectrochem. 123 (2018) 201.
5. Wang, W.: J. Mater. Chem. C 6 (2018) 6641.
6. Banday, S.: J. Tribol.-Trans. ASME 141 (2019) 022003.
7. Wu, Z.: Mater. Today Nano 12 (2020) 100092.

Ťapajna, M., Válik, L., Gucmann, F., Gregušová, D., Fröhlich, K., Haščík, Š., Dobročka, E., Tóth, L., Pécz, B., and Kuzmík, J.: Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density, J. Vacuum Sci Technol. B 35 (2017) 01A107.

1. Meer, M.: Semicond. Sci Technol. 32 (2017) 04LT02.
2. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
3. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Takhar, K.: Applied Surface Sci 481 (2019) 219.
6. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
7. Schiliro, E.: AIP Adv. 10 (2020) 125017.

Gucmann, F., Kúdela, R., Rosová, A., Dobročka, E., Mičušík, M., and Gregušová, D.: Optimization of UV-assisted wet oxidation of GaAs, J. Vacuum Sci Technol. B 35 (2017) 01A116.

1. Toyoshima, R.: Chem. Comm. 56 (2020) 14905.

Kořenková, L., Šebesta, M., Urík, M., Kolenčík, M., Kratošová, G., Bujdoš, M., Vávra, I., and Dobročka, E.:Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles,. Acta Agricult. Scand. B 67 (2017) 285-291.

1. Lyu, S.: Frontiers In Plant Sci 8 (2017) 597.
2. Lyu, S.: Environmen. Pollut. 230 (2017) 302.
3. Tan, W.: Environmen. Sci-Nano 5 (2018) 257.
#     4. Mattiello, A.: In Nanomaterials in Plants, Algae, and Microorganisms. Academic Press 2018, ISBN 978-012-811-487-2. P. 277.
5. Wu, B.: Environmen. Pollut. 230 (2017) 302.
6. Zahra, Z.: Soil Sediment Contamin. 28 (2019) 184.
7. Kranjc, E.: Nanomater. 9 (2019) 1094.
8. Das, P.: Environmen. Sci Pollution Res.‏ 27 (2020) 7795.
9. Zahra, Z.: Nanomater. 10 (2020) 1469.
10. Romano de Melo, G.S.: Water Air Soil Pollut. 232 (2021) 25.

Sojková, M., Štrbik, V., Nurgaliev, T., Chromik, Š., Dobročka, E., Španková, M., Nurgaliev, T., Blagoev, B., and Gál, N.: Fabrication of hybrid thin film structures from HTS and CMR materials, J. Phys.:Conf. Ser. 700 (2016) 012022.

#    1. Xie, Q.: Cailiao Daobao/Mater. Rep. 32 (2018) 30-33 and 49.

Hronec, M., Fulajtárová, K., Vávra, I., Soták, T., Dobročka, E., and Micusik, M.: Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Applied Catal. B 181 (2016) 210-219.

1. Wang, Y.: Chem. Engn. J. 299 (2016) 104.
2. Halilu, A.: Energy & Fuels 30 (2016) 2216.
3. Grazia, L.: Catal. Sci Technol. 6 (2016) 4418.
4. Zhang, G.-S.: Green Chem. 18 (2016) 2155.
5. Bombos, D.: Revista De Chimie 67 (2016) 2034.
6. Li, X.: ACS Catal. 6 (2016) 7621.
7. Zhu, S.: Green Chem. 18 (2016) 5667.
8. Liu, Y.: ACS Sustainable Chem. & Engn. 5 (2017) 744.
9. Zhou, M.: Fuel 202 (2017) 1.
10. Hu, L.: Renewable & Sustainable Energy Rev. 74 (2017) 230.
11. He, G.: J. Molecular Liquids 236 (2017) 314.
12. Cueto, J.: CHEMCATCHEM 9 (2017) 1765.
13. Ramos, R.: Green Chem. 19 (2017) 1701.
14. Gong, W.: ACS Sustainable Chem. & Engn. 5 (2017) 2172.
15. Rezaei, S.J.T.: J. Iranian Chem. Soc 14 (2017) 585.
16. Wang, W.: RSC Adv. 7 (2017) 16901.
17. Nakagawa, Y.: J. Japan Petroleum Inst. 60 (2017) 1.
18. Wang, Y.: Asia-Pacific J. Chemical Engn. 12 (2017) 422.
19. Ma, Y.-F.: Chinese Chem. Lett. 28 (2017) 1153.
20. Xu, Y.-J.: Applied Catalysis A 543 (2017) 266.
21. Alibegovic, K.: CHEMISTRYSELECT 2 (2017) 5485.
22. Gong, W.: CHEMISTRYSELECT 2 (2017) 9984.
23. Liu, X.: Faraday Discuss. 202 (2017) 79.
24. Jiang, Z.: ACS Catal. 7 (2017) 5758.
25. Chen, S.-Q.: Adv. Sustainable Systems 1 (2017) UNSP 1700102.
26. Duan, Y.: Green Chem. 19 (2017) 5103.
27. Xie, L.: Chemistry-Asian J. 13 (2018) 641.
28. Verrier, C.: Organic & Biomolecul. Chem. 16 (2018) 676.
29. Pino, N.: Energy & Fuels 32 (2018) 561.
30. Pino, N.: Applied Catalysis A 559 (2018) 94.
31. Li, Y.: Catalysts 8 (2018) 193.
32. Mironenko, R. M.: Kinet. Catal. 59 (2018) 339.
33. Lopez-Asensio, R.: Applied Catalysis A 556 (2018) 1.
34. Nguyen-Huy, C.: Fuel 226 (2018) 607.
35. Li, H.: Comm.  Chem. 1 (2018) UNSP 32.
36. Shen, T.: RSC Adv. 8 (2018) 37993.
37. Sun, Z.: Chem. Comm. 54 (2018) 7725.
38. Zhang, Y.: Applied Catalysis A 561 (2018) 117.
39. Gholinejad, M.: J. Catal. 363 (2018) 81.
40. Bredihhin, A.: ACS Omega 3 (2018) 10211.
41. Wang, L.: J. Chem. Engn. Data 63 (2018) 2653.
42. Jiang, C.: Organic Geochem. 122 (2018) 126.
43. Ye, R.-P.: Catal. Sci Technol. 8 (2018) 3428.
44. Sun, L.: J. Power Sources 395 (2018) 386.
45. Date, N.S.: ACS Omega 8 (2018) 9860.
46. Gong, W.: Catal. Sci Technol. 8 (2018) 5506.
47. Gong, W.: ACS Sustainable Chem. Engn. 6 (2018) 14919.
48. Dohade, M.: Catal. Sci Technol. 8 (2018) 5259.
49. Zhong, H.: Chemical Sci 9 (2018) 8703.
50. Chen, S.: Chem. Rev. 118 (2018) 11023.
51. Sommer, T.: Chem. Papers 72 (2018) 2397.
# 52. Granados, M.L.: In Furfural: an entry point of lignocellulose in biorefineries to produce renewable chemicals, polymers, and biofuels. World Sci, 2018. ISBN 978-178634-488-5, pp. 157-168.
#     53.  Granados, M.: In Furfural: an entry point of lignocellulose in biorefineries to produce renewable chemicals, polymers, and biofuels. World Sci, 2018. ISBN 978-178634-488-5, pp.  111-136.
54. Chinh N.-H.: Applied Catalysis A 571 (2019) 118.
55. Cherkasov, N.: Applied Catalysis A 570 (2019) 183.
56. Zhang, X.: Applied Catalysis B 244 (2019) 899.
57. Kohli, K.: Energies 12 (2019) 233.
58. Mironenko, R.M.: Reaction Kinet. Mechan. Catal. 126 (2019) 811.
59. Zhou, X.: Industr. Engn. Chem. Res. 58 (2019)  3988.
60. Omotoso, T.: Applied Catalysis B 254 (2019) 491.
61. Nakagawa, Y.: Fuel Process. Technol. 193 (2019) 404.
62. Granger, P.: Applied Catalysis B 253 (2019) 391.
63. He, X.: Catal. Lett. 149 (2019) 2078.
64. Liu, P.: CHEMCATCHEM 11 (2019) 3296.
65. Deng, Q.: Catal. Comm. 126 (2019) 5.
66. Pan, P.: CHEMISTRYSELECT 4 (2019) 5845.
67. Tieuli, S.: CHEMISTRYSELECT 4 (2019) 4624.
68. Li, X.: Applied Catalysis A 575 (2019) 152.
69. Jia, P.: ACS Sustainable Chem. Engn. 7 (2019) 15221.
70. Wang, W.: Polymers 11 (2019) 1417.
71. Wang, L.: Catal. Comm. 129 (2019) UNSP 105745.
72. Mhadmhan, S.: ACS Sustainable Chem. Engn. 7 (2019) 14210.
73. Wang, W.: Catalysts 9 (2019) 886.
74. Yang, Y.: CHEMISTRYSELECT 4 (2019) 11165.
75. Wang, Y.: Catalysts 9 (2019) 796.
76. Klokov, S.V.: Russian J. Phys. Chem. A 93 (2019) 1986.
77. Nakagawa, Y.: Fuel Process. Technol. 193 (2019) 404.
78. Ruan, L.: Molecular Catal. 480 (2020) UNSP 110639.
79. Astuti, M.D.: Bull. Chem. Reaction Engn. Catal. 15 (2020) 231.
80. Cueto, J.: Applied Catalysis B 263 (2020) 118341.
81. Ren, B.: Applied Surface Sci 504 (2020) 144364.
82. Mishra, D.K.: Biomass Biofuels Biochem. (2020) P.‏ 323.
83. Herrera, C.: Fuel 276 (2020) 118032.
84. Mironenko, R.M.: J. Catal. 389 (2020) 721.
85. Cheah, K.W.: Reaction Chem. Engn.‏ 5 (2020) 1682.
86. Herrera, C.: Catal. Comm. 144 (2019) 106092.
87. Cho, Hong J.: ACS Catal. 10 (2020) 8850.
88. Salnikova, K.E.: CHEMPLUSCHEM 85 (2020) 1697.
89. Pang, Y.: Inter. J. Hydrogen Energy 45 (2020) 17191.
90. Deng, Q.: ACS Catal. 10 (2020) 7355.
91. Li, Z.-K.: Renewable Energy 150 (2020) 777.
92. Li, X.: Green Chem. 22 (2020) 2549.
93. Tang, F.: J. Catal. 383 (2020) 172.
94. Wang, Y.: Catal. Lett. 150 (2020) 2158.
95. Wei, Z.: Catal. 10 (2020) 192.
96. Liu, M.: ACS Applied Nano Mater. 3 (2020) 9226.
97. Muldoon, J.A.: CHEMSUSCHEM 13 (2020) ‏5777.
98. Li, G.: J. Catal. 391 (2020) 163.
99. Mironenko, R.M.: Catal. Today 357  (2020) ‏ SI152.
100. Pirmoradi, M.: Catal. Sci Technol. 10 (2020) 7002.
101. Pirmoradi, M.: Indust. Engn. Chem. Res.‏ 59 (2020) 17748.
102. Saien, J.: J. Chem. Engn. Data 65 (2020) 5505.
103. Meng, S.: Front. Bioengn. Biotechnol.‏ 8  (2020) 615235.
104. Herrera, C.: CHEMCATCHEM 13 (2021) 682.
105. Huang, L.: Fuel 289 (2021) 119910.
106. Prekob, A.: Mater. Today Chem. 19  (2021) 100409.
107. Hao, F.: Catal. Comm. 151 (2021) 106266.
108. Lee, J.: Applied Catal. B‏ 282  (2021) 119576.
109. Gao, G.: Catal. Sci Technol. 11 (2021) 575.
110. Fu, X.: Molecular Catal. 499 (2021) 111298.

Kulich, M., Kováč, P., Hain, M., Rosová, A., and Dobročka, E.: High density and connectivity of a MgB2 filament made using the internal magnesium diffusion technique, Supercond. Sci Technol. 29 (2016) 035004.

1. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
2. Liu H.: Rare Metal Mater. Engn. 47 (2018) 1020.
3. Liu, H.: Mater. Lett. 227 (2018) 305.
4. Yetis, H.: Physica B 593 (2020) 412277.
5. Bovone, G.: Supercond. Sci Technol. 33 (2020) 125003.
6. Yetis, H.: Physica C‏ 581 (2021) 1353807.

Španková, M., Štrbik, V., Dobročka, E., Chromik, Š., Sojková, M., Zheng, D., and Li, J.: Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates. Vacuum 126 (2016) 24-28.

 1. Yang, C.H.: J. Mater. Sci-Mater. Electron. 28 (2017) 3423.
2. Shiota, T.: Thin Solid Films 626 (2017) 154.
3. Zhang, H.: Applied Phys. Lett. 111 (2017) 192408.
4. Zhou, H.: Mater. Research Express 5 (2018) 015001.
5. Sukkurji, P.A.: Materials 11 (2018) 1204.
6. Kumari, S.: Sci Rep.‏ 10 (2020) 3659.
7. Channagoudra, G.: Thin Solid Films 709 (2020) 138132.

Soták, T., Hronec, M., Vávra, I., and Dobročka, E.Sputtering processed tungsten catalysts for aqueous phase reforming of cellulose. Inter. J. Hydrogen Energy 41 (2016) 21936-21944.

1. Chen, A.: Inter. J. Hydrogen Energy 42 (2017) 9577.
2. Borowiecki, T.: Przemysl Chem. 97 (2018) 522.
3. Wang, H.: Energy Fuels 32 (2018) 11529.
4. Godina, L.I.: Inter. J. Hydrogen Energy 44 (2019) 14605.
5. Arzac, G.M.: Inter. J.Hydrogen Energy 45 (2020) ‏ 33288.

Gucmann, F., Kúdela, R., Kordoš, P., Dobročka, E., Gaži, Š., Dérer, J., Liday, J., Vogrinčič, P., and Gregušová, D.: III-As heterostructure field-effect transistors with recessed ex-situ gate oxide by O2 plasma-oxidized GaAs cap, J. Vacuum Sci Technol. B 33 (2015) 01A111.

1. Grabnic, T.: Surface Sci 692 (2020) 121516.

Fulajtárová, K., Soták, T., Hronec, M., Vávra, I., Dobročka, E., and Omastová, M.: Aqueous phase hydrogenation of furfural to furfural alcohol over Pd-Cu catalysts. Applied Catal. A 502 (2015) 78-85.

1. Aldosari, O.F.: Catal. Sci Technol. 6 (2016) 234.
2. Meng, Q.: J. Molecular Catal. A 421 (2016) 76.
3. Jiang, W.: Applied Catalysis A520  (2016) 65.
4. Manikandan, M.: J. Molecular Catal. A 417 (2016) 153
5. Zhou, P.: Catal. Sci Technol. 6 (2016) 3694.
6. Grazia, L.: Catal. Sci Technol. 6 (2016) 4418.
7. Sun, D.: Green Chem. 18  (2016) 2579.
8. Mariscal, R.: Energy & Environmen. Sci 9  (2016) 1144.
9. Manikandan, M.: RSC Adv. 6 (2016) 3888.
10. Wang, G.-H.: Angewandte Chemie-Inter. Ed. 55 (2016) SI11101.
11. Liu, L.: Inter. J. Hydrogen Energy 41 (2016) 14721.
12. Dong, J.: Chinese J. Catal. 37 (2016) SI1669.
13. Bombos, D.: Revista De Chimie 67 (2016) 2034.
14. Li, X.: ACS Catal. 6 (2016) 7621.
15. O’Driscoll, A.: Organic Process Research & Develop. 20 (2016) 1917.
16. Zhang, C.: J. Molecular Catal. A-Chem. 424 (2016) 91.
17. Jeong, H.: J. Catal. 344 (2016) 609.
18. O’Driscoll, A.: Catal. Today 279 (2017) SI194.
19. Meng, Q.: Applied Catalysis B 212 (2017) 15.
20. Kim, M.S.: J. Industrial Engn. Chem. 52 (2017) 59.
21. Wang, Y.: Molecular Catal. 436 (2017) 128.
22. Pino, N.: J. Catal. 350 (2017) 30.
23. Meng, Q.: Molecular Catal. 433 (2017) 111.
24. Hu, X.: Chem. Comm. 53 (2017) 2938.
25. Gong, W.: ACS Sustainable Chem. & Engn. 5 (2017) 2172.
26. Sadjadi, S.: Korean J. Chem. Engn. 34  (2017) 692.
27. Duan, Y.: RSC Adv. 7 (2017) 26487.
28. Dohade, M.G.: Green Chem. 19 (2017) 1144.
29. Guo, H.: Bioresources 12 (2017) 8755.
30. Alibegovic, K.: CHEMISTRYSELECT 2 (2017) 5485.
31. Li, Z.: Energy & Fuels 31 (2017) 9585.
32. Ghashghaee, M.: Applied Catalysis A 545 (2017) 134.
33. Modelska, M.: Molecules 22 (2017) 1544.
34. Yang, X.: Catal. Sci Technol. 7 (2017) 5625.
35. Gong, W.: CHEMISTRYSELECT 2 (2017) 9984.
36. Fu, Z.: Applied Catalysis A 547 (2017) 248.
#   37. Guo, H.-J.: Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 45 (2017) 817.
38. Guo, H.: Industr. Engn. Chem. Res. 57 (2018)  498.
39. Albilali, R.: Catal. Sci Technol. 8 (2018) 252.
40. Ouyang, W.: Catal. Today 308 (2018) SI 32.
41. Li, H.: Comm.  Chem. 1 (2018) UNSP 32.
42. Guo, Y.: Chinese J. Catal. 39 (2018) 1070.
43. Mironenko, R.M.: Kinet. Catal. 59 (2018) 339.
44. Xu, J.: ACS Sustain. Chem. Engn. 6 (2018) 6126.
45. Yin, D.: Chinese J. Catal. 39 (2018) 319.
46. He, J.: Catal. Sci Technol. 8 (2018) 790.
47. Chen, H.: Molecular Catal. 445 (2018) 94.
48. Wu, W.: Catal. Comm. 105 (2018) 6.
49. Wang, G.: RSC Adv. 8 (2018) 37243.
50. Yang, X.: Applied Catalysis A 561 (2018) 78.
51. Wang, Y.: ACS Sustainable Chem. Engn. 6 (2018) 9831.
52. Chai, Y.: ACS Catal. 8 (2018) 8578.
53. Wang, Y.: CHEMCATCHEM 10 (2018) 3459.
54. Kong, X.: Green Chem. 20  (2018) 3657.
55. Ramirez-Barria, C.: Applied Catalysis A 563 (2018) 177.
56. Gong, W.: Catal. Sci Technol. 8 (2018) 5506.
57. Gong, W.: ACS Sustainable Chem. Engn. 6 (2018) 14919.
58. Dohade, M.: Catal. Sci Technol. 8 (2018) 5259.
59. Jia, P.: ACS Sustainable Chem. Engn. 6 (2018) 13287.
60. Long, J.: Catalysts 8 (2018) 633.
61. Du, J.: J. Catal. 368 (2018) 69.
62. He, J.: ACS Sustainable Chem. Engn. 6 (2018) 17220.|
63. Chen, S.: Chem. Rev. 118 (2018) 11023.
64. Jiang, S.: Green Chem. 20 (2018) 5104.
#    65. Lu, Y.: Chem. Ind. Forest Products 38 (2018) 1.
#    66. Salnikova, K.: Chem. Engn. Trans. 70 (2018) 379.
#    67. Maireles-Torres, P.: In Furfural: an entry point of lignocellulose in biorefineries to produce renewable chemicals, polymers, and biofuels. World Sci 2018. ISBN 978-178634-488-5, pp. 55-78.
68. Puthiaraj, P.: Catal. Today 324 (2019) SI49.
69. Chinh Nguyen-H.: Applied Catalysis A 571 (2019) 118.
70. Cherkasov, N.: Applied Catalysis A 570 (2019) 183.
71. Long, J.: RSC Adv. 9 (2019) 3063.
72. Li, H.: Catal. Today 319 (2019) SI84.
73. de Souza, P.: Catalysts 9 (2019) 132.
74. Guo, Y.: Chem. Engn. Process. 136 (2019) 211.
75. Long, J.: Front. Chem. 7 (2019) 529.
76. Liu, P.: CHEMCATCHEM 11 (2019) 3296.
77. Wang, T.: Catal. Lett. 149 (2019) 1845.
78. Wang, Z.: Industr. Engn. Chem. Res. 58 (2019)  9458.
79. Salnikova, K.E.: Catal. Today 329 (2019) SI142.
80. Zhao, Z.: Nature Catal. 2 (2019) 431.
81. Peng, B.: Green Chem. 21 (2019) 5914.
82. Zhang, Q.: Indust. Crops Products 138 (2019) UNSP 111454.
83. Wang, Y.: Catal. 10 (2019) 796.
84. Jia, P.: ACS Sustainable Chem. Engn. 7 (2019) 15221.
85. Mhadmhan, S.: ACS Sustainable Chem. Engn. 7 (2019) 14210.
86. Le, Son D.: ACS Sustainable Chem. Engn. 7 (2019) 18483.
87. Guo, P.: ACS Omega 4 (2019) 21724.
88. Ren, B.: Applied Surface Sci 504 (2020) 144364.
89. Li, G.: ACS Catal. 10 (2020) 1294.
90. Li, Z.-X.: Catal. Lett. 150 (2020) 178.
91. Li, Z.-X.: Molecular Catal. 480 (2020) UNSP 110651.
92. Qin, L.-Z.: Applied Biochem. Biotechnol.190 (2020) 1289.
93. Mishra, D.K.: Biomass Biofuels Biochem. (2020) P.‏ 323.
94. Bagnato, G.: ACS Sustainable Chem. Engn. 8 (2020) 11994.
95. Yang, Y.: Green Chem. 22 (2020) 4937.
96. Ma, M.: Applied Catalysis A 602 (2020) 117709.
97. Salnikova, K.E.: CHEMPLUSCHEM 85 (2020) 1697.
98. Szubiakiewicz, E.: Fuel 271 (2020) 117584.
99. Wang, Y.: Chem. Comm. 56 (2020) 3765.
100. Modelska, M.: Catalysts 10 (2020) 444.
101. Wu, Z.-L.: Green Chem. 22 (2020) 1432.
102. Audemar, M.: Energies 13 (2020) 1002.
103. Long, J.: Biomass Biofuels Biochem. (2020) P.‏ 299.
104. Gomez Millan, G.: Catalysts 10 (2020) 1101.
105. Yu, Z.: CHEMSUSCHEM 13 (2020) 5185.
106. Kumar, A.: ACS Applied Energy Mater. 3 (2020) 9928.
107. Pirmoradi, M.: Catal. Sci Technol. 10 (2020) 7002.
108. Pirmoradi, M.: Indust. Engn. Chem. Res.‏ 59 (2020) 17748.
109. Arundhathi, R.: RSC Adv. 10  (2020) 41120.
110. Goszewska, I.: Catalysts 10 (2020) 1267.
111. Luneau, M.: Chem. Rev. 120  (2020) 12834.
112. Li, Y.: Biomass Conver. Biorefin. 10  (2020) 795.
113. Sebin, M.E.: J. Chem. Sci‏ 132 (2020) 157.
114. Huang, L.: Fuel 289 (2021) 119910.
115. Gao, G.: Catal. Sci Technol. 11 (2021) 575.
116. Weerachawanasak, P.: Catal. Comm. 149 (2021) 106221.
117. Khan, F.-A.: Catalysts 11 (2021) 66.

Kuzmík, J., Haščík, Š., Kučera, M., Kúdela, M., Dobročka, E., Adikimenakis, A., Mičušík, M., Gregor, M., Plecenik, A., and Georgakilas, A.: Elimination of surface band bending on N-polar InN with thin GaN capping, Applied Phys. Lett. 107 (2015) 191605.

1. Lund, C.: J. Applied Phys. 123 (2018) 055702.
2. Pfusterschmied, G.: Proc. IEEE Micro Electro Mechan. Systems 2019, pp. 735-738.
3. Park, B.-G.: Nanotechnol.‏ 31 (2020) 335503.

Šustek, M., Horváth, B., Vávra, I., Gál, M., Dobročka, E., and Hronec, M.: Effects of structures of molybdenum catalysts on selectivity in gas-phase propylene oxidation. Chinese J. Catal. 36 (2015) 1900-1909.

1. Dai, Z.: CHEMSELECT  1 (2016) 2071.
2. Papynov, E.K.: Solid State Sci 69 (2017) 31.
3. Xu, Y.: Catal. Sci Technol. 8 (2018) 1070.
4. Wang, Z.: J. Catal. 368 (2018) 120.
5. Yan, W.: Chinese J. Chem. Engn. 26 (2018) SI1278.
6. Tan, P.: Applied Catal. A 580 (2019) 111.
#    7. Cortés Corberán, V.: In Advanced Nanomater. for Catalysis and Energy: Synthesis, Character. Appl. Elsevier 2019. ISBN 978-0-12-814807-5, pp. 227-293.
8. Wan, Z.: Inter. J. Quantum Chem. 120 (2020) e26328.

Oriňaková, R., Oriňak, A., Kupková, M., Hrubovčáková, M., Markušová-Bučková, L., Giretová, M., Medvecký, Ľ.,Dobročka, E., Petruš, O., Kaľavský, F., : In vitro degradation and cytotoxicity evaluation of iron biomaterials with hydroxyapatite film. Inter. J. Electrochem. Sci 10 (2015) 8158-8174.

1. Monasterio, N.: Surface Coat. Technol. 319 (2017) 12.
2. Sharipova, A.: J. Mechanical Behavior Biomed. Mater. 86 (2018) 240.

Šoka, M., Ušáková, M., Dosoudil, R., Ušák, E., Dobročka, E., : Magnetic and structural properties of nickel zinc ferrites doped with yttrium. IEEE Trans. Magn. 51 (2015) 2000504.

1. Kumar, P.: J. Alloys Compounds 685 (2016) 492.
2. Stergiou, C.: J. Magnet. Magnet. Mater. 426 (2017) 629.
3. Kodam, U.: J. Applied Phys. 121 (2017) 055101.

Jakubisová, E., Višnovský, Š., Široký, P., Hrabovský, D., Pištora, J., Vávra, I., Dobročka, E., Krišťan, P., Štěpánková, H., Harward, I., and Celinski, Z.: Magneto-optical studies of BaFe12O19 films grown by metallo-organic decomposition. Optical Mater. Express 5 (2015) 1323-1330.

       1. Wang, R.: Chinese Phys. Lett. 33 (2016) 047502.

Rosová, A., Kováč, P., Hušek, I., Brunner, B., and Dobročka, E.Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion and in-situ powder-in-tube processes – Secondary phase intergrain nanolayers as an oxygen content indicator. Physica C 516 (2015) 1-9.

1. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
2. Mackinnon, I.D.R. .: Supercond. Sci Technol. 30 (2017) 055004.
#    3. Herbirowo, S.: Mater. Sci Forum 929 (2018)  27.

Rosová, A., Hušek, I., Kováč, P., Dobročka, E., and Melišek, T.: Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion process. J. Alloys Comp. 619 (2015) 726-732.

1. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
2. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
3. Yetis, H.: Physica B 593 (2020) 412277.

Filo, J., Mišicák, R., Cigáň, M., Weis, M., Jakabovič, J., Gmucová, K., Pavúk, M., Dobročka, E., Putala, M., :Oligothiophenes with the naphthalene core for organic thin-film transistors: variation in positions of bithiophenyl attachment to the naphthalene. Synthetic Metals 202 (2015) 73-81..

1. Zhao, Y.: Organic Lett. 17 (2015) 4674.
2. Jaballah, N.: Optical Mater. 50 (2015) 144.
3. Holzer, B.: CHEMPHYSCHEM 18 (2017) 549.
4. Hasko, D.: Applied Phys. A 123 (2017) 203.
5. Pazin, W.M.: RSC Adv. 10 (2020) 28484.

Španková, M., Rosová, A., Dobročka, E., Chromik, Š., Vávra, I., Štrbik, V., Machajdík, D., Kobzev, A.,  and Sojková, M.: Structural properties of epitaxial La0.67Sr0.33MnO3 films with increased temperature of metal-insulator transition grown on MgO substrates. Thin Solid Films 583 (2015) 19-24.

1. Wang, H.: Thin Solid Films 599 (2016) 27.
2. Wang, H.: Thin Solid Films 621 (2017) 1.
3.  Zhou, H.: Mater. Research Express 5 (2018) 015001.
4. Xia, W.: Nanoscale Res. Lett. 15 (2020) 9.
5. Yan, F.: Thin Solid Films 698 (2020) 137872.
6. Prajapat, C.L.: ACS Applied Electron. Mater. 2 (2020) 2636.

Štrbik, V., Reiffers, M., Dobročka, E., Šoltýs, J., Španková, M., Chromik, Š., : Epitaxial LSMO thin films with correlation of electrical and magnetic properties above 400K. Applied Surface Sci 312 (2014) 212-215.

1. Dutta, P.: J. Alloys Compounds 653 (2015) 585.
2. Shiota, T.: Thin Solid Films 593 (2015) 1.
#     3. Zhang, S.: Applied Surface Sci 335 (2015) 115.
4. Yan, F.: Mater. Character. 124 (2017) 90.
5. Arango, I. C.: J. Phys. Conf. Ser. 935 (2017) UNSP012028.
#    6. Zhang, X.: Hsueh Pao/J. Chinese Ceramic Soc 45 (2017) 1303.
7. Zhang, F.: Nanoscale Research Lett. 13 (2018) 24.
8. Rasic, D.: ACS Applied Mater. Interfaces 10 (2018) 21001.

Grančič, B., Mikula, M., Roch, T., Zeman, P., Satrapinskyy,  L., Gregor, M., Plecenik, T., Dobročka, E., Hájovská, Z., Mičušík, M., Šatka, A., Zahoran, M., Plecenik, A., and Kúš, P.: Effect of Si addition on mechanical properties and high temperature oxidation resistance of Ti-B-Si hard coatings, Surface Coating Technol. 240 (2014) 48-54.

1. Zha, X.: Inter. J. Mechan. Sci 134 (2017) 1.
2. Narojczyk, J.: Acta Mechanica et Automatica 11 (2017) 190.
3. Kiryukhantsev-Korneev, F.V.: Protect. Metals Phys. Chem. Surfaces 54 (2018) 1147.
4. Jiao, Y.: Corrosion Sci 140 (2018) 223.
5. Iatsyuk, I.V.: IOP Conf. Ser. 347 (2018) 012028.
6. Nedfors, N.: Surface Coat. Technol. 364 (2019) 89.
7. Ding, J.C.: Ceramics Inter. 45 (2019) 6363.
8. Dai, W.: Ceramics Inter. 45 (2019) 22498.
9. Vopat, T.: Micromach. 11 (2020) 166.
10. Lepakova, O. K.: Inter. J. Self-Propagat. High-Temp. Synthes. 29 (2020) 150.
11. Deambrosis, S.M.: Surface Coat. Technol. 405 (2021) 126556.

Horváth, B., Šustek, M., Škriniarová, J., Omastová, M., Dobročka, E., Hronec, M., : Gas phase hydroxylation of benzene with air-ammonia mixture over copper-based phosphate catalysts. Applied Catal. A 481 (2014) 71-78.

1. Okemoto, A.: J. Molecular Catal. A 411 (2016) 372.
2. Agung, M.: Plasma Sci Technol. 19 (2017) UNSP 055503.
3. Zhu, L.: Chem. Engn. Technol. 41 (2018) 1027.
4. Ottenbacher, R.V.: Applied Organometall. Chem. 34 (2020) e5900.

Chromik, Š., Štrbik, V., Dobročka, E., Roch, T., Rosová, A., Španková, M., Lalinský, T., Vanko, G., Lobotka, P., Ralbovský, M., and Choleva, P.: LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers, Applied Surface Sci 312 (2014) 30-33.

1. Zhao, S.: Adv. Applied Ceram. 116 (2017) 180.
2. Jiang, J.: Ceramics Inter. 44 (2018) 3915.
3. Galik, G.: AIP Conf. Proc. 1996 (2018) 020011.
4. Ji, F.: Mater. Res. Express 6 (2019) 086326.
5. Dong, G.: Ceramics Inter. 45 (2019) 12162.
6. Shi, Q.: Adv. Electron. Mater. 5 (2019) 1900020.
7. Liu, S.: J. Micromech. Microengn. 29 (2019) 065008.
8. Yu, X.: J. Sol-Gel Sci. Technol. 90 (2019) 221.
9. Liu, Y.: Ceramics Inter. A 45 (2019) 24070.
10. Li, H.: J. Alloys Comp. 810 (2019) UNSP 151908.
11. Pu, X.: J. Material. Sci-Mater. Electr. 30 (2019) 19862.
12. Li, H.: J. Alloys Comp. 847 (2020) 156417.
13. Chu, K.: J. Material. Sci-Mater. Electr. 31 (2020) 12389.
14. Chu, K.: Ceramics Inter. 46 (2020) 7568.

Murakami, K., Rommel, M., Hudec, B., Rosová, A., Hušeková, K., Dobročka, E., Rammula, R., Kasikov, A., Han, J., Lee, W., Song, S., Paskaleva, A., Bauer, A., Frey, L., Fröhlich, K., Aarik, J., and Hwang, C.: Nanoscale characterization of TiO2 films grown by atomic layer deposition on RuO2 electrodes. ACS Applied Mater. Interfaces 6 (2014) 2486-2492.

1. Azevedo, J.: Energy & Environmen. Sci 7 (2014) 4044.
2. Jeon, W.: ACS Applied Mater. Interfaces 6 (2014) 21632.
3. Azevedo, J.: Nano Energy 24 (2016) 10.
4. Chirakkara, S .: Mater. Res. Express 3 (2016) 045023.
5. Head, A.R .: J. Phys. Chem. C 120 (2016) 243.
6. Porti, M.: IEEE Trans. Nanotechnol. 15 (2016) 986.
7. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
8. Nafria, M.: ECS Trans. 79 (2017) 139.
9. Croizier, G.: TRANSDUCERS 2017. P. 1237.
10. Ruiz, A.: Applied Phys. Lett. 114 (2019) 093502.
11. Ros, C.: ACS Applied Mater. Interfaces 11 (2019) 29725.
12. Ruiz, A.: Microelectron. Engn. 216 (2019) 111048.
13. Mitronika, M.: Applied Surface Sci 541 (2021) 148510.

Jančovič, P., Hudec, B., Dobročka, E., Dérer, J., Fedor, J., and Fröhlich, K.: Resistive switching in HfO2-based atomic layer deposition grown metal-insulator-metal structures. Applied Surface Sci 312 (2014) 112-116.

1. Zhang, R.: J. Non-Crystall. Solids 406 (2014) 102.
2. Chen, P.-H.: IEEE Electron Device Lett. 37 (2016) 280.
#     3. Hardtdegen, A.: 8th IEEE IMW 2016. ISBN: 978-146738831-3. Art. no. 7495280.
4. Akbar, S.: Physica B-Cond. Matter 520  (2017) 112.
5. Rosa, R.: Phys. Rev. Mater. 2 (2018) 032401.
6. Sokolov, A.S.: Applied Surface Sci 434 (2018) 822.
7. Jung, Y.C.: Applied Surface Sci 435 (2018) 117.
8. Schie, M.: Phys. Rev. Mater. 2 (2018) 035002.
9. Akbar, S.: Microelectr. Reliab. 102 (2019) UNSP 113409.
10. Kumar, S.: Phys. Status Solidi A 217 (2020) 1900756.

Hudec, B., Paskaleva, A., Jančovič, P., Dérer, J., Fedor, J., Rosová, A., Dobročka, E., Fröhlich, K., :Resistiveswitching in TiO2-based metal-insulator-metal structures with Al2O3 barrier layer at the metal/dielectric interface. Thin Solid Films 563 (2014) 10-14.

1. Castan, H.: Thin Solid Films 591 (2015) 55.
#       2. Liu, P.: Key Engn. Mater. 645 (2015) 572.
3. Liu, P.: IEEE 10th NEMS 2015. P. 585.
4. Alekseeva, L.: Japan. J. Applied Phys. 55 (2016) 08PB02.
5. Duenas, S.: IEEE 32nd Conf. Design Circuits Integr. Systems -DCIS 2017.
6. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
7. Stathopoulos, S.: Sci Rep. 7 (2017) 17532.
8. Chen, X.: J. Semicond. 38 (2017) 084003.
9. Rylkov, V.V.: J. Experiment. Theoret. Phys. 126 (2018)  353.
10. Duenas, S.: J. Electron. Mater. 47 (2018) 4938.
11. Nikiruy, K.E.: J. Comm. Technol. Electron. 64 (2019) 1135.
12. Park, S.-J.: J. Alloys Comp. 825 (2020) 154086.
13. Nikolaev, S.N.: Techn. Phys. 65 (2020)‏ 243.
14. Siegel, S.: Adv. Electr. Mater. 7 (2021) 2000815.

Zápražný, Z., Korytár, D., Šiffalovič, P., Jergel, Ma., Demydenko, M., Mikulík, P., Dobročka, E., Ferrari, C., Vagovič, P., and Mikloška, M.: Simulations and surface quality testing of high asymetry angle x-ray crystal monochromators for advanced x-ray imaging applications, Proc. SPIE 9207 (2014)  92070Y.

1. Zhu J.: Acta Phys. Sinica 67 (2018) 036102.

Trgala, M., Žemlička, M., Neilinger, P., Rehak, M., Leporis, M., Gaži, Š., Greguš, J., Plecenik, T., Roch, T.,Dobročka, E., Grajcar, M., : Superconducting MoC thin films with enhanced sheet resistance. Applied Surface Sci 312 (2014) 216-219.

       1. Jiao, G.: Applied Phys. A 120 (2015) 579.
2. Zou, J.: Acta Metall. Sinica 53 (2017) 31.

Chromik, Š., Štrbík, V., Dobročka, E., Dujavová, A., Reiffers, M., Liday, J., and Španková, M.: Significant increasing of onset temperature of FM transition in LSMO thin films, Applied Surface Sci 269 (2013) 98-101.

  1. Pei, H.: ACS Applied Mater. Interfaces 10 (2018) 30895.

Horváth, B., Hronec, M., Vávra, I., Šustek, M., Križanová, Z., Dérer, J., Dobročka, E., : Direct gas-phase epoxidation of propylene over nanostructured molybdenum oxide film catalysts,. Catal. Comm. 34 (2013) 16-21.

1. Liu, Yu.: J. Mater. Chem. A 1 (2013) 13582.
2. Pang, Y.: CHEMCATCHEM 6 (2014) 876.
3. Pang Y.: Progress in Chem. 26 (2014) 1307.
4. Lei, Y.: J. Catal. 321 (2015) 100.
5. Stojadinovic, S.: J. Applied Phys. 117 (2015) 233304.
6. Al-Kuhaili, M. F.: Mater. Design 73 (2015) 15.
7. Khatib, S.J.: Catal. Rev. 57 (2015) 306.
8. Garcia-Aguilar, J.: J. Catal. 338 (2016) 154.
9. Dai, Z.: CHEMISTRYSELECT 1 (2016) 2071.
10. Ramanathan, A.: Microporous Mesoporous Mater. 245 (2017) 118.
11. Xu, Y.: Catal. Sci Technol.8 (2018) 1070.
12. Wang, Z.: J. Catal. 368 (2018) 120.
13. Tezsevin, I.: Phys. Chem. Chem. Phys. 20 (2018) 26681.
14. Drinek, V.: J. Alloys Comp. 808 (2019) UNSP 151470.

Vallo, M., Lalinský, T., Dobročka, E., Vanko, G., Vincze, A., Rýger, I., : Impact of Ir gate interfacial oxide layers on performance of AlGaN/GaN HEMT,. Applied Surface Sci 267 (2013) 159-163.

       1. Lin, R.-M.: Japan. J. Applied Phys. 52 (2013) 111002.
2. Huang, H.: Solid-State Electr. 114 (2015) 148.

Lalinský, T., Vallo, M., Vanko, G., Dobročka, E., Vincze, A., Osvald, J., Rýger, I., Dzuba, J., : Iridium oxides based gate interface of AlGaN/GaN high electron mobility transistors formed by high temperature oxidation. Applied Surface Sci 283 (2013) 160-167.

        1. Jung, S.M.: Semicond. Sci Technol.  30 (2015) 075012.

Korytár, D., Vagovič, P., Végsö, K., Šiffalovič, P., Dobročka, E., Jark, W., Áč, V., Zápražný, Z., Ferrari, C., Cecilia, A., Hamann, E., Mikulík, P., Baumbach, T., Fiederle, M., Jergel, M., : Potential use of V-channel Ge(220) monochromators in X-ray metrology and imaging. J. Applied Crystall. 46 (2013) 945-952.

       1. Hirano, T.: Rev. Sci Instrum. 87 (2016) 063118.

Korytár, D., Vagovič, P., Ferrari, C., Šiffalovič, P., Jergel, M., Dobročka, E., Zápražný, Z., Áč, V., Mikulík, P., :Process-induced inhomogeneities in higher asymmetry angle x-ray monochromators. Proc. SPIE 8848 (2013) 8848-28.

     1. Cusatis, C.: J. Applied Crystall. 48 (2015) 876.

Kováč, P., Hušek, I., Kopera, Ľ., Melišek, T., Rosová, A., and Dobročka, E.: Properties of in situ made MgB2 in Nb or Ti sheath, Supercond. Sci Technol. 26 (2013) 025007.

1. Li, G.Z.: Supercond. Sci Technol. 26 (2013) 095007.
2. Li, G.: IEEE Trans. Applied Supercond. 24 (2014) 6200105.
3. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
4. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
5. Abdyukhanov, I.: IEEE Trans. Applied Supercond. 28 (2018) 6200504.
6. Aldica, G.: J. Supercond. Novel Magnetism 31 (2018) 3423.
7. Ahmad, I.: Physica B‏ 603 (2021) 412675.

Lalinský, T., Vanko, G., Vallo, M., Dobročka, E., Rýger, I., Vincze, A., : AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation. Applied Phys. Lett. 100 (2012) 092105.

1. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
2. Kawakami, R.: Japan. J. Applied Phys. 52 (2013) SIUNSP05EC05.
3. Binh, T.T.: Electronic Mater. Lett. 9 (2013) 705.
4. Harmatha, L.: Applied Surface Sci 312 (2014) 102.
5. Osvald, J.: Phys. Status Solidi B 252 (2015) SI996.
6. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
7. Lee, C.S.: Inter. Conf. on Power Electron. Drive Systems 2015. P. 194.
8. Reddy, V. R.: RSC Adv. 6  (2016) 105761.
9. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2017) Q284.
10. Suria, A.J.: Applied Phys. Lett. 110 (2017) 253505.
11. Huang, S.-J.: Applied Surface Sci 401 (2017) 373.
12. Lee, C.-S.: Semicond. Sci Technol. 33 (2018) 065004.
13. Gao, S.: IEEE Electron Device Lett. 40 (2019) 1921.
14. Li, G.: J. Mater. Chem. C 8 (2020) 1125.

Viljamaa, J., Kario, A., Dobročka, E., Reissner, M., Kulich, M., Kováč, P., and Haessler, W.: Effect of heat treatment temperature on superconducting performance of B4C added MgB2/Nb conductors, Physica C 473 (2012) 34-40.

#       1. Yan, G.: Materials China 32 (2013) 550.
2. Burdusel, M.: Current Applied Phys. 15 (2015) 1262.
3. Rajput, S.: Cryogenics 83 (2017) 17.
4. Savaskan, B.: J. Supercond. Novel Magnet. 32 (2019) 827.

Srnánek, R., Jakabovič, J., Kováč, J., Kováč, J., Haško, D., Šatka, A., Dobročka, E., Donoval, D., :Identification of the crystalline-phases in thin pentacene layers by Raman spectroscopy. Vacuum 86 (2012) 627-629.

       1. Hofer, A.: Microelectr. Reliab. 53 (2013) 1430.
2. Tomovic, A.Z.: Vacuum 144 (2017) 36.
3. Zhao, H.: Optics Lett. 43 (2018) 1403.

Kuzma, A., Weis, M., Flickyngerová, S., Jakabovič, J., Šatka, A., Dobročka, E., Chlpík, J., Cirák, J., Donoval, M., Telek, P., Uherek, F., and Donoval, D.: Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J. Applied Phys. 112 (2012) 103531.

1. Sanz, J.M.: J. Phys. Chem. C 117 (2013) 19606.
2. Alissawi, N.: Nanoparticle Res. 15 (2013).
3. Gorham, J.M.: J. Nanoparticle Res. 16 (2014) 2339.
4. Peretyazhko, T.S.Environmental Science & Technol48 (2014) 11954.
5. Toh, H.S.: Science China 57 (2014) 1199.
6. Liu, Y.: Solar Energy Mater. Solar Cells 140 (2015) 180.
7. D’Agostino, S.: Nanomater. Nanotechnol. 5 (2015) 11.
8. Pal, A.K.: Optical Mater. 48 (2015) 121.
9. Todisco, F.: ACS NANO 9 (2015) 9691.
10. Cheng, C.: IEEE Photonics Technol. Lett. 27 (2015) 2414.
11. Ozaki, K.: Applied Surface Sci 357 (2015) 1816.
12. Huang, X.: Adv. Optical Mater. 4 (2016) 960.
13. Yu, X.: J. Applied Phys. 119 (2016) 135301.
14. Zhao, Z.: J. Phys. Chem. C 120 (2016) 5020.
15. Bao, D.: Front. In Plant Sci 7 (2016) 32.
16. Toh, H.S.: RSC Detection Sci Ser. Iss. 6 (2016) 170.
17. Wang, Y.: Faraday Discussions 193 (2016) 9.
18. Gutierrez, Y.: Optics Express 24 (2016) 20621.
19. Smith, J.G.: Phys. Chem. Chem. Phys. 18 (2016) 23990.
20. Geldmeier, J.A.: J. Mater. Chem. C 4 (2016) 9813.
21. Piella, J.: Zeitschrift Physik. Chemie 231 (2017) SI33.
22. Mann, D.: Plasmonics  2 (2017) 929.
23. Vahl, A.: Nanotechnol. 28 (2017) 175703.
24. Catalan-Gomez, S.: Proc. SPIE 10231 (2017) UNSP 102310D.
25. Gutierrez, Y.: Proc. SPIE 10453 (2017) UNSP 104531G.
26. Khan, A.U.: Analyt. Chem. 89 (2017) 7541.
27. Li, Y.: J. Phys. Chem. C 121 (2017) 16481.
28. Luenskens, T.: J. Cluster Sci 28 (2017) 2401.
29. Catalan-Gomez, S.: Nanotechnol. 40 (2017) 405705.
30. Zhang, S.: Chem. Rev. 117 (2017) 12942.
31. Pang, J.: CHEMPHYSCHEM 19 (2018) 954.
32. Ferrick, A.: Langmuir 34 (2018) 6237.
33. Ding, Y.: J. Nanomater. (2018) 8798274.
34. Serrano, A.: J. Applied Phys. 124 (2018) 133103.
35. Sandireddy, V.P.: ACS Applied Mater. Interfaces 10 (2018) 33630.
36. Kim, S.-J.: ACS Applied Mater. Interfaces 10 (2018) 25652.
37. Guay, J.-M.: Optical Mater. Express 9 (2019) 457.
38. Delgado Gonzalez, D.C.: Current Nanosci 15 (2019) 304.
39. Babich, E.: Current Applied Phys. 19 (2019) 1088.
40. Ong, S.W.: Applied Surface Sci 488 (2019) 753.
41. Loiudice, A.: J. American Chem. Soc 141 (2019) 8254.
42. Ul Islam, N.: Arab. J. Chem. 12 (2019) 3977.
43. Firestone, G.: Nanotechnol. 30 (2019) 475706.
44. Johnston, K.A.: Environmen. Sci-Nano 6 (2019) 2674.
45. Mouralova, K.: Diamond Related Mater. 97 (2019) UNSP 107439.
46. Gutierrez, Y.: Catalysts 9 (2019) 626.
47. Goetz, S.: Nanoscale Adv. 2 (2020) 869.
48. Ferrera, M.: J. Phys. Chem. C 124 (2020) 17204.
49. Khabeeri, O.M.: Colloid Interface Sci Comm. 37 (2020) 100272.
50. Ambrogi, V.: Mater. Sci Engn. C 112 (2020) 110863.
51. Albeladi, A.B.: J. Molecul. Liquids 302 (2020) 112565.
52. Katsiaounis, S.: Coatings 10 (2020) 130.
53. Nugroho, F.A.A.: ACS Nano 14 (2020) 2345.
54. Roy, A.: ACS Omega 5 (2020) 32617.
55. Samavati, Z.: Optics Laser Technol. 136 (2021) 106722.
56. Al-Sarraj, A.: SN Applied Sci 3 (2021) 15.

Azimi, H., Fournier, D., Wirix, M., Dobročka, E., Ameri, T., Machui, F., Rodman, S., Dennler, G., Scharber, M., Hingerl, K., Loos, J., Brabec, C., Morana, M., : Nano-morphology characterization of organic bulk heterojunctions based on mono and bis-adduct fullerenes. Organic Electr. 13 (2012) 1315-1321.

1. Ye, L.: J. Phys. Chem. C 117 (2013) 25360.
2. Wang, Y.-W.: J. Phys. Chem. C 117 (2013) 25898.
3. Albrecht, S.: Adv. Mater. 26 (2014) 2533.
4. Larson, B.W.: Chem. Mater. 26 (2014) 2361.
5. Chen, H.: J. Mater.Chem. A 2 (2014) 9883.
6. Chen, H.: Advanced Functional Mater. 24  (2014) 7284.
7. Lan, S.: J. Phys. Chem. C 120 (2016) 21317.
8. Tournebize, A.: Solar Energy Mater. Solar Cells 155 (2016) 323.
9. Obuchovsky, S.: Organic Electron. 49 (2017) 234.
10. Wright, M.: Solar RRL 1 (2017) UNSP 1700035.

Fröhlich, K., Mičušík, M., Dobročka, E., Šiffalovič, P., Gucmann, F., Fedor, J., and: Properties of Al2O3 thin films grown by atomic layer deposition. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 171-174.

1. Naumann, F.: J. Vacuum Sci Technol. B 38 (2020) 014014.
2. Kim, Y.: ACS Applied Mater. Interfac. 12 (2020) 44912.

Roch, T., Dobročka, E., Mikula, M., Pidík, A., Durina, P., Haidry, A., Plecenik, T., Truchly, M., Grančič, B., Plecenik, A., Kúš, P., : Strong biaxial texture and polymorph nature in TiO2 thin film formed by ex-situ annealing on c-plane Al2O3 surface. J. Crystal Growth 338 (2012) 118-124.

1. Tarre, A.: J. Vacuum Sci Technol. A 31 (2013) 01A118.
2. Moeldre, K.: J. Crystal Growth 428 (2015) 86.
3. Breeson, A.C.: Phys. Chem. Chem. Phys. 18 (2016) 24722.
#    4. Pan, Q.: Zhenkong Kexue yu Jishu Xuebao/J. Vacuum Sci Technol. 39 (2019) 562.

Hudec, B., Hušeková, K., Dobročka, E., Aarik, J., Rammula, R., Kasikov, A., Tarre, A., Vincze, A., Fröhlich, K., : Atomic layer deposition grown metal-insulator-metal capacitors with RuO2 electrodes and Al-doped rutile TiO2 dielectric layer. J. Vacuum Sci Technol. B 29 (2011) 01AC09.

1. Kaynak, C. B.: Thin Solid Films 520 (2012) 4518.
2. Yota, J.: J. Vacuum Sci Technol. A 31 (2013) 01A134.
3. Yota, J.: J. ECS Trans. 53 (2013) 281.
        4. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
5. Dong, W.: ACS Applied Mater. Interf. 7 (2015) 25321.
6. Enriquez, E.: Sci Reports 7 (2017) 46184.
7. Austin, D.Z.: Chem. Mater. 29 (2017) 1107.
8. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.

Schröfel, A., Kratošová, G., Bohunická, M., Dobročka, E., and Vávra, I.: Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation, J. Nanopart. Res. 13 (2011) 3207-3216.

1. Pradhan, N.: Nanosci Nanotechnol. Lett. 3 (2011) 659.
2. Roehrich, A.: ACS Symp. Ser. 1120 (2012) 77.
3. Asmathunisha, N.: Colloids Surf. B 103 (2013) 283.
4. Chen, Z.: J. Nanoparticle Res. 15 (2013) 1930.
5. Reith, F.: Minerals 3 (2013) 367.
#   6. Roehrich, A.: Accounts Chemical Res. 46 (2013) 2136.
7. Dahoumane, S.A.: J. Colloid Interface Sci 416 (2014) 67.
8. Sharma, B.: Mater. Lett. 116 (2014) 94.
9. Zane, A.C.: Langmuir 30 (2014) 7152.
10. Dwivedi, A. D.: Critical Rev. Environmental Sci Technol. 44 (2014) 1679.
11. Reith, F.: Minerals  3 (2014) 367.
12. Sharma, B.: Bioprocess Biosystems Engn. 37 (2014) 2559.
13. Dahoumane, S.A.: J. Nanoparticle Res. 16 (2014) 2607.
#  14. Priyadarshini, E.: J. Nanotechnol. (2014) 653198.
15. Kuppusamy, P.: J. Industrial Engn. Chem. 27 (2015) 59.
16. Parial, D.: J. Applied Phycology 27 (2015) 975.
17. Chakravarty, I.: Current Pharm. Biotechnol. 16 (2015) 747.
18. Momeni, S.: Applied Biochem. Biotechnol. 176 (2015) 1937.
19. Jena, J.: J. Saudi Chem. Soc 19 (2015) 661.
20. Srivastava, P.: In Halophiles: Biodiversity and Sustainable Exploitation. Springer: 2015 ISBN: 978-331914595-2. P. 145.
21. Mohite, P..: In Springer Handbook of Marine Biotechnology. Springer 2015. ISBN 978-3-642-53971-8. P. 1229-1245.
22. Sharma, A.: J. Applied Phycol. 28 (2016) 1759.
23. Leonardo, S.: Trac-Trends In Anal. Chem. 79 (2016) SI276.
24. Bharathiraja, S.: Nanomater. 6 (2016) 78.
25. Amar Dahoumane, S.: J. Nanopartic. Res. 18 (2016) 79.
26. Feurtet-Mazel, A.: Environmen. Sci Pollution Res. 23 (2016) 4334.
27. Kaliamurthi, S.: Phycologia 55 (2016) 568.
28. El-Kassas, H.Y.: Acta Oceanologica Sinica 35 (2016) 89.
29. Siddiqi, K.S.: Nanoscale Research Lett. 11 (2016) 363.
30. Roychoudhury, P.: J. Applied Phycol. 28 (2016) 2857.
31. Ramkumar, V.S.: Enzyme Microbial Technol. 95 (2016) SI45.
#  32. Tiquia-Arashiro, S.: In Extremophiles: Applications in nanotechnology: Biotechnol. Appl. of extremophiles in nanotechnol. Springer 2016. ISBN: 978-331945215-9.
33. Kang, F.: Environmen. Sci Technol. 51 (2017) 2776.
34. Dahoumane, S.A.: Green Chem. 19 (2017) 552.
35. Kuppusamy, P.: Indian J. Geo-Marine Sci 46  (2017) 663.
36. Raghuwanshi, N.: IET Nanobiotechnol. 11 (2017) 827.
37. Singh, A.: Inter. J. Environment. Sci Technol. 14  (2017) 2277.
38. Borase, H.P.: Bioprocess Biosyst. Engn. 40  (2017) 1437.
39. Pytlik, N.: ALGAL Res-Biomass Biofuels Bioproducts 28  (2017)  9.
40. Vijayaraghavan, K.: J. Environmen. Chem. Engn. 5  (2017) 4866.
#  41. Chetia, L.: Sensing and Bio-Sensing Research 16 (2017)  55.
42. Liu, W.: Environment. Sci-Nano 5 (2018) 1757.
43. Pytlik, N.: MRS Comm. 8 (2018) 322.
44. Piacenza, E.: Critical Rev. Biotechnol. 38 (2018) 1137.
45. Pytlik, N.: Zeitschrift Physik. Chemie 232 (2018) SI1353.
#     46. Petzold, A.: Bioinspired, Biomim. Nanobiomater. 8 (2018) 81.
#     47. Vinayak, V.: RSC Nanosci Nanotechnol. (2018) 55.
48. Rahman, A.: Molecules 24 (2019) 98.
49. Shiny, K.S.: Maderas-Ciencia Tecnol. 21 (2019) 347.
50. Tabatabai, B.: BIOENERGY RES. 12 (2019) 409.
51. Pytlik, N.: Algal Res.-Biomass Biofuels Bioprod. 39 (2019) 101447.
52. Priyadarshini, E.: Applied Microbiol. Biotechnol. 103 (2019) 3297.
53. Petzold, A.: Bioinspired Biomimetic Nanobiomater. 8 (2019) 81.
54. Parandhaman, T.: Green Chem. 21 (2019) 5469.
55. Khanna, P.: J. Microbiol. Methods 163 (2019) 105656.
#     56. Saxena, P.: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89 (2019) 1–11.
57. Gouda, S.: Nanomater. Plants, Algae, and Microorganisms: Concepts and Controver. 2 (2019) 219.
58. Pathak, J.: Nanomater. Plants, Algae, and Microorganisms: Concepts and Controver. 2 (2019) 237.
59. Joshi, M.: Nanosci Sustainable Agricult.  (2019) 265.
60. Shen, N.: Bioresource Technol. 306 (2020) 123041.
61. Khan, M.R.: Particle & Particle Systems Character.‏ 37 (2020) 1900419.
62. Korsunsky, A.M.: Mater. Today-Proc. 33 (2020) SI 2032.
63. Patel, A.: Chemosphere 263 (2021) 128306.

Lapin, J., Pelachová, T., Witusiewicz, V., and Dobročka, E.Effect of long-term ageing on microstructure stability and lattice parameters of coexisting phases in intermetallic Ti–46Al–8Ta alloy, Intermetallics 19 (2011) 121-124.

1. Vojtech, D.: Mater. Sci Engn. A 528 (2011) 8557.
2. Raghavan, V.: J. Phase Equilibria Diffusion 34 (2013) 328.
3. Luo, Y.: Rare Metal Mater. Engn. 43 (2014) 219.
4. Hasegawa, M.: Inter. J. Materials Res. 105 (2014) 1075.
5. Huang, Z. W.: Intermetall. 54 (2014) 49.
6. Bolz, S.: Intermetall. 58 (2015) 71.
8. Cao, B.: Adv.  Engn. Mater. 19 (2017) 1600844.
9. Guo, X.: Rare Metals  36 (2017) 465.
10. Wei, Y.-M.: Rare Metals 38 (2019) 327.
11. Saeedipour, S.: J. Mater. Engn. Perform. 28 (2019) 6438.
12. Song, L.: J. Alloys Comp. 821 (2020) 153387.
13. Zhang, K.: Mater. Lett.‏ 274 (2020) 127940.
14. Wei, D.: J. Mater. Res.‏ 35 (2020) SI516.

Paskaleva, A., Ťapajna, M., Dobročka, E., Hušeková, K., Atanassova, E., and Fröhlich, K.: Structural and dielectric properties of Ru-based gate/Hf-doped Ta2O5 stacks,  Applied Surface Sci 257 (2011) 7876-7880.

1. Liu, S.-S.: J. Theoret. Comput. Chem. 11 (2012) 895.
2. Lorenzi, P.: Microelectr. Reliab. 53 (2013) 1203.
3. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
4. Carretero, E.: Applied Surface Sci 359 (2015) 669.
5. Mahata, C.: J. Mater. Chem. C 3 (2015) 10293.
6. Peralta, J.: Thin Solid Films 693 (2020) 137676.
7. Lim, W.F.: Applied Surface Sci 526 (2020) 146722.

Jakabovič, J., Vincze, A., Kováč, J., Srnánek, R., Kováč, J., Dobročka, E., Donoval, D., Heinemeyer, U., Schreiber, F., Machovic, V., and Uherek, F.: Surface and interface analysis of iodine-doped pentacene structures for OTFTs, Surface Inteface Anal. 43 (2011) 518-521. (not IEE SAS).

1. Saikia, D.: ECS Solid State Lett. 4 (2015) Q51.
2. Lussem, B.: Chem. Rev.116 (2016) 13714.
3. Kang, E.S.H.: Adv. Mater. 29 (2017) 1604833.
4. Kwon, S.: Sci Rep. 8 (2018) 3370.
5. Wang, Y.W.: Thin Solid Films 669 (2019) 29.

Mikula, M., Grančič, B., Roch, T., Plecenik, T., Vávra, I., Dobročka, E., Šatka, A., Buršíková, V., Držík, M., Zahoran, M., Plecenik, A., and Kúš, P.: The influence of low-energy ion bombardment on the microstructure development and mechanical properties of TiBx coatings, Vacuum 85 (2011) 866-870.

1. Zhang, T.F.: Surface Coatings Technol. 253 (2014) 115.
2. Eriksson, A.O.: Surface Coat. Technol. 257 (2014) 121.
3. Nedfors, N.: Surface Coat. Technol. 304 (2016) 203.
4. Ge, F.: Vacuum 135 (2017) 66.
5. Narojczyk, J.: Acta Mechanica et Automatica 11 (2017) 190.
6. Petrov, I.: J. Vacuum Sci Technol. A 35 (2017) 050601.
7. Bakhit, B.: J. Vacuum Sci Technol. A 36 (2018) 030604.
8. Nedfors, N.: J. Vacuum Sci Technol. A 36 (2018) 031510.
9. Ding, J.C.: Surface Coat. Technol. 344 (2018) 441.
#    10. Goncharov, A.A.: J. Nano- and Electron. Phys. 10 (2018) 03002.
11. Ding, J.C.: Ceramics Inter. 45 (2019) 6363.
12. Polyakov, M.N.: Surface Coat. Technol. 368 (2019) 88.
13. Hellgren, N.: Vacuum 169 (2019) 108884.
14. Engberg, D.L.J.: Mater. Character. 156 (2019) 109871.
15. Buranich, V.: SN Applied Sci 2 (2020) 563.
16. Brzezinka, T.: Coatings 10 (2020) 244.
17. Dai, W.: Thin Solid Films 707 (2020) 138085.
18. Nedfors, N.: Vacuum 177 (2020) UNSP 109355.
19. Thornberg, J.: Surface Coat. Technol. 404 (2020) 126537.
20. Deambrosis, S.M.: Surface Coat. Technol. 405 (2021) 126556.

Viljamaa, J., Kováč, P., Hušek, I., Melišek, T., Štrbik, V., Dobročka, E., : Effect of fabrication route on density and connectivity of MgB2 filaments J. Phys.: Conf. Series 234 (2010) 022041.

*    1. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
#    2. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
3. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.

Kováč, P., Hušek, I., Kulich, M., Hušeková, K., Melišek, T., and Dobročka, E.: Effects influencing the grain connectivity in ex-situ MgB2 wires, Physica C 470 (2010) 340-344.

1. Yucel, E.: J. Mater. Sci-Mater. Electron. 23 (2012) 1284.
2. Yakinci, M. E.: Cryogenics 52 (2012) SI749.
3. Akamaru, S.: Mater. Trans. 54 (2013) 2258.
4. Guo, Z.-C.: Acta Phys. Sinica 63 (2014) 067401.
5. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
6. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.
7. Maulana, M.I.: AIP Conf. Proc. 2232 (2020) 050002.

Srnánek, R., Jakabovič, J., Dobročka, E., Irmer, G., Heinemeyer, U., Broch, K., Schreiber, F., Vincze, A., Machovic, V., Kováč, J., Donoval, D., : Evidence of pentacene bulk and thin film phase transformation into an orthorhombic phase by iodine diffusion. Chemical Phys. Lett. 484 (2010) 299-303.

1. Abdur, R.: Organic Electron. 14 (2013) 1142.
2. Han, W.: Applied Phys. Lett. 103 (2013) 123303.
3. Zhang, L.: J. Phys. Chem. C 119 (2015) 45.
4. Casalegno, M.: Crystal Growth & Design 16 (2016) 412.
5. Wei, X.: J. Applied Polymer Sci 136 (2019) 47013.
6. Wang, Y.W.: Thin Solid Films 669 (2019) 29.
7. Kwon, J.-H.: Crystals 9 (2019) 634.

Ťapajna, M., Paskaleva, A., Atanassova, E., Dobročka, E., Hušeková, K., and Fröhlich, K.: Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures, Semicond. Sci Technol. 25 (2010) 075007.

1. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
2. Vijayakumar, V.: Mater. Res. Express 2 (2015) 046302.
3. Lei, Z.C.: J. Mater Sci-Mater. Electron. 29 (2018) 12888.

Hušeková, K., Dobročka, E., Rosová, A., Šoltýs, J., Šatka, A., Fillot, F., Fröhlich, K., : Growth of RuO2 thin films by liquid injection atomic layer deposition. Thin Solid Films 518 (2010) 4701-4704.

1. Over, H.: Chemical Rev. 112 (2012) 3356.
2. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
3. Hamalainen, J.: Chem. Mater. 26 (2014) SI786.
4. Park, J.-Y.:  J. Alloys Comp. 610 (2014) 529.
5. Gregorczyk, K.E.: ACS NANO 9 (2015) 464.
6. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
7. Nabatame, T.: ECS Trans. 80 (2017) 365.
8. Lin, C.: J. Electrochem. Soc 166 (2019) D476.
9. Lee, J.H.: Thin Solid Films 701 (2020) 137950.

Hudec, B., Hušeková, K., Dobročka, E., Lalinský, T., Aarik, J., Aidla, A., Fröhlich, K., : High-permittivity metal-insulator-metak capacitors with TiO2 rutile dielectric and RuO2 bottom electrode IOP Conf. Series: Mater. Sci Engn. 8 (2010) 012024.

1. Yildiz A.: J. Applied Phys. 108 (2010) 083701.
2. Wu, Y.-H.: IEEE Electron Device Lett. 32 (2011) 1107.
3. Shen, Y.D.: J. Phys. Chem. C 116 (2012) 3449.
4. AlHoshan, M.S.: Electrochim. Acta 62 (2012) 390.
5. Mathew, S.: J. Fluoresc. 22  (2012) 1563.
6. Yen, C.-F.: Solid-State Electron. 73 (2012) 56.
7. Bhattacharya, P.: Express Polymer Lett. 7 (2013) 212.
8. Mamalchel, A.: Crystal Growth & Design 13 (2013) 4730.
9. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
10. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
11. Choi, S.-J.: J. Microelectromech. Systems 24 (2015) 1006.
12. Yu, L.: Inter. J. Smart Nano Mater. 6 (2015) 268.
13. Gielis, S.: J. European Ceramic Soc 37 (2017) 611.
14. Becherescu, N.: Univ. Politehnica Bucharest Sci Bull.-Ser. A 79 (2017) 203.
15. Cui, Y.: J. Photochem. Photobiol. A 353 (2018) 625.
16. Li, T.: Electrochim. Acta 306 (2019) 71.

Gregušová, D., Gaži, Š., Sofer, Z., Stoklas, R., Dobročka, E., Mikulics, M., Greguš, J., Novák, J., and Kordoš, P.: Oxidized Al film as an insulation layer in AlGaN/GaN Metal–Oxide–Semiconductor heterostructure field effect transistors, Japan. J. Applied Phys. 49 (2010) 046504.

1. Ozen, S.: Mater. Res. Express 3 (2016) 045012.
2. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.

Chromik, Š., Gierlowski, P., Španková, M., Dobročka, E., Vávra, I., Štrbik, V., Lalinský, T., Sojková, M., Liday, J., Vogrinčič, P., Espinos, J., : Preparation and structural properties of YBCO films grown on GaN/c-sapphire hexagonal substrate. Applied Surface Sci 256 (2010) 5618-5622.

#       1. Chen, Z.: He Jishu/Nuclear Techniques 34 (2011) 183.
2. Xue, Y.: Applied Mechanics Material. 117-119 (2012) 811.
3. Panna, D.: Sci Rep. 8 (2018) 5597.
4. Balasubramanian, K.: Adv. Function. Mater.‏ 30 (2020)‏ SI1807379.

Hušeková, K., Hušek, I., Kováč, P., Kulich, M., Dobročka, E., Štrbik, V., : Properties of MgB2 superconductor chemically treated by accetic acid. Physica C 470 (2010) 331-335.

1. Altin, S.: J. Phys. Chem. Solids 72 (2011) 1070.
2. Sun, Y.: J. Supercond. Novel Magnetism 25 (2012) 1735.
3. Song, K.J.: IEEE Trans. Applied Supercond. 23 (2013) 7100304.
4. Sun, Y.: Scripta Materialia 70 (2014) 55.
5. Owolabi, T.O.: J. Supercond. Novel Magnetism 28 (2015) 75.
6. Owolabi, T.O.: Applied Comput. Intelligence Soft Computing (2016) 1709827.
7. Grivel, J.-C.: Physica C 528 (2016) 65.
8. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
9. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
10. Qaid, S.A.S.: J. Mater. Sci-Mater. Electron. 28(2017) 14696.
11.  Zhang, Y.: Physica C‏ 573 (2020) 1353633.

Kúdela, R., Kučera, M., Dobročka, E., Šoltýs, J., : AlGaAs/InGaP interfaces in structures prepared by MOVPE. J. Crystal Growth 311 (2009) 3123-3129.

       1. Farag, A.A.M.: J. Alloys Compounds 509 (2011) 8056.

Šebo, P., Moser, Z., Švec, P., Janičkovič, D., Dobročka, E., Gasior, W., Pstruś, J., : Effect of indium on the microstructure of the interface between Sn3.13Ag0.74CuIn solder and Cu substrate. J. Alloys Compounds 480 (2009) 409-415.

1. Noor, E.E.M.: J. Alloys Compounds 507 (2010) 290.
#    2.  Zeng, G.: J. Mater. Sci: Mater. in Electr. 21 (2010) 421.
#    3. Zhang, H.: Proc. ICEPT-HDP 2010, art. no. 5582428, pp. 254.
4. Hodulova, E.: J. Alloys Compounds 509 (2011) 7052.
5. Hong, E.: WEAR 270 (2011) 591.
6. Kim, Y.: J. Materials Sci 46 (2011) 6897.
7.   Piyavatin, P.: Materialpruefung/Materials Testing 54 (2012) 383.
8. Fallahi, H.: J. Mater. Sci: Mater. in Electr. 23 (2012) 1739.
9. Lejuste, C.: Intermetall. 36 (2013) 102.
10. Zeng, G.: Acta Materialia 83 (2015) 357.
11. Kanlayasiri, K.: J. Alloys Compounds 668 (2016) 169.
12. Liu, W.: Micromachines 9 (2018) 346.
13. Xiong, M.-Y.: J. Mater. Sci 54 (2019) 1741.
14. Wang, J.: J. Electron. Mater.‏ 49 (2020) 1512.

Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A., Dobročka, E., and Hušeková, K.: Epitaxial growth of high-κ TiO2 rutile films on RuO2 electrodes, J. Vacuum Sci Technol. B 27 (2009) 266-270.

 1. Kim, S.K.: Adv. Functional Mater. 20 (2010) 2989.
2. Lee, S.W.: Chem. Mater. 23 (2011) 976.
3. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
4. Kim, S.K.: J. Mater. Res. 28 (2013) 313.
5. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
6. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
7. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
8. Clima, S.: IEEE Electron Device Lett. 34 (2013) 6425405.
#      9. Jithin, M.A.: Mater. Research Soc Symp. Proc. 1561 (2013) 13.
10. Popovici, M.: Applied Phys. Lett. 104 (2014) 082908.
11. Wang, C.: ACS Nano 8 (2014) 2658.
12. Jeon, W.: J. Mater. Chemistry C 2 (2014) 9993.
13. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
14. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
15. Xie, Y.: J. Alloys Compounds 683 (2016) 439.
16. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
17. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
18. Agashe, K.: Nuclear Instrum. Methods in Phys. Res. B 403 (2017) 38.
19. Cho, C.J.: J. Mater. Chem. C 5 (2017) 9405.
20. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
21. Kim, S.K.: MRS Bull. 43 (2018) 334.
22. Lee, W.: J. Mater. Chem. C 6 (2018) 13250.
23. Pessoa, R.S.: IEEE 33rd Symp. Microelectron. Technol. Devices 2017 (SBMICRO) 2018.
*      24. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
25. Khan, M.S.: SMALL 16 (2020) 2003485.

Hušeková, K., Jurkovič, M., Čičo, K., Machajdík, D., Dobročka, E., Lupták, R., and Fröhlich, K.: Preparation of high permitivity GdScO3 films by liquid injection MOCVD, ECS Trans. 25 (2009) 1061.

1. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
2. Schaefer, A.: J. Alloys Compounds 651 (2015) 514.
3. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
4. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 109-124.

Vincze, A., Lupták, R., Hušeková, K., Dobročka, E., and Fröhlich, K.: Thermal stability of GdScO3 and LaLuO3 films prepared by liquid injection MOCVD. Vacuum 84 (2009) 170.

1. Mitrovic, I. Z.: Microelectronic Engn. 88 (2011) 1495.
2. Mitrovic, I. Z.: J. Applied Phys. 112 (2012) 044102.
3. Wang, Y.: J. Alloys Compounds 571 (2013) 103.
4. Feijoo, P.C.: Semicond. Sci Technol. 28 (2013) 085004.
5. Han, J.H.: Chem. Mater. 26 (2014) 1404.
6. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
7. Artini, C.: J. European Ceramic Soc 37 (2017) 427.
8. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
9. Agrawal, K.S.: Applied Phys. A‏ 126 (2020) 650.

Paskaleva, A., Ťapajna, M., Atanassova, E., Fröhlich, K., Vincze, A., Dobročka, E., : Effect of Ti doping on Ta2O5 stacks with Ru and Al gates. Applied Surface Sci 254 (2008) 5879-5885.

1. Thangadurai, P.: Thin Solid Films 518 (2010) 4467.
2. Huang, J.H.: Chem. Mater. 22 (2010) 2582.
3. Mahata, C.: Electrochem. Solid State Lett. 14 (2011) H80.
4. Lu, L.: Applied Phys. A 112 (2013) 425.
5. Sekhar, M.C.: Materials Sci Semicond. Process. 76 (2018) 80.

Ťapajna, M., Dobročka, E., Paskaleva, A., Hušeková, K., Atanassova, E., Fröhlich, K., : Electrical characterization of Ru- and RuO2/Ta2O5 gate stacks for nanoscale DRAM technology. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 267-270.

       1. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 189.

Fröhlich, K., Ťapajna, M., Rosová, A., Dobročka, E., Hušeková, K., Aarik, J., and Aidla, A.: Growth of high-dielectric-constant TiO2 films in capacitors with RuO2 electrodes, Electrochem. Solid-State Lett. 11 (2008) G19-G21.

1. Niinisto, J.: Advanced Engn. Mater. 11 (2009) 223.
2. Han, J.H.: ECS Trans. 19 (2009) 717.
3. Kim, K.M.: Electrochem. Solid State Lett. 13 (2010) G1.
4. Wang, H.T.: Electrocem. Solid-State Lett. 13 (2010) G75.
5. Lee, W.J.: J. Phys. Chem. C 114 (2010) 6917.
6. Han, J.H.: Chem. Mater. 22 (2010) 5700.
7. Popovici, M.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 19.
8. Han, J.H.: Applied Phys. Lett. 99 (2011) 022901.
9. Leskela, M.: MRS Bull. 36 (2011) 877.
10. Kim, S.K.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 262.
11. Popovici, M.: Microelectr. Engn. 88 (2011) 1517.
#   12. Kim, M.-S.: IMW 2011. IEEE 2011, art. no. 5873203. ISBN 978-145770-2259.
13. Over, H.: Chem. Rev. 112 (2012) 3356.
14. Han, J. H.: Chem. Mater. 24 (2012) 1407.
15. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
16. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
17. Zhu, L.: Solar Energy Mater. Solar Cells  111 (2013) 141.
18. Wang, X.: Crystal Growth & Design  13 (2013) 1316.
19. Popovici, M.: ECS J. Solid State Sci Technol. 2 (2013) N23.
20. Ko, C.-T.: J. Phys. Chem. C 117 (2013) 26204.
21. Van Den Berg, J.A.: Applied Surface Sci 281 (2013) 8.
22. Pu, H.: ECS Solid State Lett. 2 (2013) N35.
#   23. Hwang, C.S.: In Atomic Layer Deposition for Semiconductors. Springer 2013. ISBN: 978-1-4614-8053-22013. P. 73.
24. Yang, Z.: IEEE Electron Device Lett. 35 (2014) 557.
25. Park, J.-Y.: J. Alloys Comp.610 (2014) 529.
26. Hernandez-Torres, E.M.: Chem. Pap. 68 (2014) 1257.
27. Ko, C.-T.: ACS Applied Mater. Interfac. 6 (2014) 4179.
28. Jeon, W.: ACS Applied Mater. Interf. 6 (2014) 21632.
29. Peng, J.: J. Sol-Gel Sci Technol. 71 (2014) 458.
30. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
31. Cho, K.: J. Semicond. Technol. Sci 16 (2016) 346.
32. Mondal, J.: Corrosion Sci 105 (2016) 161.
33. Head, A.R.: J. Phys. Chem. C 120 (2016) 243.
34. Wang, M.: RSC Adv. 6 (2016) 4867.
35. Saric, I.: Thin Solid Films  628 (2017) 142.
36. Nabatame, T.: ECS Trans. 80 (2017) 365.
37. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
38. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
39. Moehl, T.: ACS Applied Mater. Interf. 9 (2017) 43614.
40. Ben Elbahri, M.: J. Phys. D 51 (2018) 065101.
41. Wang, W.: Mater. Chem. Phys. 211 (2018) 172.
42. Song. H.: J. Wuhan Univ. Technol.-Mater. Sci Ed. 33 (2018) 1070.
#   43. Lau, W.S.: China Semicond. Technol. Inter. Conf. 2018 – CSTIC 2018, pp. 1-3.
*      44. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
45. Kim, A.: ACS Applied Nano Mater. 2 (2019) 3220.
46. Choi, W.-H.: J. Vacuum Sci Technol. A 37 (2019) 020924.
47. Son, K.-H.: Coatings 10 (2020) 752.
48. Gants, O.Y.: Izv. Vyss. Ucheb. Zav. Khimiya Khim. Tekhnol. 63 (2020)‏ 26.

Srnánek, R., Kováč, J., Jakabovič, J., Kováč, J., Irmer, G., Dobročka, E., Haško, D., : Characterization of organic field effect transistor structures by micro-Raman. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 255-258.

        1. Kabir, D.L.: J. Electronic Mater. 44 (2015) 490.

Kováč, P., Hušek, I., Dobročka, E., Melišek, T., Haessler, W., Herrmann, M., : MgB2 tapes made of mechanically alloyed precursor powder in different metallic sheaths. Supercond. Sci Technol. 21 (2008) 015004.

1. Lee, T.G.: Supercond. Sci Technol. 22 (2009) 045006.
2. Eisterer, M.: Supercond. Sci Technol. 23 (2010) 034006.
3. Eisterer, M.: Physica C 470 (2010) S651.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Takahashi, M.: Supercond. Sci Technol. 26 (2013) 075007.
6. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
7. Sun, Y.Y.: Physica C 485 (2013) 24.
#        8. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
9. Patel, D.: Progress in Supercond. and Cryogenics (PSAC) 18 (2016) 1.
10. Kodama, M.: Supercond. Sci Technol. 30 (2017) 044006.
11. Karaboga, F.: J. Alloys Compounds 727 (2017) 20.
12. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
13. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
14. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
15. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.

Beňo, J., Weis, M., Dobročka, E., Haško, D., : Mixed 2D molecular systems: Mechanic, thermodynamic and dielectric properties. Applied Surface Sci 254 (2008) 6370-6375.

1. Shushkov, P.: Langmuir 26 (2010) 8081.
2. Tzvetanov, S.: Langmuir 26 (2010) 8093.
3. Mashaghi, A.: J. Chem. Phys. 136 (2012) 114709.
4. Periasamy, V.: Advan. Mater. Res. 535-537 (2012) 1119.
5. Debnath, P.: J. Lumin. 179 (2016) 287.

Ťapajna, M., Rosová, A., Dobročka, E., Štrbik, V., Gaži, Š., Fröhlich, K., Benko, P., Harmatha, L., Manke, C., Baumann, P., : Work function thermal stability of RuO2-rich Ru–Si–O p-channel metal-oxide-semiconductor field-effect transistor gate electrodes. J. Applied Phys. 103 (2008) 073702.

1. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
2. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
3. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.
4. Kaczmarski, J.: J. Display Technol. 11 (2015) 528.
5. Popovici, M.: Chem. Mater. 29 (2017) 4654.
#    6. Jung, W.: New Phys.: Sae Mulli 67 (2017) 696.

Ťapajna, M., Rosová, A., Hušeková, K., Roozeboom, F., Dobročka, E., Fröhlich, K., : Evidence of hafnia oxygen vacancy defects in MOCVD grown HfxSi1-xOy ultrathin gate dielectrics gated with Ru electrode. Microelectr. Engn. 84 (2007) 2366-2369.

1. Das, N.C.: J. Applied Phys. 110 (2011) 063527.
2. Zhang, H.Y.: Applied Surface Sci 311 (2014) 117.

Kováč, P., Hušek, I., Skákalová, V., Meyer, J., Dobročka, E., Hirscher, M., Roth, S., : Transport current improvements of in-situ MgB2 tapes by the addition of carbon nanotubes, silicon carbide or graphite. Supercond. Sci Technol. 20 (2007) 105-111.

1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) Art. No. 122502.
2.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Zhang, X.P.: Supercond. Sci Technol. 20 (2007) 1198.
4. Awana, V.P.S.: Physica C 467 (2007) 67.
5. Shekhar, C.: J. Applied Phys. 102 (2007) art. no. 093910.
6. Xu, A.X.: Physica C 466 (2007) 190.
7. Hassler, W.: Supercond. Sci Technol. 21 (2008) 062001.
8. Asthana, A.: Supercond. Sci Technol. 21 (2008) 115013.
9. Serrano, G.: J. Phys. Conf. Series 97 (2008) 012129.
10. Serrano, G.: J. Phys. Conf. Series 97 (2008) 012127.
11. Vinod, K.: Solid State Sci 12 (2010) 610.
12. Devadas, K.M.: J. Alloys Compounds 509 (2011) 8038.
13. Yao, C.: Supercond. Sci Technol. 24 (2011) 055016.
14. Novosel, N.: Supercond. Sci Technol. 26 (2013) 105024.
15. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
16. Liu, H.R.: J. Mater. Sci-Mater. Electron. 29 (2018) 7763.
17. Liu, H.: J. Supercond. Novel Magnetism 31 (2018) 1053.
18. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
19. Melone, M.: Mater. Today-Proc. 14 (2019)SI168.
20. Qaid, S.A.S.: Physica C 568 (2020) 1353578.

Fröhlich, K., Lupták, R., Dobročka, E., Hušeková, K., Čičo, K., Rosová, A., Lukosius, M., Abrutis, A., Písečný, P., and Espinos, J.: Characterization of rare earth oxides based MOSFET gate stacks prepared by metal-organic chemical vapour deposition, Materials Sci Semicond Process. 9 (2006) 1065-1072.

1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
2. Dabrowski, J.: J. Electrochem. Soc. 155 (2008) G97
3. Losurdo, M.: J. Electrochem. Soc. 155 (2008) G44.
4. Milanov, A.P.: Chem. Mater. 21 (2009) 5443.
5. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
6. Ferreira, A.C.: J.Alloys Compounds 489 (2010) 316.
7. Geppert, I.: J. Applied Phys. 108 (2010) 024105.
8. Geppert, I.: ESC Trans. 28 (2010) 191.
9. Daly, S. R.: Inorganic Chem. 51 (2012) 7050.
10. Huang, L.-Y.: Microelectr. Engn. 94 (2012) 38.
11. Ahren, M.: J. Nanopart. Res. 14(2012) 1006.
#   12. Barquinha, P.: In Transparent Oxide Electronics: From Materials to Devices. Chichester: John Wiley  2012 ISBN 978-0-470-68373-6.
13. Fan, X.: Mater. Res. Express 1 (2014) 045005.
14. Zhuang, J.: ACS Applied Mater. & Interfaces 8 (2016) 31128.
15. Watkinson, E. J.: J. Nuclear Mater. 486 (2017) 308.
16. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
17. Hetherin, K.: J. Mater. Sci-Mater. Electron. 28 (2017) 11994.
18. Hetherin, K.: Applied Phys. A 123 (2017) 510.

Franta, M., Rosová, A., Ťapajna, M., Dobročka, E., Fröhlich, K., : Microstructure of HfO2 and HfxSi1-xOy dielectric films prepared on Si for advanced CMOS application. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 47-50.

1. Chang, Y.-H.: Microelectr. Engn. 96 (2012) 61.
2. Correa-Mena, A. G.: ICCDCS 2017. P. 77.

Grančič, B., Mikula, M., Hruba, L., Gregor, M., Štefečka, M., Csuba, A., Dobročka, E., Plecenik, A., Kúš, P., : The influence of deposition parameters on TiB2 thin films prepared by DC magnetron sputtering, Vacuum 80 (2005) 174. (not IEE SAS).

1. Yu, X.: Plasma Sci Technol. 8 (2006) 337.
#    2. Chen, D.-J.: Hangkong Cailiao Xuebao/J. Aeronaut. Mater. 29 (2009) 50.
3. Silva, F.J.G.: J. Nanosci Nanotechnol. 12 (2011) 9187.
#    4. Gu, W.-C.: Hangkong Cailiao Xuebao/J. Aeronautical Mater. 34 (2014) 37.
5. Zhou, G.: Zhenkong Kexue yu Jishu Xuebao/ J. Vacuum Sci Technol. 35 (2015) 819.
6. Chowdhury, M.S.I.: Surface Coat. Technol. 313 (2017) 319.
7. Nedfors, N.: J. Vacuum Sci Technol. A 36 (2018) 031510.
8. Kiryukhantsev-Korneev, F.V.: Protect. Metals Phys. Chem. Surfaces 54 (2018) 1147.
9. Hellgren, N.: Vacuum 169 (2019) UNSP 108884.
10. Sun, Q.: Nanotechnol.‏ 31 (2020) 305302.
11. Brzezinka, T.L.: Coatings 10 (2020) 244.
12. Wu, B.: Ceramics Inter. 47 (2021) 5019.

Lobotka, P., Radnóczi, G., Czigány, Zs., Vávra, I., Držík, M., Micusik, M., Dobročka, E., and Kunzo, P.: Preparation of nickel, nickel-iron, and silver-copper nanoparticles in ionic liquids. In: IEEE Proc. 17th Inter. Conf. on Solid-State Sensors, Actuators and Microsyst. – Transducers 2013 & EUROSENSORS XXVII. Barcelona 2013. IEEE 2013. ISBN: 978-1-4673-5981-8. P. 2021-2024.

1. Verma, C.: J. Molecular Liquids 276 (2019) 826.

Horváth, D., Gmitra, M., Vávra, I., Dobročka, E., Brutovsky, B., : The evolutionary approach to the optimization of finite-size effects in magnetic dot arrays Czechosl. J. Physics 52 (2002) 123-126.

      1. Gwizdalla, T.M.: Applied Mathemat. Comput. 217 (2011) 9368.

Dobročka, E., Vávra, I., Wallenberg, L., : Simulation of electron diffraction patterns from III–V alloys with CuPt ordering: Effect of clusters and antiphase boundaries. J. Applied Phys. 89 (2001) 2653-2665.

1. Benamara, M.: Applied Phys. Lett. 82 (2003) 547.
2. Hayward, S.A.: Zeitschrift Kristallogr. 220 (2005) 994.
3. Coll, C.: Phys. Chem. Chem. Phys. 19 (2017) 9806.

Munzar, L., Dobročka, E., Vávra, I., Kúdela, R., Harvanka, M., Christensen, N., : Antiphasing mechanism of ordered InGaP layers grown on GaAs Phys. Rev. B 57 (1998) 4642.

1. Kwok, S.H.: Phys. Rev. B 58 (1998) R 13395.
2. Wei, S.H.: Phys. Rev. B 59 (1999) R2478.
3. Tsitsishvili, E.G.: Phys. Rev. B 59 (1999) 10044.
4. Sass, T.: J. Applied Phys. 85 (1999) 3561.
5. Hahnert, I.: Crystal Res. and Techn. 35 (2000) 831.
6. Zhang, Y.: Self-Organized Processes in Semicond. Alloys 583 (2000) 255.
7. Zhang, Y.: J. Raman Spectroscopy 32 (2001) 831.
8. Li, J.H.: Phys. Rev. B 63 (2001) 155310.
9. Jiang, W.Y.: J. Crystal Growth 311 (2009) 4391.
10. Vyas, P. S.: Physica B 406 (2011) 4412.
11. Vyas, P. S.: J. Phys. Conf. Ser. 500 (2014) 182042.

Osvald, J., Dobročka, E., : Generalized approach to the parameter extraction from Schttky diodes I.-V. characteristics Semicond. Sci Technol. 11 (1996) 1198-1202.

       1. LeLay, G.: J. de Physique IV 7 (1997) 115.
*     2. Jayavel, P.: In: Phys. Semicond. Devices 1. New Delphi: Narosa Publ House 1998. P. 321.
*     3. Horvath, Zs.: In: Phys. Semicond. Devices 2. New Delphi: Narosa Publ House 1998. P. 1085.
4. Ortizconde, A.: Solid-State Electr. 43 (1999) 845.
5. Bezak, V.: Czechosl. J. Phys. 51 (2001) 829.
6. Wong, H.: Proc. IEEE Hong Kong Electr. Dev. Meeting 2001. P. 38.
7. Ferhat-Hamida, A.: Solid-St. Electron. 46 (2002) 615.
*     8. Rossi, R.C.: PhD thesis. Pasadena: California Inst. Technol. 2002.
9. Biber, M.: Semicond. Sci Technol. 21 (2006) 1.
10. Gür, E.: J. Phys.: Cond. Matt. 19 (2007) 196206.
11. Bezak, V.: J. Mathem. Phys. 48 (2007)  no. 11.
#    12. Baranov, V.V.: ESTC 2006 – 1st Electr. Systemintegration Technol. Conf. 1, (2007) art. no. 4060743, pp. 324-327.
13. Gullu, O.: Applied Surface Sci 254 (2008) 3039.
14. Bezak, V.: J. Phys. A 41 (2008) 025301.
15. Gullu, O.: J. Mater. Sci 19 (2008) 986.
16. Liu, C.C.: Solid-State Electron. 52 (2008) 839.
17. Yildirim, Y.N.: J. European Phys. J.-Applied Phys. 45 (2009) 10302.
18. Yildirim, N.: Inter. J. Modern Phys. B 23 (2009) 5237.
19. Ejderha, K.: J. Alloys. Compounds 484 (2009) 870.
20. Kavasoglu, A.S.: Microelectr. Engn. 87 (2010) 108.
21. Ejderha, K.: Superlatt. Microstr. 47 (2010) 241.
22. Gullu, O.: European Phys. J. 50 (2010) 10401.
23. Laloe, J. B.: Applied Phys. Lett. 97 (2010) 222105.
24. Latreche, A.: Semicond. Sci Technol. 26 (2011) 085003.
25. Guzeldir, B.: AIP Conf. Proc. 1400 (2011) 56.
26. Sellai, A.: Semicond. Sci Technol. 27 (2012) 035014.
27. Sellai, A.: IEEE Mediterranean Electrotechn. Conf.-MELECON (2012) 179.
28. Efeoglu, H.: Inter. J. Modern Phys. B 27 (2013) 1350088.
29. Korucu, D.: Inter. J. Electron. 101 (2014) 1595.
30. Klyuev, A.V.: Fluctuation Noise Lett. 14 (2015) 1550029.
31. Munthali, K.V.: J. Electronic Mater. 44 (2015) 3265.
32. Orak, I.: Current Applied Phys. 15 (2015) 1054.
33. Latreche, A.: Semicond. Sci Technol. 31 (2016) 085008.
34. Toumi, S.: Solid-State Electron. 122 (2016) 56.
35. Turut, A.: J. Semicond. 37 (2016) UNSP 044001.
36. Dhimmar, J. M.: Mater. Today-Proc. 3 (2016) 1658.
#   37. Güzeldir, B.: J. Phys.: Conf. Ser. 707 (2016) 012016.
#    38. Saǧlam, M.: J. Phys.: Conf. Ser. 707 (2016) 012025.
39. Yang, F.: J. Infrared Millim. Terahertz Waves 38 (2017) 630.
40. Latry, O.: J. Semicond. 38 (2017) 014007.
41. Arsel, I.: J. Non-Oxide Glasses 9 (2017) 33.
42. Belgacem, C.H.: Silicon 10 (2018) 1469.
43. Toumi, S.: Indian J. Phys. 93 (2019) 1155.
44. Toumi, S.: Physica B‏ 585 (2020) 412125.
45. Wang, Z.: Phys. Status Solidi A 217 (2020) 1901018.
46. Latreche, A.: J. Active Passive Electron. Dev. 15 (2020) 43.
47. Latreche, A.: Semicond. Phys. Quantum Electr. Optoelectr. 23 (2020) 271.

Dobročka, E., Osvald, J., : Response to „Comment on Influence of barrier height distribution on the parameters of Schottky diodes“ Applied Phys. Lett. 66 (1995) 3069.

1. Bezak, V.: J. Mathem. Phys. 48 (2007)  no. 11.
2. Bezak, V.: J. Phys. A 41 (2008) 025301

Dobročka, E. and Osvald, J.: Influence of barrier height distribution on the parameters of Schottky diodes, Applied Phys. Lett. 65 (1994) 575.

1. Sands, D.: J. Applied Phys. 77 (1995) 3295.
2. Horvath, Z.J.: Applied Phys. Lett. 66 (1995) 3068.
3. Didio, M.: Solie State Electr. 38 (1995) 1923.
4. Chand, S.: Semicond. Sci. Technol. 11 (1996) 1203.
5. Chand, S.: J. Applied Phys. 80 (1996) 288.
#     6. Anderson, W.A.: Diffusion and Defect Data A 136-137 (1996) 21.
*     7. Horváth, Zs.: ASDAM 96. Bratislava 1996. P. 197.
*     8. Horváth, Zs.: ASDAM 96. Bratislava 1996. P. 263.
*     9. Horváth, Zs.: MIEL 96. Nova Gorica 1996. P. 365.
*    10. Horváth, Zs.: MIEL 96. Nova Gorica 1996. P. 371.
#    11. Horvath, Zs.: Proc. SPIE 3359 (1997) 65.
12. Chand, S.: J. Applied Phys. 82 (1997) 5005.
13. Chand, S.: Semicond. Sci Technol. 12 (1997) 899.
14. Horvath, Z.J.: Solid-State Electr. 42 (1998) 221
15. Ivančo, J.: Solid-State Electr. 42 (1998) 229.
*    16. Horvath, Zs.: In: Phys. Semicond. Devices 2. New Delphi: Narosa Publ House 1998. P. 1085.
17. Pipinys, P.: J. Applied Phys. 86 (1999) 6875.
18. Jones, F.E.: J. Applied Phys. 86 (1999) 6431.
19. Anilturk, O.S.: Semicond. Sci Technol. 14 (1999) 1060.
20. Singh, R.: Bulletin Mater. Sci 23 (2000) 471.
21. Chand, S.: Indian J. Engn. Mater. S7 (2000) 268.
22. Anilturk, O.S.: Solid-State Electr. 44 (2000) 41.
23. Horváth, Zs.: ASDAM 2000. Bratislava 2000. P. 39.
24. Bezak, V.: Czechosl. J. Phys. 51 (2001) 829.
25. Maeda, K.: Applied Surface Sci. 190 (2002) 445.
26. Pipinys, P.: Solid-State Electr. 46 (2002) 1283.
27. Chand, S.: Semicond. Sci Technol. 17 (2002) L36.
28. Alonso, C.F.: Applied Phys. Lett. 80 (2002) 3751.
29. Shigiltchoff, O.: Materials Sci Forum 433-4 (2002) 705.
*    30. Rossi, R.C.: PhD thesis. Pasadena: California Inst. Technol. 2002.
31. Jiang, Y.L.: J. Applied Phys. 93 (2003) 866.
32. Nuhoglu, C.: Semicond. Sci Techn. 18 (2003) 642.
33. Karatas S.: Applied Surface Sci 217 (2003) 250.
*    34. Dmitruk, N. L.: Phys. Stat. Solidi (c) 0 (2003) 933.
35. Horváth, Zs.: Proc. SPIE 5136 (2003) 200.
36. Chand, S.: ASDAM 2004. Piscataway: IEEE 2004. P. 251.
37. Tugluoglu, N.: Semicond. Sci Techn. 19 (2004) 1092.
38. Tugluoglu, N.: Chinese Phys. Lett. 21 (2004) 1795.
39. Acar, S.: Applied Surface Sci 233 (2004) 373.
40. Saglam, M.: Physica B 348 (2004) 397.
41. Chand, S.: Semicond. Sci Techn. 19 (2004) 82.
42. Akkilic, K.: Physica Scripta 70 (2004) 364.
43. Aydogan, S.: Polymer 46 (2005) 563.
44. Nuhoglu, C.: Applied Surface Sci 250 (2005) 203.
45. Cetin, H.: Semicond. Sci Techn. 20 (2005) 625.
46. Madaleno, J.C.: Diamond Related Mater. 14 (2005) 584.
47. Horvath, Zs.: Physica Status Solidi c 2 (2005) 1423.
48. Chand, S.: Semicond. Sci Technol. 20 (2005) 1143.
49. Ramadan, W.: Phys. Rev. B 72 (2005) 205333.
50. Chand, S.: Applied Surface Sci 252 (2006) 358.
51. Ayyildiz, E.: Applied Surface Sci 252 (2006) 1153.
52. Ozdemir, A.E.: Semicond. Sci Technol. 21 (2006) 298.
53. Karatas, S.: Applied Surface Sci 252 (2006) 2209.
54. Jin, L.J.: Thin Solid Films 504 (2006) 149.
55. Dogan, H.: Semicond. Sci Technol. 21 (2006) 822.
57. Madaleno, J.C.: Thin Solid Films 515 (2006) 106.
58. Rouag, N.: Semicond. Sci Technol. 22 (2007) 369.
59. Duman, S.: Applied Surface Sci 253 (2007) 3899.
60. Yakuphanoglu, F.: Physica B 392 (2007) 188.
61. Yakuphanoglu, F.: J. Phys. Chemistry C 111 (2007) 1840.
62. Jevtic, M.M.: Microelectron. Reliability 47 (2007) 51.
63. Kumar, A.A.: J. Optoelectr. Advanced Mater. 9 (2007) 3877.
64. Bezak, V.: J. Mathem. Phys. 48 (2007)  no. 11.
65. Aydin, M.E.: J. Applied Phys. 102 (2007)  043701.
66. Gullu, O.: Applied Surface Sci 253 (2007) 7246.
67. Cimilli, F.E.: Semicond. Sci Technol. 22 (2007) 851.
68. Bozhkov, V.G.: J. Comm. Technol.Electr. 52 (2007) 87.
69. Asubay, S.: Semicond. Sci Technol. 23 (2008) 035006.
70. Asubay, S.: Applied Surface Sci 254 (2008) 3558.
71. Zhang, M.: IEEE Trans. Electron Devices 55 (2008) 858.
72. Panchal, C.J. .: Semicond. Sci Technol. 23 (2008) 015003.
73. Bezak, V.: J. Physics A 41 (2008) 025301
74. Aydin, M.E.: Physica B 403 (2008) 131.
75. Boyarbay, B.: Microelectron. Engn. 85 (2008) 721.
76. Yakuphanoglu, F.: Synthetic Metals 158 (2008) 821.
77. Gullu, O.: Microelectr. Engn. 85 (2008) 2250.
78. Gullu, O.: Thin Solid Films 516 (2008) 7851.
79. Akkilic, K.: Microelectr. Engn. 85 (2008) 1826.
80. Pakma, O.: J. Applied Phys. 104 (2008) 014501.
81. Guler, G.: Physica B 403 (2008) 2211.
82. Duman, S.: Semicond. Sci Technol. 23 (2008) 075042.
83. Feste, S.F.: ULIS 2008. P. 27.
84. Yildirim, Y.N.: J. European Phys. J.-Applied Phys. 45 (2009) 10302.
85. Asubay, S.: Vacuum 83 (2009) 1470.
86. Tataroglu, A.: J. Alloys Compounds 479 (2009) 893.
87. Cimilli, F.E.: Physica B 404 (2009) 1558.
88. Feste, S.F.: Solid-State Electr. 53 (2009) 418.
89. Dogan, S.: Physica E 41 (2009) 646.
90. Korkut, H.: Mater. Sci Engn. B 157 (2009) 48.
91. Soylu, M.: Microelectr. Engn. 86 (2009) 88.
92. Korkut, H.: Microelectr. Engn. 86 (2009) 111.
93. Yildirim, N.: Microelectr. Engn. 86  (2009) 2270.
94. Korkut, H.: Physica B 404 (2009) 4039.
95. Yildirim, N.: Inter. J. Modern Phys. B 23 (2009) 5237.
96. Goksu, T.: Microelectr. Engn. 87 (2010) 1781.
97. Naik, S.S.: Superlatt. Microstruct. 48 (2010) 330.
98. Guzeldir, B.: J. Alloys Compounds 506 (2010) 388.
99. Yildirim, N.: Microelectr. Engn. 87 (2010) 2225.
100. Tripathi, S.K.: J. Mater. Sci 45 (2010) 5468.
101. Tascioglu, I.: J. Applied Phys. 108 (2010) 064506.
102. Ru, G.P.: Chinese Phys. B 19 (2010) 097304.
103. Yildirim, N.: J. Applied Phys. 108 (2010) 14506.
104. Chawanda, A.: J. Korean Phys. Soc 57 (2010) 1970.
105. Farag, A.A.M.: Synthetic Metals 161 (2011) 32.
106. Gullu, O.: J. Alloys Compounds 509 (2011) 571.
107. Saadaoui, S.: J. Applied Phys. 110 (2011) 013701.
108. Bozhkov, V.G.: J. Applied Phys. 109 (2011) 073714.
109. Pakma, O.: J. Sol-Gel Sci Technol. 58 (2011) 244.
110. Li, J.: Phys. Rev. B 83 (2011) 125317.
111. Tataroglu, A.: Optoelectr. Adv. Mater.-Rapid Comm. 5 (2011) 438.
112. Ejderha, K.: Mater. Sci Semicond. Process. 14 (2011) 5.
113. Soylu, M.: Optoelectr. Advanced Materials-Rapid Comm. 5 (2011) 135.
114. Cetin, H.: Synthetic Metals 161 (2011) 2384.
115. Sumesh, C.K.: European Phys. J.-Applied Phys. 56 (2011) 10103.
116. Sumesh, C.K.: Chinese Phys. Lett. 28 (2011) 087201.
# 117. Modi, B.P.: J. Nano- and Electron. Phys. 3 (2011) 680.
118. Ejderha, K.: European Phys. J.-Applied Phys. 57 (2012) 10102.
119. Pakma, O.: Inter. J. Photoenergy  (2012) 858350.
120. Bozhkov, V. G.: J. Applied Phys. 111 (2012) 053707.
121. Fiat, S.: Physica B 407 (2012) 2560.
122. Asghar, M.: Key Engn. Mater. 510-511 (2012) 265.
123. Tecimer, H.: Sensors Actuators A 185 (2012) 73.
124. Modi, B.P.: Proc. 2012 1st Inter. Conf. Emerg. Technol. Trends in Electron., Comm. Networking, ET2ECN 2012 (2012) art. no. 6470063.
125. Afandiyeva, I. M.: J. Alloys Compounds 552 (2013) 423.
126. Reddy, Y.M.: Brazilian J. Phys. 43 (2013) 13.
127. Tataroglu, A.: Phys. Scripta 88 (2013)  015801.
128. Gedikpinar, M.: Superlatt. Microstr. 59 (2013) 123.
129. Korucu, D.: Physica B 414 (2013) 35.
130. Korucu, D.: Thin Solid Films 531 (2013) 436.
131. Bobby, A.: Physica B 431 (2013) 6.
132. Reddy, M.S.P.: J. Applied Polymer Sci 131 (2014) 39773.
133. Elhaji, A.: Mater. Sci Semicond. Process. 17 (2014) 94.
134. Ozerli, H.: Mater. Research Bull. 53 (2014) 211.
135. Ejderha, K.: J. Applied Phys. 116 (2014) 234503.
136. Ejderha, K.: European Phys. J.-Applied Phys. 68 (2014) Iss. 2.
137. Akkaya, A.: Thin Solid Films 564 (2014) 367.
138. Kumar, R.: Environment. Sci Engn. 2014. P. 359.
139. Hirose, S.: Applied Phys. Lett. 106 (2015) 191602.
140. Latreche, A.: Inter. J. Numerical Modell. 28 (2015) 231.
141. Guzeldir, B.: J. Alloys. Compounds 627 (2015) 200.
142. Kavasoglu, N.: Mater. Research Bull. 70 (2015) 804.
143. Ocaya, R. O.: Synthetic Metals 209 (2015) 164.
144. Kaushal, P.: Inter. J. Electron. 103 (2016) 937.
145. Kavasoglu, N.: Semiconductors 50 (2016) 616.
146. Hendi, A.A.: J. Alloys Compounds 665 (2016) 418.
147. Turut, A.: J. Semicond. 37 (2016) UNSP 044001.
148. Mekki, A.: J. Nanoelectron. Optoelectron. 11 (2016) 153.
149. Ozden, S.: Inter. J. Photoenergy (2016) 6157905.
*   150. Li, S.T.: Chin. Phys. Lett. 26 (2009) 077201.
151. Canbay, C.: J. Alloys. Compounds 688 (2016) 762.
152. Khusayfan, N.M.: Synthetic Metals 222 (2016) 299.
#   153. Tataroglu, A.: Dyes Pigments 132 (2016) 64.
154. Karabulut, A.: J. Semicond. 38 (2017) 054003.
155. Ejderha, K.: Silicon 9 (2017) 395.
156. Reddy, P.: Applied Phys. Lett. 110 (2017) 011603.
157. Dere, A.: Physica B 520 (2017) 76.
158. Ocaya, R.O.: Physica E 93 (2017) 284.
159. Yildirim, N.: Surface Rev. Lett. 25 (2018) 1850082.
160. Reddy, P.: Semicond. Sci Technol. 34 (2019) 035004.
161. Chourasiya, Hemant K.: Nuclear Instr. Methods in Phys. Res. B 443 (2019) 43.
162. Yildirm, N.: Inter. J. Modern Phys. B 33 (2019) 1950232.
163. Budak, H.: J. Electron. Mater. 49 (2020) 5698.
164. Turut, A.: Turkish J. Phys.‏ 44 (2020)‏ 302.
165. Aslan, F.: Silicon 12 (2020) 2149.
166. Polat, O.: J. Phys.-Cond. Matt. 33 (2021) 035704.

Dobročka, E., : Geometrical principles of the monolithic x-ray magnifier, J. Applied Crystall. 24 (1991) 212-221. (not IEE SAS).

1. Korytar, D.: Czechoslov. J. Phys. 46 (1996) 1011.
*    2. Kvasnica, M.: CSCC 2000, MCP 2000, MCME 2000. Athens 2000.
3. Kvasnica, M.: In: Robotics 2000. Amer. Soc. Civil Engn. 2000. P. 104.
4. Spal, R.D.: Phys. Rev. Lett. 86 (2001) 3044.
*    5. Kvasnica, M.: In: Proc. World Multiconf. Systemics, Cybernetics and Informatics. Industrial Systems II,  15. Florida: 2001. P. 576.
*    6. Kvasnica, M.: In: Proc. World Multiconf. Systemics, Cybernetics and Informatics. Industrial Systems II,  15. Florida: 2001. P. 582.
*    7. Souček, P.: In: Proc. World Multiconf. Systemics, Cybernetics and Informatics. Industrial Systems II,  15. Florida: 2001. P. 588.
8. Kvasnica, M.: In: Integration Assistive Technol. Inf. Age. 9 (2001)  243.
*    9. Korytár, D.: In: Xtop 2002. Amsterdam: 2002.
*   10. Kvasnica, M.: In: Proc. Multiconf. Systemics, Cybernetics and Informatics. Industrial Systems II,  20. Florida: 2002.
*   11. Kvasnica, M.: In: Proc. Space 2002 and Robotics 2002 Conf. Albuquerque 2002. P. 341.
12. Kvasnica, M.: In: Proc. 6th World Multiconf.Systemics, Cyber. Inf. 20 (2002) 258.
13. Korytár, D.: J. Phys. D 36 (2003) A65.
*   14. Kvasnica, M.: In: Proc. Multiconf. Systemics, Cybernetics and Informatics. Florida: 2003.
*   15. Kvasnica, M.: Inter. J. Human-friendly Welfare Robotic Systems 4 (2003) 8.
*   16. Kvasnica, M.: ICORR 2003. Daejeon 2003. P. 116.
*   17. Kvasnica, M.: Annals of DAAAM for 2005 (2005)  215.
*   18. Santin, R. Microscopia de raios x com cristais perfeitos assimétricos. Diploma Work. Curitiba: 2007.
19. Cusatis, C.: J. Applied Crystall. 48 (2015) 876.
20. Vagovic, P.: Optics Express 23 (2015) 18391.

Dobročka, E. and Gleichmann, R.: The evolution of prismatic dislocation loops in heavily Si-doped GaAs, IoP Conf. Series 117 (1991) 343-346. (not IEE SAS).

1. Weyher, J.L.: Mater. Sci Engn. B 44 (1997) 242.
2. Kroon, R.E.: Physica Status Solidi A 182 (2000) 619.

Dobročka, E.: The effect of growth orientation on the resolved shear stresses for horizontal bridgman grown gaas crystals J. Crystal Growth 104 (1990) 428-434.

1. Hsieh, M.H.: J. Mechanical Engn. Sci 207 (1993) 185.
2. Subramanyam, N.J.: Materials Proces. Technol. 55 (1995) 278.
3. Edwards, K.: J. Crystal Growth 179 (1997) 133.
4. Young, G.L.: J. Crystal Growth 171 (1997) 361.
5. Gao, B.: Crystal Growth & Design 13 (2013) 2661.
6. Gao, B.: J. Crystal Growth 474 (2017) 121.

Dobročka, E., Sladek, J., : Thermal-stress analysis in horizontal bridgman grown crystals J. Crystal Growth 104 (1990) 419-427.

1. Hsieh, M.H.: J. Mechanical Engn. Sci 207 (1993) 185.
2. Balasubramanian, R.: Materials Sci Engn. B 16 (1993) 1.
3. Tsai, C.T.: J. Applied Phys. 73 (1993) 1650.
4. Rudolph, P.: Progress Crystal Growth Charact. Mater. 29 (1994) 275.
5. Lambropoulos, J.C.: J. Materials Res. 11 (1996) 2163.
6. Edwards, K.: J. Crystal Growth 179 (1997) 133.
7. Young, G.L.: J. Crystal Growth 171 (1997) 361.