doc. RNDr. Moško Martin, DrSc.

Vidiš, M., Plecenik, T., Moško, M., Tomašec, S., Roch, T., Satrapinsky, L., Grančič, B., and Plecenik, A.: Gasistor: A memristor based gas-triggered switch and gas sensor with memory, Applied Phys. Lett. 115 (2019) 093504. (Not IEE SAS)

1. Weng, T.-F.: Applied Surface Sci 533 (2020) 147476.
2. Saylan, S.: Sci Rep. 10 (2020) 19541.
3. Erokhin, V.: BioNanoSci 10 (2020) 834.
4. Illarionov, G.A.: Front. in Chem. 8 (2020) 724.
#     5. Gupta, V.: 33rd IEEE Inter. Symp. Defect Fault Tolerance in VLSI and Nanotechnol. Systems – DFT 2020, no. 9250843.

Mošková, A. and Moško, M.: Note on the Coulomb blockade of a weak tunnel junction with Nyquist noise: Conductance formula for a broad temperature range. Phys. Status Solidi C 14 (2017) 1700029.

1. Foong, Y.W.: J. Phys. Chem. C 125 (2021) 4343.

Krško, O., Plecenik, T., Moško, M., Haidry, A., Durina, P., Truchly, M., Grančič, B., Gregor, M., Roch, T., Satrapinsky, L., Mošková, A., Mikula, M., Kúš, P., and Plecenik, A.: Highly sensitive hydrogen semiconductor gas sensor operating at room temperature, Procedia Engn. 120 (2015) 618-622.

1. Dascalu, I.: J. Sol-Gel Sci Technol. 86 (2018) 151.
2. Eensalu, Jako S.: Proc. Estonian Acad. Sci 67 (2018) 124.
3. Chachuli, Siti Amaniah M.: Sensors 18 (2018) 2483.
4. Chachuli, S.A.M.: IEEE Sensors Nano 2019, no. 8940042.
#    5. Swain, S.K.: In Handbook of Ecomater. vol. 2. Springer 2019 ISBN 978-331968255-6, pp. 1247-1266.

Plecenik, T., Moško, M., Haidry, A., Durina, P., Truchly, M., Grančič, B., Gregor, M., Roch, T., Satrapinskyy, L., Mošková, A., Mikula, M., Kúš, P., and Plecenik, A.: Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt-TiO2-Pt sandwich, Sensors Actuators B 207 (2015) 351-361.

1. Madhi, I.: Ceramics Inter. 41 (2015) 6552.
2. Lv, P.: J. Mater. Chem. A 3 (2015) 16089.
#      3. Hara, K.:  IEEJ Trans. Sensors Micromachines 135 (2015) 270.
4. Xia, X.: Sensors Actuators B 234 (2016) 192.
5. Wu, J.: Solid State Ionics 292 (2016) 32.
6. Gurbuz, M.: Surface Engn. 32 (2016) 725.
7. Peng, X.: Sensors 16 (2016) 1249.
8. He, X.: Materials & Design 106 (2016) 74.
9. Yasuoka, H.: J. Statistical Phys. 165 (2016) 907.
10. Wang, H.: Inter. Conf. Manipul. Manufact. Measurem. Nanoscale (2016) 199.
#    11. Zheng, X.: Optoelectron. Lett. 12 (2016) 308.
#    12. Papanicolaou, G.C.: Ciencia e Tecnologia dos Materiais 28 (2016) 138.
13. Zhang, D.: Sensors Actuators B 245 (2017) 560.
14. Shao, S.: RSC Adv. 7 (2017) 39859.
15. Panta, R.: Inter. J. Hydrogen Energy 42 (2017) 19106.
16. Duran, C.: Electronics 7 (2018)  54.
17. Suga, K.: Phys. Rev. E 97 (2018) 053109.
18. Burratti, L.: Mater. Chem. Phys. 212  (2018) 274.
19. Arachchige, Hashitha M. M. Munasinghe: Sensors Actuators B 269 (2018) 331.
20. Zimnyakov, D.A.: Nanomater. 8 (2018) 915.
21. Burratti, L.: Materials 11 (2018) 1547.
22. Adeyemo, A.: J. Comput. Electron. 17 (2018) 1285.
#     23. Wu, T.: Gongneng Cailiao/J. Functional Mater. 49 (2018) 01197+01208.
24. Hsu, K.-C.: J. Alloys Compounds 794 (2019) 576.
25. Niu, M.: Industr. Engn. Chem. Res. 58 (2019) 10364.
26. Abu Talip, M. A.: J. Mater. Sci-Mater. Electron. 30 (2019) 4953.
27. Lee, J.-H.: Sensors Actuators B 310 (2020) 127870.
28. Francioso, L.: ACS Applied Nano Mater. 3 (2020) 3337.
29. Papanicolaou, G.C.: Polymers 12 (2020) 22.
30. Arenas-Hernandez, A.: Europ. Phys. J.-Applied Phys.‏ 90 (2020) 30102.
31. Ivanco, J.: Ceramics Inter. 46 (2020) 15876.
32. Ramanavicius, S.: Sensors 20 (2020) 6833.
33. Wu, J.: ACS Photonics 7 (2020)‏ 2923.
#     34. Gupta, V.: 33rd IEEE Inter. Symp. on Defect Fault Toleran. in VLSI Nanotechnol. Systems – DFT 2020, 9250843.
35. Wang, X.: Trends in Food Sci Technol. 110 (2021) 483.
36. Rodrigues, M.S.: Applied Sci 11 (2021) 5388.
37. Simonetti, E.A.N.: Ceramics Inter. 47 (2021) 17844.

Plecenik, A., Haidry, A.A., Plecenik, T., Durina, P., Truchly, M., Moško, M., Grančič, B., Gregor, M., Roch, T., Satrapinsky, L., Mošková, A., Mikula, M., and Kúš, P.: Metal oxide gas sensors on the nanoscale, Proc. SPIE 9083 (2014) 9083OY.

1. Eom, N.S.A.: Sensors 17 (2017) 2750.
2. Shepa, I.: Ceramics Inter. 44 (2018) 17925.
3. Umar, A.: Sensors Actuators B 304 (2020) 127352.

Feilhauer, J., Moško, M., : Coexistence of diffusive resistance and ballistic persistent current in disordered metallic rings with rough edges: possible origin of puzzling experimental values. Phys. Rev. B 88 (2013) 125424, also arXiv: 1203.6512v2 (2012).

1. Dietz, O.: Phys. Rev. B 86 (2012) 201106.
2. Doppler, J.: New J. Phys. 16 (2014) 053026.

Mošková, A., Moško, M., Tóbik, J., : Theoretical study of persistent current in a nanoring made of a band insulator. Phys. Status Solidi B 250 (2013) 147-159.

1. Shyu, F.L.: Solid State Comm. 188 (2014) 53.
2. Sankar, I.V.: Physica E 73 (2015) 175.
3. Ribeiro, A.V.: Phys. Status Solidi B 253 (2016) 545.
4. Lavanya, C.U.: Physica E‏ 126 (2021) 114500.

Feilhauer, J., Moško, M., : Conductance and persistent current in quasi-one-dimensional systems with grain boundaries: Effects of the strongly reflecting and columnar grains. Phys. Rev. B 84 (2011) 085454.

1. Tamura, R.: Phys. Rev. B 86 (2012) 205416.
2. Mil’nikov, G.: Phys. Rev. B 87 (2013) 035434.
3. Mil’nikov, G.: Phys. Rev. B 88 (2013) 155406.
4. Ying, L.: Phys. Rev. B 96 (2017) 165407.

Feilhauer, J., Moško, M., : Quantum and Boltzmann transport in a quasi-one-dimensional wire with rough edges. Phys. Rev. B 83 (2011) 245328.

1. Tamura, R.: Phys. Rev. B 86 (2012) 205416.
2. Xiao, X.-B.: Chinese Phys. Lett. 29 (2012) 087202.
3. Xu, H.: J. Phys.-Cond. Matter 24 (2012) 455303.
4. Xiao, X. B.: Europ. Phys. J. B 85 (2012) 305.
5. Alcazar-Lopez, A.: Phys. Rev. E 87 (2013) 032904.
6. Mil’nikov, G.: Phys. Rev. B 87 (2013) 035434.
7. Mil’nikov, G.: Phys. Rev. B 88 (2013) 155406.
8. Doppler, J.: New J. Phys. 16 (2014) 053026.
9. Pena, A.: Nature Comm. 5 (2014) 3488.
10. Yepez, M.: AIP Conf. Proc. 1579 (2014) 31.
11. Yepez, M.: EPL 108 (2014) 17006.
12. Moors, K.: Microelectron. Engn.167 (2017) SI37.
13. Jafari, M.R.: J. Electronic Mater. 46 (2017) 573.
14. Marinyuk, V. V.: Phys. Rev. B 96 (2017) 155146.
15. Markos, P.: Phys. Rev. B 97 (2018) 085423.
16. Zheng, C.: Phys. Rev. B 103 (2021) 075401.

Moško, M., Németh, R., Krčmár, R., Indlekofer, K., : Luttinger liquid and persistent current in a continuous mesoscopic ring with a weak link. Phys. Rev. B 79 (2009) 245323.

1. Shakouri, Kh.: J. Phys.-Cond. Matter 23 (2011) 225801.
2. Dajka, J.: J. Phys.-Cond. Matt. 24 (2012) 495701.

Németh, R., Moško, M., : One-dimensional ring with Kronig–Penney periodic potential: Persistent currents at full filling. Physica E 40 (2008) 1498.

1. Xiao, S.: Europ. Phys. J. B 86 (2013) 77.
2. Papp, E.: AIP Conf. Proc. 1796 (2017) UNSP 030003.

Feilhauer, J., Moško, M., : Persistent current in a disordered mesoscopic ring with many channels: Scattering-matrix based calculation. Physica E 40 (2008) 1582.

1. Gasparian, V.: J. Phys.-Cond. Matter. 21 (2009) 405302.
2. Shakouri, Kh.: J. Phys.-Condensed Matt. 23 (2011) 225801.
3. Luo, Z.-H.: Acta Phys. Sinica 60 (2011) 037303.
4. Luo, Z.-H.: Acta Phys. Sinica 61 (2012) 057303.

Krčmár, R., Gendiar, A., Moško, M., Németh, R., Vagner, P., Mitas, L., : Persistent current of correlated electrons in mesoscopic ring with impurity. Physica E 40 (2008) 1507-1509.

     1. Reboredo, F.A.: J. Chem. Phys. 136 (2012) 204101.

Moško, M., Vagner, P., Gendiar, A., Németh, R., : Coherent transport of interacting electrons through a single scatterer. Physica B 378-380 (2006) 908.

 1. Hinsche, N.F.: Phys. Rev. A 79 (2009) 023822.

Vagner, P., Moško, M., Németh, R., Wagner, L., and Mitas, L.: Hartree-Fock versus quantum Monte Carlo study of persistent current in a one-dimentional ring with single scatterer, Physica E 32 (2006) 350-353.

1. Mobini, A.: Physica E 101 (2018) 162.

Moško, M., Vagner, P., Bajdich, M., Schaepers, T., : Coherent „metallic“ resistance and medium localization in a disordered one-dimensional insulator. Phys. Rev. Lett. 91 (2003) 136803.

1. Gopar, V.: Europhys. Lett. 71 (2005) 966, also:  arXiv: cond-mat 0507339.
2. Martens, H.C.F.: Phys. Rev. Lett. 96 (2006) 136803.
3. Foieri, F.: Phys. Rev. B 74 (2006) 165313, also arXiv: cond-mat 0606715.
4. Markoš, P.: Acta Physica Slovaca 56 (2006) 561.
5. Woloszyn, M.: Acta Phys. Polonica A 110 (2006) 523.
6. Foieri, F.: Physica B 398 (2007) 376.
7. Markoš, P.: Wave propagation: from electrons to photonic crystals and left-hauted materials. Princeton: Princeton Univ. Press 2008. ISBN 978-0-691-12003-3.
8. Baenninger, M.: Physica E 40 (2008) 1347.
9. Diez, E.: Phys. Rev. B 78 (2008) 035118.
10. Ren, W.: Phys. Rev. B 79 (2009) 161404.
11. Camjayi, A.: Phys. Rev. B 86 (2012) 235143.
12. Bhattacharya, D.P.: Superlatt. Microstr. 72 (2014) 126.
13. Nag, S.: Physica E 87 (2017) 237.

Vagner, P., Markoš, P., Moško, M., Schaepers, T., : Coherent resistance of a disordered one-dimensional wire:  Expressions for all moments and evidence for non-Gaussian distribution. Phys. Rev. B 67 (2003) 165316.

 1.  Maksymovicz, A-Z.: J. Non-Crystalline Solids 352 (2006) 4200.
2. Woloszyn, M.: Acta Phys. Polonica A 110 (2006) 523.
3. Benhenni, R.: Physica A 389 (2010) 1002.

Mošková, A. and Moško, M.Phase-shift analysis of two-dimensional carrier-carrier scattering in GaAs and GaN: Comparison with Born and classical approximations, Phys. Rev. B 61 (2000) 3048.

1. Raichev, O.E.: J. of Physics – Cond. Matt. 12 (2000) 6859.
2.  Kwong, N.H.: Phys. Rev. Lett. 87 (2001) 027402-1.
3. Kral, K.: Fortschritte der Physik 49 (2001) 1011.
4. Kral, K.: Inter. J. of Modern Physics B 15 (2001) 3503.
5. Král, K.: Physica E 12 (2002) 908.
6. Král, K.: Physica B 314 (2002) 490.
7. Král, K.: Molecular Low Dimensional and Nanostr. Mater. Advanced Appl. 59 (2002) 267.
8. Binder, R.: Proc. Conf. Progress in Nonequilibrium Green’s Functions II. (2003) P. 301.
9. Axt, V.M.: Reports on Progr. in Phys. 67 (2004) 433.
10. Bilykh, V.V.: J. Experiment. Theoret. Phys. 104 (2007) 814.
11. Reeder, R.: J. Applied Phys. 102 (2007) Art.No. 073715.
12. Kukushkin, V.: IEEE Trans. Nanotechnol. 7 (2008) 344.
13. Kukushkin, V.: Phys. Rev. A 78 (2008) 033838.
#  14. Kukushkin, V.: Bulletin Russian Acad. Sci: Physics 73 (2009) 101.
15. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
16. Nag, S.: Superlatt. Microstr. 48 (2010) 72.
17. Kukushkin, V.: IEEE J. Quantum Electr. 46 (2010) 666.
18. Kukushkin, V.: Semicond. Sci Technol. 25 (2010) 125008.
19. Kukushkin, V.: Semiconductors 44 (2010) 1435.
20. Marchetti, G.: J. Applied Phys. 116 (2014) 163702.

Moško, M. and Vagner, P.: Born approximation versus the exact approach to carrier-impurity collisions in a one-dimensional semiconductor: Impact on the mobility, Phys. Rev. B 59 (1999) R10445-R10448.

     1. Guven, K.: J. Phys. – Cond. Matt. 12 (2000) 2031.
2. Schwartz, A.: Physica E 7 (2000) 760.
3. Burki, J.: Phys. Rev. B 62 (2000) 2956.
4. Kaluza, A.: J. Crystal Growth 221 (2000) 91.
5. Kral, K.: Fortschritte der Physik 49 (2001) 1011.
6. Kral, K.: Inter. J. Modern Phys. B 15 (2001) 3503.
*    7. Bronger, T.: Morphologische und optische Studien an V-Graben Quantendrähten: Einfluß der Quantentopfgeometrie auf die Quantenzustände im Draht. Aachen 2001.
8. Král, K.: Physica E 12 (2002) 908.
9. Král, K.: Physica B 314 (2002) 490.
10. Kral, K.: Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. 59 (2002) 267.
11. Das, K.K.: J. Phys.-Cond. Matter 17 (2005) 6675.
12. Nag, S.: Superlatt. Microstr. 48 (2010) 72.
13. Salfi, J.: Nature Nanotechnol. 5 (2010) 737.
14. Salfi, J.: Phys. Rev. B 85 (2012) 235316.
15. Royo, M.: Phys. Rev. B 89 (2014) 155416.
16. Bhattacharya, D.P.: Superlatt. Microstr. 72 (2014) 126.
17. Sano, N.: J. Applied Phys. 118 (2015) 244302.
18. Nag, S.: Physica E 87 (2017) 237.

Moško, M. and Kálna, K.: Carrier capture into a GaAs quantum well with a separate confinement region: comment on quantum and classical aspects, Semicond. Sci Technol. 14 (1999) 790-796.

1. Safonov, I.: Proc.LFNM 2005: 7th Inter. Conf. on Laser and Fiber-Optical Networks Modeling 2005, art. no. 1553178, pp. 16.
2. Safonov, I.: Proc. SPIE 6184 (2006) art. no. 61841K.
3. Talele, K.: Optoelectr. Advan. Mater. 1 (2007) 693.
4. Klymenko, M.V.: Superlatt. Microstruct. 46 (2009) 603.
5. Khalil, H.M.: Nanoscale Res. Lett. 9 (2014) 21.
6. Koziol, Z.: Optica Applicata 44 (2014) 135.
7. Vallone, M.: Phys. Status Solidi B 252 (2015) SI971.
#    8. Aeberhard, U.: In Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods. CRC Press 2017, ISBN 978-149874957-2 441-474.
9. Chang, Y.-H.: J. Applied Phys. 126 (2019) 014503.

Vagner, P., Munzar, L., and Moško, M.: Calculation of excitonic absorption spectrum of GaAs quantum wire free-standing in vacuum, Acta Physica Polonica A 92 (1997) 1038.

* 1. Klingshirn, C.: Quantum -wire structures. In: Optical properties I. Berlin: Springer 2001. ISBN: 978-3-540-61740-2. P. 264.
2. Li, Y.M.: Surface Sci 566 (2004) 1057.
3. Li, B.: Phys. Rev. B 77 (2008) 115335.
4. Li, B.: Phys. Rev. B 79 (2009) 085306.

Vagner, P. and Moško, M.: Electron-impurity scattering in free- standing quantum wires: effect of dielectric confinement, J. Applied Phys. 81 (1997) 3196.

1. Manaselyan, A.K.: Physica E 14 (2002) 366.
2. Gasparyan, S.G.: Key Engn. Mater. 277-278 (2005) 881.
3. Zhang, L.: Phys. Lett. A 366 (2007) 256.
4. Jin, S.H.: J. Applied Phys. 102 (2007) art.no. 083715.
5. Konar, A.: J. Applied Phys. 102 (2007) art.no. 123705.
*     6. Manaselyan, A.K.: J. Contemp. Phys. (Armenian AS) 42 (2007) 23.
7. Li, B.: Phys. Rev. B 77 (2008) 115335.
8. Li, B.: Phys. Rev. B 79 (2009) 085306.
9. Li, B.: Microelectr. J. 40 (2009) Sp. Is. 446.
10. Munch, S.: Nanotechnol. 21 (2010) 105711.
11. Yan, B.H.: Nano Lett. 10 (2010) 3791.

Moško, M., Munzar, L., and Vagner, P.: Excitonic effects in free-standing ultrathin GaAs films Phys. Rev. B 55 (1997) 15416.

1. Montes, A.: J. Applied Phys. 84 (1998) 1421.
2. Koh, T.S.: J. Phys.-Cond. Matt. 13 (2001) 1485.
3. El Moussaouy, A.: J. Applied Phys. 93 (2003) 2906.
4. Li, Y.M.: Surface Sci 566 (2004) 1057.
5. Sellami, K.: Superlattice Microstruct. 37 (2005) 43.
6. Li, B.: Phys. Rev. B 77 (2008) 115335.
7. Li, B.: Phys. Rev. B 79 (2009) 085306.
8. Li, B.: Microelectr. J. 40 (2009) Sp. Is. 446.
9. Niculescu, E.C.: J. Luminiscence 132 (2012) 585.
10. Mahler, B.: J. American Phys. Soc 134 (2012) 18591.
11. Robert, C.: Phys. Rev. B 86 (2012) 205316.
12. El Moussaouy, A.: Physica B 436 (2014) 26.
13. Benchamekh, R.: Phys. Rev. B 89 (2014) 035307.
14. Arulmozhi, M.: Superlattice Microstruct. 75 (2014) 222.
15. Wu, Z.-H.: Chinese Phys. B 25 (2016) 037310.
16. Wu, Z.: Acta Phys. Polonica A 134 (2018) 1158.

Kálna, K., Moško, M., and Peeters, F.: Electron capture in GaAs quantum wells via electron-electron and optic phonon scattering, Applied Phys. Lett. 68 (1996) 117.

1. Gruppen, M.: IEEE J. Quantum Electr. 34 (1998) 120.
*     2. Register, L.F.: Inter. J. High Speed Electr. Systems 9 (1998) 1211.
3. Ryzhii, M.: Phys. Rev. B 61 (2000) 2742.
4. Hernandez-Rosas, J.: Revista Mexicana de Fisica 48 (2002) 295.
5. Wu, B.H.: J. Appl. Phys. 94 (2003) 5710.
6.  Villegas-Lelovsky, L.: J. Applied Phys. 95 (2004) 4204.
*     7. Anwar, A.F.M.: Encyclopedia Nanosci Nanotechnol. 9. American Sci Publ. 2004. P. 199.
8. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
9. Zhang, S.: J. Applied Phys. 114 (2013) 194507.

Kálna, K. and Moško, M.: Electron capture in quantum wells via scattering by electrons, holes and optical phonons, Phys. Rev. B 54 (1996) 17730.

1. Kinsler, P.: Phys. Rev. B 58 (1998) 4771.
2. Vallone, M.: J. Applied Phys. 91 (2002) 9848.
3. Safonov, I.: Proc. SPIE 5594 (2004) 33.
*     4. Anwar, A.F.M.: Encyclopedia Nanosci Nanotechnol. 9. American Sci Publ. 2004. P. 199.
5. Dhaka, V.D.S.: New J. Phys. 7 (2005) Art. No.131.
6. Dhaka, V.D.S.: Semicond. Sci Technol. 21 (2006) 661.
7. Dhaka, V.D.S.: J. Phys. D 39 (2006) 2659.
8. Talele, K.: Optoelectr. Advan. Mater. 1 (2007) 693.
9. Samuel, E.P.: Optoelectr. Advan. Mater. 1 (2007) 698.
10. Samuel, E.P.: Optoelectr. Advan. Mater. 1 (2007) 221.
11. Safonov, I.M.: Superlattice Microstr. 43 (2008) 120.
12. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
13. Talele, K.: Optik 122 (2011) 626.
14. Khalil, H.M.: AIP Cof. Proc. 1476 (2012) 155.
15. Danilov, L.V.: Semicond. 47 (2013) 1336.
16. Asryan, L.V.: J. Applied Phys. 115 (2014) 023107.
17. Sokolova, Z.N.: Quantum Electron. 44 (2014) 801.
18. Vallone, M.: J. Applied Phys. 121 (2017) 123107.
#   19. Aeberhard, U.: In Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods. CRC Press 2017, ISBN 978-149874957-2 441-474.
#   20. de Santi, C.: In Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications. Second Ed. Elsevier 2017, ISBN: 978-008101943-6, pp. 455-489.
21. Burmistrov, E.R.: SN Applied Sci‏ 2 (2020) 1532.

Moško, M., Mošková, A., and Cambel, V.: Carrier-carrier scattering in photoexcited intrinsic GaAs quantum wells and its effect on femtosecond plasma thermalization, Phys. Rev. B 51 (1995) 16860.

1. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
2. Takahashi, Y.: Phys. Rev. B 53 (1996) 7322-7333.
3. Takahashi, Y.: Semicond. Sci. Technol. 11 (1996) 163-171.
4. Dur, M.: Phys. Rev. B 54 (1996)  17794.
*       5. Ridley, B.K.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 357.
*       6. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
7. Gericke, D.O.: Phys. Rev. B 59 (1999) 10639.
8. Guven, K.: J. Phys. – Cond. Matt. 12 (2000) 2031.
9. Kral, K.: Optical Properties of Semicond. Nanostr. 81 (2000) 405.
$      10. Kral, K.: Arxiv preprint cond-mat/0103061, 2001.
*      11. Ferry, D.K.: In: Ultrafast Phenomena in Semicond. New York: Springer 2001. ISBN 978-1-4613-0203-2. P. 307.
12. Vasileska, D.: Materials Sci & Engn. R 38 (2002) 181.
13. Zhao, H.: Phys. Rev. B 67 (2003) 035 306.
14. Tripathi, P.: J. Phys.-Cond. Matter 15 (2003) 1057.
15. Callebaut, H.: Applied Phys. Lett. 83 (2003) 207.
16. Hu, Q.: Philos. Trans. Roy. Soc. A 362 (2004) 233.
17. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
18. Sun, K.W.: Japan. J. Applied Phys. 44 (2005) 4799.
19. Harrison, P.: Quantum wells, wires and dots: theoretical and
computational physics of semiconductor nanostructures. Oxford: Blackwell Sci Publ. 2005. ISBN: 978-0-470-01081-5.
20. Lu, J.T.: Applied Phys. Lett. 88 (2006) 061119.
21. Lu, J.T.: Phys. Rev. B 73 (2006) 195326.
22. Gao, X.: Applied Phys. Lett. 89 (2006) 191119.
#    23. Cao, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 27 (2006) 304.
#    24. Vasileska, D.: Synthesis Lectures on Comp. Electromagn. 6 (2006) 1-216.
25. Gao, X.: J. Applied Phys. 101 (2007) 063101.
26. Jirauschek, C.: J. Applied Phys. 101 (2007) 086109.
27. Gao, X.: J. Comp. Electronics 6 (2007) 305.
28. Jirauschek, C.: Phys. Status Solidi c 5 (2008) 221.
29. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
30. Lin, T.T.: Applied Phys. Express 2 (2009) 022102.
31. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
32. Jirauschek, C.: J. Applied Phys. 105 (2009) 123102.
33. Knezevic. I.: J. Computat. Theoretical Nanosci 6 (2009) Sp. Iss. SI 1725.
34. Jirauschek, C.: J. Phys.: Conf. Ser. 193 (2009) 012062.
#    35. Freeman, W.: Proc. SPIE 7311 (2009) 73110V.
36. Ridley, B.K.:Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
37. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
38. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
39. Vasileska, D.: In Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press 2010. ISBN 978-1-4200-6484-1. P. 241-334.
40. Lu, I.L.: Phys. Status Solidi c 8 (2011) 2393.
41. Freeman, W.: Proc. SPIE 8023 (2011) 802305.
42. Freeman, W.: Phys. Rev. B 85 (2012) 195326.
43. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
44. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
45. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
46. Freeman, W.: J. Applied Phys. 122 (2017) 045701.
47. Hathwar, R.: J. Phys. D 52 (2019) 093001.
48. Freeman, W.: J. Applied Phys. 128 (2020) 235702.

Moško, M., Pelouard, J., Pardo, F., : Transmitted-acoustic phonon draag between 2D electron gases in GaAs/AlGaAs systems at low temperatures: Monte Carlo study Phys. Rev. B 52 (1995) 5830.

1. Bonsage, M.C.: Phys. Rev. B 57 (1998) 7085.
2. Kajiwara, Y.: Japan. J. Appl. Phys. 58 (2019) SDDE05.

Cambel, V., Moško, M., : Carrier-carrier scattering in photoexcited quantum wells: Inadequacy of two-particle model at low densities Semicond. Sci Technol. 9 (1994) 474.

     1. Kane, M.G.: Phys. Rev. B (1996) 54 16345
2. Ridley, B.K.: J. Phys. – Cond. Matt. 13 (2001) 2799.
3. Kitashima, T.: J. Electrochem. Soc. 150 (2003) G198.

Mošková, A., Moško, M., : Exchange carrier-carrier scattering of photoexcited spin-polarized carriers in GaAs quantum wells: Monte Carlo study Phys. Rev. B 49 (1994) 7443.

1. Kinsler, P.: Phys. Rev. B 58 (1998) 4771.
2. Lee, S.C.: Phys. Rev. B 59 (1999) 10796.
3. Lee, S.C.: Phys. Rev. B 62 (2000) 15327.
4. Wolterink, T.: Phys. Rev. B 67 (2003) 115311.
5. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
6. Dolguikh, M.V.: Phys. Rev. B 73 (2006) 075327.
7. Gao, X.: J. Applied Phys. 101 (2007) 063101.
8. Wu, Z.K.: IEEE J. Quantum Elect. 43 (2007) 486.
9. Gao, X.: J. Comp. Electronics 6 (2007) 305.
10. Li, X.: Applied Phys. Lett. 97 (2010) 082101.
11. Girdhar, A.: Applied Phys. Lett. 99 (2011) 043107.
12. Slingerland, P.: Semicond. Sci Technol. 27 (2012) 065009.
13. Kirk, A.P.: Phys. Rev. B 86 (2012) 165206.
14. Spezia, S.: EPL 104 (2013) 47011.
15. Marchetti, G.: J. Applied Phys. 116 (2014) 163702.
16. Spagnolo, B.: Chaos Solitons Fractals 81 (2015) 412.
17. Spagnolo, B.: Entropy 19 (2017) 20.
18. Borowik, P.: J. Computat. Phys. 341 (2017) 397.
19. Danz, T.: Phys. Rev. B 95 (2017) 241412.
20. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
21. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
22. Borowik, P.: J. Applied Phys. 122 (2017) 045704.
23. Borowik, P.: Applied Phys. A 124 (2018) 184.
24. Maekawa, K.: Phys. Rev. B 97 (2018) 075435.25.
25. Adorno, D.P.: J. Stat. Mechanics-Theory Experiment (2019) 094019.

Moško, M., Mošková, A., : Photoexcited spin-polarized carriers in GaAs quantum wells: Monte Carlo study of exchange carrier-carrier scattering Semicond. Sci Technol. 9 (1994) 478.

        1. Kane, M.G.: Phys. Rev. B 54 (1996) 16345.
2. Ridley, B.K.: Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
3. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
4. Willis, K.J.: J. Applied Phys. 110 (2011) 063714.
5. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
6. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
7. Borowik, P.: J. Applied Phys. 122 (2017) 045704.
8. Borowik, P.: Applied Phys. A 124 (2018) 184.

Moško, M., Cambel, V., : Thermalization of one-dimensional electron gas by many-body Coulomb scattering: molecular dynamics model for quantum wires Phys. Rev. B 50 (1994) 8864.

       1. Rota, L.: Phys. Rev. B 52 (1995) 5183.
*     2. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
*     3. Jacoboni, C.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 59.
4. Carlberg, M.H.: J. of Phys.-Cond. Matter 11 (1999) 6509.
5. Flores-Hidalgo, G.: J. Phys. A 40 (2007) 13217.

Moško, M., Pelouard, J., Pardo, F., : Transmitted-acoustic phonon drag between parallel two-dimensional electron gases: Monte Carlo simulation Semicond. Sci Technol. 9 (1994) 806.

     1. Smoliner, J.: Semicond. Sci Technol. 11 (1996) 1.
2. Paulavicius, G.: Physica Status Solidi B 210 (1998) 87.
3. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.

Cambel, V., Moško, M., : The influence of ionized impurities on electron-electron drag between parallel two-dimensional gases: Monte Monte Carlo simulation with molecular dynamics Semicond. Sci Technol. 8 (1993) 364.

      1. Tanatar, B.: Phys. Rev. B 58 (1998) 1154.
2. Bonsager, M.C.:  Phys. Rev. B 57 (1998) 7085.
3. Tanatar, B.: Phys. Rev. B 61 (2000) 15959.
#    4. Tanatar, B.: Turkish J. Phys. 24 (2000) 143.
5. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
6. Laikhtman, B.: Phys. Rev. B 72 (2005) Art. No. 125338.
*    7. Volokitin, A.I.: Arxiv preprint cond-mat/0605520 (2006).
8. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.

Moško, M., Cambel, V., Mošková, A., : Electron-electron drag between parallel two-dimensional gases Phys. Rev. B 46 (1992) 5012.

     1. Gramila, T.J.: Physica B 197 (1994) 442.
2. Olejníková, B.: Superlattice Microstruct. 14 (1994) 215.
3. Olejníková, B.: Acta Physica Polonica A 87 (1995) 353.
4. Bonsager, M.C.: Phys. Rev. B 46 (1998) 7085.
5. Noh, H.: Phys. Rev. B 59 (1999) 13114.
6. Bostrom, M.: Physica Scripta T79 (1999) 89.
7. Kawashima, I.: Electron Devices Meeting, 2000. IEDM Technical Digest. P. 113.
8. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
9. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
10. Laikhtman, B.: Phys. Rev. B 72 (2005) 125338.
11. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.

Moško, M. and Mošková, A.: Ensemble Monte Carlo simulation of electron-electron scattering: Improvements of conventional methods, Phys. Rev. B 44 (1991) 10794.

*      1. Rota, L.: Semiconductors `92. Inter. Soc Optics Photon. (1992) 146.
*      2. Bair, J.E.: Semiconductors `92. Inter. Soc Optics Photon. (1992) 157.
3. Collet, J.H.: Phys. Rev. B 47 (1993) 10 279.
4. Rota, L.: Phys. Rev. B. 47 (1993) 4226.
5. Sirenko, Y.M.: Phys. Rev. B 50 (1994) 4631.
*      6. Collet, J.H.: OE/LASE `94. Inter. Soc Optics Photon. (1994) 246.
7. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
8. Rota, L.: Phys. Rev. B 52 (1995) 5183.
9. Fischetti, M.V.: J. Appl. Phys. 78 (1995) 1058.
10. Borowik, P.: J. Applied Physics 82 (1997) 4350.
11. Matulionis, A.: Phys. Rev. B 56 (1997) 2052.
*   12. Hartnagel, H.L.: Microwave Noise in Semicond. Devices. Wiley-Intersci 2001. ISBN: 0-471-38432-1.
13. Kalna, K.: Math. Comput. Simulat. 62 (2003) 357.
14. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
15. Gao, X.: J. Applied Phys. 101 (2007) 063101.
16. Bellotti, E.: Appl. Phys. Lett. 92 (2008) Art. No. 101112.
17. Kalna, K.: IEEE Trans. Electron Dev. 55 (2008) 2297.
18. Xu, K.Y.: IEEE Trans. Nanotechnol. 7 (2008) 451.
19. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
20. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
21. Pozela. J.: Semiconductors 43 (2009) 1177.
22. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
23. Lu, I.-L.: Proc. SPIE 7602 (2010) 76021H.
24. Lu, I.-L.: J. Applied Phys. 108 (2010) 124508.
25. Kamra, A.: J. Applied Phys. 109 (2011) 024501.
26. Willis, K.J.: J. Applied Phys. 110 (2011) 063714.
27. Bishnoi, B.: Proc. 10th IEEE Inter. Conf. Semicond. Electron., ICSE 2012. (2012) art. no. 6417093, pp. 69.
28. Spezia, S.: EPL 104 (2013) 47011.
29. Huthmacher, K.: Proc. SPIE 8777 (2013) 87770S.
30. Katiyar, S.: J. Comput. Theoret. Nanosci 11 (2014) 1983.
31. Ghosh, B.: AIP Adv. 4 (2014) 017116.
32. Ghosh, B.: J. Low Power Electron. 10 (2014) 365.
33. Spagnolo, B.: Chaos Solitons Fractals 81 (2015) 412.
34. Katiyar, S.: Applied Phys. A 122 (2016) Iss. 2.
35. Spagnolo, B.: Entropy 19 (2017) 20.
36. Borowik, P.: J. Computat. Phys. 341 (2017) 397.
37. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
#    38. Wu, Y. R.: In Handbook GaN Semicond. Mater. Devices. CRC Press 2017. ISBN 978-149874714-1. P. 117-140.
39. Korotyeyev, V.V.: Appl. Phys. Lett. 113 (2018) 041102.
40. Manuel Iglesias, J.: Semicond. Sci Technol. 34 (2019) 065011.
41. Adorno, D.P.: J. Stat. Mechanics-Theory Experiment (2019) 094019.
42. Korotyeyev, V.V.: Phys. Rev. B 101 (2020) 235420.

Moško, M., Novák, I., : Picosecond real-space electron transfer in GaAs-N-AlxGa1-x heterostructures with graded barriers: Monte Carlo simulation J. Applied Phys. 67 (1990) 890.

*    1. Beneking, H.: Halbleiter – Technologie. Stuttgart: 1991.
2. Patil, M.B.: J. Applied Phys. 72 (1992) 161.
*    3. Asche, M.: In: Negative Differential Resistance and Instabilities in 2-D Semicond. Springer 1993. ISBN 978-1-4615-2822-7 P. 317.
4. Kleinert, P.: Phys. Rev. B 50 (1994) 11 022.
5. Gribnikov, Z.S.: J. Appl. Physics 77 (1995) 1337.
6. Cheng, M.C.: J. Phys. D 28 (1995) 160.

Moško, M., Novák, I., : Energy exchange between heterostructures layers by real space electron transfer J. Applied Phys. 66 (1989) 2011.

*     1. Schroeder, D.: Moddeling of Interface Carrier Transport for Device Simulation. Wien: Spjringer-Verlag 1994. ISBN 3-211-82539.
2. Gribnikov, Z.S.: J. Appl. Physics 77 (1995) 1337.
3. Hoare, D.: Solid State Electr. 39 (1996) 610.
4. Su, J.S.: IEEE Electron Dev. Lett. 17 (1996) 43.
5. Su, J.S.: Applied Physics Letters 70 (1997) 1002.

Moško, M., Novák, I., Quittner, P., : On the analytical approach to the real space electron transfer in GaAs-AlGaAs heterostructures Solid State Electr. 31 (1988) 363.

     1. Aoki, K.: Solid State Electr. 32 (1989) 1149.
2. Balkansky, B.: Solid State Electr. 32 (1989) 1641.
3. Schroeder, D.: Solid State Electr. 33 (1990) 217.
4. Luryi, S.: Superlatt. Microstruct. 8 (1990) 395.
*    5. Schroeder, D.: IEEE Trans. Computer-Aided Design Integr. Circ. Syst. 9 (1990) 1136.
6. Balkan, N.: Semicond. Sci Technol. 6 (1991) 175.
7. Schroeder, D.: J. Applied Phys. 72 (1992) 964.
8. Patil, M.B.: J. Applied Phys. 72 (1992) 161.
*    9. Kizilyalli, I.C.: In: Hot  Carriers in Semiconductor  Nano-structures. New York: Academic 1992. P. 235.
*   10. Pozela, J.: In: Physics of High-Speed Transistors. New York: Academic Press 1993. P. 197.
11. Hjelmgren, H.: Solid State Electr. 37 (1994) 1649.
*   12. Schroeder, D.: Modelling of Interface Carrier Transport for Device Simulation. Wien: Springer-Verlag 1994. ISBN: 3-211-82539.
*   13. Fatemi, E.: Proc. IWCE 3. New York: Plenum Press. P. 135.
14. Gribnikov, Z.S.: J. Applied Phys. 77 (1995) 1373.