Krško, O., Plecenik, T., Moško, M., Haidry, A., Durina, P., Truchly, M., Grančič, B., Gregor, M., Roch, T., Satrapinsky, L., Mošková, A., Mikula, M., Kúš, P., and Plecenik, A.: Highly sensitive hydrogen semiconductor gas sensor operating at room temperature, Procedia Engn. 120 (2015) 618-622.
1. Dascalu, I.: J. Sol-Gel Sci Technol. 86 (2018) 151.
2. Eensalu, Jako S.: Proc. Estonian Acad. Sci 67 (2018) 124.
3. Chachuli, Siti Amaniah M.: Sensors 18 (2018) 2483.
4. Chachuli, S.A.M.: IEEE Sensors Nano 2019, no. 8940042.
# 5. Swain, S.K.: In Handbook of Ecomater. vol. 2. Springer 2019 ISBN 978-331968255-6, pp. 1247-1266.
Plecenik, T., Moško, M., Haidry, A., Durina, P., Truchly, M., Grančič, B., Gregor, M., Roch, T., Satrapinskyy, L., Mošková, A., Mikula, M., Kúš, P., and Plecenik, A.: Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt-TiO2-Pt sandwich, Sensors Actuators B 207 (2015) 351-361.
1. Madhi, I.: Ceramics Inter. 41 (2015) 6552.
2. Lv, P.: J. Mater. Chem. A 3 (2015) 16089.
# 3. Hara, K.: IEEJ Trans. Sensors Micromachines 135 (2015) 270.
4. Xia, X.: Sensors Actuators B 234 (2016) 192.
5. Wu, J.: Solid State Ionics 292 (2016) 32.
6. Gurbuz, M.: Surface Engn. 32 (2016) 725.
7. Peng, X.: Sensors 16 (2016) 1249.
8. He, X.: Materials & Design 106 (2016) 74.
9. Yasuoka, H.: J. Statistical Phys. 165 (2016) 907.
10. Wang, H.: Inter. Conf. Manipul. Manufact. Measurem. Nanoscale (2016) 199.
# 11. Zheng, X.: Optoelectron. Lett. 12 (2016) 308.
# 12. Papanicolaou, G.C.: Ciencia e Tecnologia dos Materiais 28 (2016) 138.
13. Zhang, D.: Sensors Actuators B 245 (2017) 560.
14. Shao, S.: RSC Adv. 7 (2017) 39859.
15. Panta, R.: Inter. J. Hydrogen Energy 42 (2017) 19106.
16. Duran, C.: Electronics 7 (2018) 54.
17. Suga, K.: Phys. Rev. E 97 (2018) 053109.
18. Burratti, L.: Mater. Chem. Phys. 212 (2018) 274.
19. Arachchige, Hashitha M. M. Munasinghe: Sensors Actuators B 269 (2018) 331.
20. Zimnyakov, D.A.: Nanomater. 8 (2018) 915.
21. Burratti, L.: Materials 11 (2018) 1547.
22. Adeyemo, A.: J. Comput. Electron. 17 (2018) 1285.
# 23. Wu, T.: Gongneng Cailiao/J. Functional Mater. 49 (2018) 01197+01208.
24. Hsu, K.-C.: J. Alloys Compounds 794 (2019) 576.
25. Niu, M.: Industr. Engn. Chem. Res. 58 (2019) 10364.
26. Abu Talip, M. A.: J. Mater. Sci-Mater. Electron. 30 (2019) 4953.
27. Lee, J.-H.: Sensors Actuators B 310 (2020) 127870.
28. Francioso, L.: ACS Applied Nano Mater. 3 (2020) 3337.
29. Papanicolaou, G.C.: Polymers 12 (2020) 22.
30. Arenas-Hernandez, A.: Europ. Phys. J.-Applied Phys. 90 (2020) 30102.
31. Ivanco, J.: Ceramics Inter. 46 (2020) 15876.
32. Ramanavicius, S.: Sensors 20 (2020) 6833.
33. Wu, J.: ACS Photonics 7 (2020) 2923.
Plecenik, A., Haidry, A.A., Plecenik, T., Durina, P., Truchly, M., Moško, M., Grančič, B., Gregor, M., Roch, T., Satrapinsky, L., Mošková, A., Mikula, M., and Kúš, P.: Metal oxide gas sensors on the nanoscale, Proc. SPIE 9083 (2014) 9083OY.
1. Eom, N.S.A.: Sensors 17 (2017) 2750.
2. Shepa, I.: Ceramics Inter. 44 (2018) 17925.
3. Umar, A.: Sensors Actuators B 304 (2020) 127352.
Feilhauer, J., Moško, M., : Coexistence of diffusive resistance and ballistic persistent current in disordered metallic rings with rough edges: possible origin of puzzling experimental values. Phys. Rev. B 88 (2013) 125424, also arXiv: 1203.6512v2 (2012).
1. Dietz, O.: Phys. Rev. B 86 (2012) 201106.
2. Doppler, J.: New J. Phys. 16 (2014) 053026.
Mošková, A., Moško, M., Tóbik, J., : Theoretical study of persistent current in a nanoring made of a band insulator. Phys. Status Solidi B 250 (2013) 147-159.
1. Shyu, F.L.: Solid State Comm. 188 (2014) 53.
2. Sankar, I.V.: Physica E 73 (2015) 175.
3. Ribeiro, A.V.: Phys. Status Solidi B 253 (2016) 545.
4. Lavanya, C.U.: Physica E 126 (2021) 114500.
Feilhauer, J., Moško, M., : Conductance and persistent current in quasi-one-dimensional systems with grain boundaries: Effects of the strongly reflecting and columnar grains. Phys. Rev. B 84 (2011) 085454.
1. Tamura, R.: Phys. Rev. B 86 (2012) 205416.
2. Mil’nikov, G.: Phys. Rev. B 87 (2013) 035434.
3. Mil’nikov, G.: Phys. Rev. B 88 (2013) 155406.
4. Ying, L.: Phys. Rev. B 96 (2017) 165407.
Feilhauer, J., Moško, M., : Quantum and Boltzmann transport in a quasi-one-dimensional wire with rough edges. Phys. Rev. B 83 (2011) 245328.
1. Tamura, R.: Phys. Rev. B 86 (2012) 205416.
2. Xiao, X.-B.: Chinese Phys. Lett. 29 (2012) 087202.
3. Xu, H.: J. Phys.-Cond. Matter 24 (2012) 455303.
4. Xiao, X. B.: Europ. Phys. J. B 85 (2012) 305.
5. Alcazar-Lopez, A.: Phys. Rev. E 87 (2013) 032904.
6. Mil’nikov, G.: Phys. Rev. B 87 (2013) 035434.
7. Mil’nikov, G.: Phys. Rev. B 88 (2013) 155406.
8. Doppler, J.: New J. Phys. 16 (2014) 053026.
9. Pena, A.: Nature Comm. 5 (2014) 3488.
10. Yepez, M.: AIP Conf. Proc. 1579 (2014) 31.
11. Yepez, M.: EPL 108 (2014) 17006.
12. Moors, K.: Microelectron. Engn.167 (2017) SI37.
13. Jafari, M.R.: J. Electronic Mater. 46 (2017) 573.
14. Marinyuk, V. V.: Phys. Rev. B 96 (2017) 155146.
15. Markos, P.: Phys. Rev. B 97 (2018) 085423.
16. Zheng, C.: Phys. Rev. B 103 (2021) 075401.
Moško, M., Németh, R., Krčmár, R., Indlekofer, K., : Luttinger liquid and persistent current in a continuous mesoscopic ring with a weak link. Phys. Rev. B 79 (2009) 245323.
1. Shakouri, Kh.: J. Phys.-Cond. Matter 23 (2011) 225801.
2. Dajka, J.: J. Phys.-Cond. Matt. 24 (2012) 495701.
Németh, R., Moško, M., : One-dimensional ring with Kronig–Penney periodic potential: Persistent currents at full filling. Physica E 40 (2008) 1498.
1. Xiao, S.: Europ. Phys. J. B 86 (2013) 77.
2. Papp, E.: AIP Conf. Proc. 1796 (2017) UNSP 030003.
Feilhauer, J., Moško, M., : Persistent current in a disordered mesoscopic ring with many channels: Scattering-matrix based calculation. Physica E 40 (2008) 1582.
1. Gasparian, V.: J. Phys.-Cond. Matter. 21 (2009) 405302.
2. Shakouri, Kh.: J. Phys.-Condensed Matt. 23 (2011) 225801.
3. Luo, Z.-H.: Acta Phys. Sinica 60 (2011) 037303.
4. Luo, Z.-H.: Acta Phys. Sinica 61 (2012) 057303.
Krčmár, R., Gendiar, A., Moško, M., Németh, R., Vagner, P., Mitas, L., : Persistent current of correlated electrons in mesoscopic ring with impurity. Physica E 40 (2008) 1507-1509.
1. Reboredo, F.A.: J. Chem. Phys. 136 (2012) 204101.
Moško, M., Vagner, P., Gendiar, A., Németh, R., : Coherent transport of interacting electrons through a single scatterer. Physica B 378-380 (2006) 908.
1. Hinsche, N.F.: Phys. Rev. A 79 (2009) 023822.
Vagner, P., Moško, M., Németh, R., Wagner, L., and Mitas, L.: Hartree-Fock versus quantum Monte Carlo study of persistent current in a one-dimentional ring with single scatterer, Physica E 32 (2006) 350-353.
1. Mobini, A.: Physica E 101 (2018) 162.
Moško, M., Vagner, P., Bajdich, M., Schaepers, T., : Coherent „metallic“ resistance and medium localization in a disordered one-dimensional insulator. Phys. Rev. Lett. 91 (2003) 136803.
1. Gopar, V.: Europhys. Lett. 71 (2005) 966, also: arXiv: cond-mat 0507339.
2. Martens, H.C.F.: Phys. Rev. Lett. 96 (2006) 136803.
3. Foieri, F.: Phys. Rev. B 74 (2006) 165313, also arXiv: cond-mat 0606715.
4. Markoš, P.: Acta Physica Slovaca 56 (2006) 561.
5. Woloszyn, M.: Acta Phys. Polonica A 110 (2006) 523.
6. Foieri, F.: Physica B 398 (2007) 376.
7. Markoš, P.: Wave propagation: from electrons to photonic crystals and left-hauted materials. Princeton: Princeton Univ. Press 2008. ISBN 978-0-691-12003-3.
8. Baenninger, M.: Physica E 40 (2008) 1347.
9. Diez, E.: Phys. Rev. B 78 (2008) 035118.
10. Ren, W.: Phys. Rev. B 79 (2009) 161404.
11. Camjayi, A.: Phys. Rev. B 86 (2012) 235143.
12. Bhattacharya, D.P.: Superlatt. Microstr. 72 (2014) 126.
13. Nag, S.: Physica E 87 (2017) 237.
Vagner, P., Markoš, P., Moško, M., Schaepers, T., : Coherent resistance of a disordered one-dimensional wire: Expressions for all moments and evidence for non-Gaussian distribution. Phys. Rev. B 67 (2003) 165316.
1. Maksymovicz, A-Z.: J. Non-Crystalline Solids 352 (2006) 4200.
2. Woloszyn, M.: Acta Phys. Polonica A 110 (2006) 523.
3. Benhenni, R.: Physica A 389 (2010) 1002.
Mošková, A. and Moško, M.: Phase-shift analysis of two-dimensional carrier-carrier scattering in GaAs and GaN: Comparison with Born and classical approximations, Phys. Rev. B 61 (2000) 3048.
1. Raichev, O.E.: J. of Physics – Cond. Matt. 12 (2000) 6859.
2. Kwong, N.H.: Phys. Rev. Lett. 87 (2001) 027402-1.
3. Kral, K.: Fortschritte der Physik 49 (2001) 1011.
4. Kral, K.: Inter. J. of Modern Physics B 15 (2001) 3503.
5. Král, K.: Physica E 12 (2002) 908.
6. Král, K.: Physica B 314 (2002) 490.
7. Král, K.: Molecular Low Dimensional and Nanostr. Mater. Advanced Appl. 59 (2002) 267.
8. Binder, R.: Proc. Conf. Progress in Nonequilibrium Green’s Functions II. (2003) P. 301.
9. Axt, V.M.: Reports on Progr. in Phys. 67 (2004) 433.
10. Bilykh, V.V.: J. Experiment. Theoret. Phys. 104 (2007) 814.
11. Reeder, R.: J. Applied Phys. 102 (2007) Art.No. 073715.
12. Kukushkin, V.: IEEE Trans. Nanotechnol. 7 (2008) 344.
13. Kukushkin, V.: Phys. Rev. A 78 (2008) 033838.
# 14. Kukushkin, V.: Bulletin Russian Acad. Sci: Physics 73 (2009) 101.
15. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
16. Nag, S.: Superlatt. Microstr. 48 (2010) 72.
17. Kukushkin, V.: IEEE J. Quantum Electr. 46 (2010) 666.
18. Kukushkin, V.: Semicond. Sci Technol. 25 (2010) 125008.
19. Kukushkin, V.: Semiconductors 44 (2010) 1435.
20. Marchetti, G.: J. Applied Phys. 116 (2014) 163702.
Moško, M. and Vagner, P.: Born approximation versus the exact approach to carrier-impurity collisions in a one-dimensional semiconductor: Impact on the mobility, Phys. Rev. B 59 (1999) R10445-R10448.
1. Guven, K.: J. Phys. – Cond. Matt. 12 (2000) 2031.
2. Schwartz, A.: Physica E 7 (2000) 760.
3. Burki, J.: Phys. Rev. B 62 (2000) 2956.
4. Kaluza, A.: J. Crystal Growth 221 (2000) 91.
5. Kral, K.: Fortschritte der Physik 49 (2001) 1011.
6. Kral, K.: Inter. J. Modern Phys. B 15 (2001) 3503.
* 7. Bronger, T.: Morphologische und optische Studien an V-Graben Quantendrähten: Einfluß der Quantentopfgeometrie auf die Quantenzustände im Draht. Aachen 2001.
8. Král, K.: Physica E 12 (2002) 908.
9. Král, K.: Physica B 314 (2002) 490.
10. Kral, K.: Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. 59 (2002) 267.
11. Das, K.K.: J. Phys.-Cond. Matter 17 (2005) 6675.
12. Nag, S.: Superlatt. Microstr. 48 (2010) 72.
13. Salfi, J.: Nature Nanotechnol. 5 (2010) 737.
14. Salfi, J.: Phys. Rev. B 85 (2012) 235316.
15. Royo, M.: Phys. Rev. B 89 (2014) 155416.
16. Bhattacharya, D.P.: Superlatt. Microstr. 72 (2014) 126.
17. Sano, N.: J. Applied Phys. 118 (2015) 244302.
18. Nag, S.: Physica E 87 (2017) 237.
Moško, M. and Kálna, K.: Carrier capture into a GaAs quantum well with a separate confinement region: comment on quantum and classical aspects, Semicond. Sci Technol. 14 (1999) 790-796.
1. Safonov, I.: Proc.LFNM 2005: 7th Inter. Conf. on Laser and Fiber-Optical Networks Modeling 2005, art. no. 1553178, pp. 16.
2. Safonov, I.: Proc. SPIE 6184 (2006) art. no. 61841K.
3. Talele, K.: Optoelectr. Advan. Mater. 1 (2007) 693.
4. Klymenko, M.V.: Superlatt. Microstruct. 46 (2009) 603.
5. Khalil, H.M.: Nanoscale Res. Lett. 9 (2014) 21.
6. Koziol, Z.: Optica Applicata 44 (2014) 135.
7. Vallone, M.: Phys. Status Solidi B 252 (2015) SI971.
# 8. Aeberhard, U.: In Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods. CRC Press 2017, ISBN 978-149874957-2 441-474.
9. Chang, Y.-H.: J. Applied Phys. 126 (2019) 014503.
Vagner, P., Munzar, L., and Moško, M.: Calculation of excitonic absorption spectrum of GaAs quantum wire free-standing in vacuum, Acta Physica Polonica A 92 (1997) 1038.
* 1. Klingshirn, C.: Quantum -wire structures. In: Optical properties I. Berlin: Springer 2001. ISBN: 978-3-540-61740-2. P. 264.
2. Li, Y.M.: Surface Sci 566 (2004) 1057.
3. Li, B.: Phys. Rev. B 77 (2008) 115335.
4. Li, B.: Phys. Rev. B 79 (2009) 085306.
Vagner, P. and Moško, M.: Electron-impurity scattering in free- standing quantum wires: effect of dielectric confinement, J. Applied Phys. 81 (1997) 3196.
1. Manaselyan, A.K.: Physica E 14 (2002) 366.
2. Gasparyan, S.G.: Key Engn. Mater. 277-278 (2005) 881.
3. Zhang, L.: Phys. Lett. A 366 (2007) 256.
4. Jin, S.H.: J. Applied Phys. 102 (2007) art.no. 083715.
5. Konar, A.: J. Applied Phys. 102 (2007) art.no. 123705.
* 6. Manaselyan, A.K.: J. Contemp. Phys. (Armenian AS) 42 (2007) 23.
7. Li, B.: Phys. Rev. B 77 (2008) 115335.
8. Li, B.: Phys. Rev. B 79 (2009) 085306.
9. Li, B.: Microelectr. J. 40 (2009) Sp. Is. 446.
10. Munch, S.: Nanotechnol. 21 (2010) 105711.
11. Yan, B.H.: Nano Lett. 10 (2010) 3791.
Moško, M., Munzar, L., and Vagner, P.: Excitonic effects in free-standing ultrathin GaAs films Phys. Rev. B 55 (1997) 15416.
1. Montes, A.: J. Applied Phys. 84 (1998) 1421.
2. Koh, T.S.: J. Phys.-Cond. Matt. 13 (2001) 1485.
3. El Moussaouy, A.: J. Applied Phys. 93 (2003) 2906.
4. Li, Y.M.: Surface Sci 566 (2004) 1057.
5. Sellami, K.: Superlattice Microstruct. 37 (2005) 43.
6. Li, B.: Phys. Rev. B 77 (2008) 115335.
7. Li, B.: Phys. Rev. B 79 (2009) 085306.
8. Li, B.: Microelectr. J. 40 (2009) Sp. Is. 446.
9. Niculescu, E.C.: J. Luminiscence 132 (2012) 585.
10. Mahler, B.: J. American Phys. Soc 134 (2012) 18591.
11. Robert, C.: Phys. Rev. B 86 (2012) 205316.
12. El Moussaouy, A.: Physica B 436 (2014) 26.
13. Benchamekh, R.: Phys. Rev. B 89 (2014) 035307.
14. Arulmozhi, M.: Superlattice Microstruct. 75 (2014) 222.
15. Wu, Z.-H.: Chinese Phys. B 25 (2016) 037310.
16. Wu, Z.: Acta Phys. Polonica A 134 (2018) 1158.
Kálna, K., Moško, M., and Peeters, F.: Electron capture in GaAs quantum wells via electron-electron and optic phonon scattering, Applied Phys. Lett. 68 (1996) 117.
1. Gruppen, M.: IEEE J. Quantum Electr. 34 (1998) 120.
* 2. Register, L.F.: Inter. J. High Speed Electr. Systems 9 (1998) 1211.
3. Ryzhii, M.: Phys. Rev. B 61 (2000) 2742.
4. Hernandez-Rosas, J.: Revista Mexicana de Fisica 48 (2002) 295.
5. Wu, B.H.: J. Appl. Phys. 94 (2003) 5710.
6. Villegas-Lelovsky, L.: J. Applied Phys. 95 (2004) 4204.
* 7. Anwar, A.F.M.: Encyclopedia Nanosci Nanotechnol. 9. American Sci Publ. 2004. P. 199.
8. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
9. Zhang, S.: J. Applied Phys. 114 (2013) 194507.
Kálna, K. and Moško, M.: Electron capture in quantum wells via scattering by electrons, holes and optical phonons, Phys. Rev. B 54 (1996) 17730.
1. Kinsler, P.: Phys. Rev. B 58 (1998) 4771.
2. Vallone, M.: J. Applied Phys. 91 (2002) 9848.
3. Safonov, I.: Proc. SPIE 5594 (2004) 33.
* 4. Anwar, A.F.M.: Encyclopedia Nanosci Nanotechnol. 9. American Sci Publ. 2004. P. 199.
5. Dhaka, V.D.S.: New J. Phys. 7 (2005) Art. No.131.
6. Dhaka, V.D.S.: Semicond. Sci Technol. 21 (2006) 661.
7. Dhaka, V.D.S.: J. Phys. D 39 (2006) 2659.
8. Talele, K.: Optoelectr. Advan. Mater. 1 (2007) 693.
9. Samuel, E.P.: Optoelectr. Advan. Mater. 1 (2007) 698.
10. Samuel, E.P.: Optoelectr. Advan. Mater. 1 (2007) 221.
11. Safonov, I.M.: Superlattice Microstr. 43 (2008) 120.
12. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
13. Talele, K.: Optik 122 (2011) 626.
14. Khalil, H.M.: AIP Cof. Proc. 1476 (2012) 155.
15. Danilov, L.V.: Semicond. 47 (2013) 1336.
16. Asryan, L.V.: J. Applied Phys. 115 (2014) 023107.
17. Sokolova, Z.N.: Quantum Electron. 44 (2014) 801.
18. Vallone, M.: J. Applied Phys. 121 (2017) 123107.
# 19. Aeberhard, U.: In Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods. CRC Press 2017, ISBN 978-149874957-2 441-474.
# 20. de Santi, C.: In Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications. Second Ed. Elsevier 2017, ISBN: 978-008101943-6, pp. 455-489.
21. Burmistrov, E.R.: SN Applied Sci 2 (2020) 1532.
Moško, M., Mošková, A., and Cambel, V.: Carrier-carrier scattering in photoexcited intrinsic GaAs quantum wells and its effect on femtosecond plasma thermalization, Phys. Rev. B 51 (1995) 16860.
1. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
2. Takahashi, Y.: Phys. Rev. B 53 (1996) 7322-7333.
3. Takahashi, Y.: Semicond. Sci. Technol. 11 (1996) 163-171.
4. Dur, M.: Phys. Rev. B 54 (1996) 17794.
* 5. Ridley, B.K.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 357.
* 6. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
7. Gericke, D.O.: Phys. Rev. B 59 (1999) 10639.
8. Guven, K.: J. Phys. – Cond. Matt. 12 (2000) 2031.
9. Kral, K.: Optical Properties of Semicond. Nanostr. 81 (2000) 405.
$ 10. Kral, K.: Arxiv preprint cond-mat/0103061, 2001.
* 11. Ferry, D.K.: In: Ultrafast Phenomena in Semicond. New York: Springer 2001. ISBN 978-1-4613-0203-2. P. 307.
12. Vasileska, D.: Materials Sci & Engn. R 38 (2002) 181.
13. Zhao, H.: Phys. Rev. B 67 (2003) 035 306.
14. Tripathi, P.: J. Phys.-Cond. Matter 15 (2003) 1057.
15. Callebaut, H.: Applied Phys. Lett. 83 (2003) 207.
16. Hu, Q.: Philos. Trans. Roy. Soc. A 362 (2004) 233.
17. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
18. Sun, K.W.: Japan. J. Applied Phys. 44 (2005) 4799.
19. Harrison, P.: Quantum wells, wires and dots: theoretical and
computational physics of semiconductor nanostructures. Oxford: Blackwell Sci Publ. 2005. ISBN: 978-0-470-01081-5.
20. Lu, J.T.: Applied Phys. Lett. 88 (2006) 061119.
21. Lu, J.T.: Phys. Rev. B 73 (2006) 195326.
22. Gao, X.: Applied Phys. Lett. 89 (2006) 191119.
# 23. Cao, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 27 (2006) 304.
# 24. Vasileska, D.: Synthesis Lectures on Comp. Electromagn. 6 (2006) 1-216.
25. Gao, X.: J. Applied Phys. 101 (2007) 063101.
26. Jirauschek, C.: J. Applied Phys. 101 (2007) 086109.
27. Gao, X.: J. Comp. Electronics 6 (2007) 305.
28. Jirauschek, C.: Phys. Status Solidi c 5 (2008) 221.
29. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
30. Lin, T.T.: Applied Phys. Express 2 (2009) 022102.
31. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
32. Jirauschek, C.: J. Applied Phys. 105 (2009) 123102.
33. Knezevic. I.: J. Computat. Theoretical Nanosci 6 (2009) Sp. Iss. SI 1725.
34. Jirauschek, C.: J. Phys.: Conf. Ser. 193 (2009) 012062.
# 35. Freeman, W.: Proc. SPIE 7311 (2009) 73110V.
36. Ridley, B.K.:Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
37. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
38. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
39. Vasileska, D.: In Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press 2010. ISBN 978-1-4200-6484-1. P. 241-334.
40. Lu, I.L.: Phys. Status Solidi c 8 (2011) 2393.
41. Freeman, W.: Proc. SPIE 8023 (2011) 802305.
42. Freeman, W.: Phys. Rev. B 85 (2012) 195326.
43. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
44. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
45. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
46. Freeman, W.: J. Applied Phys. 122 (2017) 045701.
47. Hathwar, R.: J. Phys. D 52 (2019) 093001.
48. Freeman, W.: J. Applied Phys. 128 (2020) 235702.
Moško, M., Pelouard, J., Pardo, F., : Transmitted-acoustic phonon draag between 2D electron gases in GaAs/AlGaAs systems at low temperatures: Monte Carlo study Phys. Rev. B 52 (1995) 5830.
1. Bonsage, M.C.: Phys. Rev. B 57 (1998) 7085.
2. Kajiwara, Y.: Japan. J. Appl. Phys. 58 (2019) SDDE05.
Cambel, V., Moško, M., : Carrier-carrier scattering in photoexcited quantum wells: Inadequacy of two-particle model at low densities Semicond. Sci Technol. 9 (1994) 474.
1. Kane, M.G.: Phys. Rev. B (1996) 54 16345
2. Ridley, B.K.: J. Phys. – Cond. Matt. 13 (2001) 2799.
3. Kitashima, T.: J. Electrochem. Soc. 150 (2003) G198.
Mošková, A., Moško, M., : Exchange carrier-carrier scattering of photoexcited spin-polarized carriers in GaAs quantum wells: Monte Carlo study Phys. Rev. B 49 (1994) 7443.
1. Kinsler, P.: Phys. Rev. B 58 (1998) 4771.
2. Lee, S.C.: Phys. Rev. B 59 (1999) 10796.
3. Lee, S.C.: Phys. Rev. B 62 (2000) 15327.
4. Wolterink, T.: Phys. Rev. B 67 (2003) 115311.
5. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
6. Dolguikh, M.V.: Phys. Rev. B 73 (2006) 075327.
7. Gao, X.: J. Applied Phys. 101 (2007) 063101.
8. Wu, Z.K.: IEEE J. Quantum Elect. 43 (2007) 486.
9. Gao, X.: J. Comp. Electronics 6 (2007) 305.
10. Li, X.: Applied Phys. Lett. 97 (2010) 082101.
11. Girdhar, A.: Applied Phys. Lett. 99 (2011) 043107.
12. Slingerland, P.: Semicond. Sci Technol. 27 (2012) 065009.
13. Kirk, A.P.: Phys. Rev. B 86 (2012) 165206.
14. Spezia, S.: EPL 104 (2013) 47011.
15. Marchetti, G.: J. Applied Phys. 116 (2014) 163702.
16. Spagnolo, B.: Chaos Solitons Fractals 81 (2015) 412.
17. Spagnolo, B.: Entropy 19 (2017) 20.
18. Borowik, P.: J. Computat. Phys. 341 (2017) 397.
19. Danz, T.: Phys. Rev. B 95 (2017) 241412.
20. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
21. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
22. Borowik, P.: J. Applied Phys. 122 (2017) 045704.
23. Borowik, P.: Applied Phys. A 124 (2018) 184.
24. Maekawa, K.: Phys. Rev. B 97 (2018) 075435.25.
25. Adorno, D.P.: J. Stat. Mechanics-Theory Experiment (2019) 094019.
Moško, M., Mošková, A., : Photoexcited spin-polarized carriers in GaAs quantum wells: Monte Carlo study of exchange carrier-carrier scattering Semicond. Sci Technol. 9 (1994) 478.
1. Kane, M.G.: Phys. Rev. B 54 (1996) 16345.
2. Ridley, B.K.: Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
3. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
4. Willis, K.J.: J. Applied Phys. 110 (2011) 063714.
5. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
6. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
7. Borowik, P.: J. Applied Phys. 122 (2017) 045704.
8. Borowik, P.: Applied Phys. A 124 (2018) 184.
Moško, M., Cambel, V., : Thermalization of one-dimensional electron gas by many-body Coulomb scattering: molecular dynamics model for quantum wires Phys. Rev. B 50 (1994) 8864.
1. Rota, L.: Phys. Rev. B 52 (1995) 5183.
* 2. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
* 3. Jacoboni, C.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 59.
4. Carlberg, M.H.: J. of Phys.-Cond. Matter 11 (1999) 6509.
5. Flores-Hidalgo, G.: J. Phys. A 40 (2007) 13217.
Moško, M., Pelouard, J., Pardo, F., : Transmitted-acoustic phonon drag between parallel two-dimensional electron gases: Monte Carlo simulation Semicond. Sci Technol. 9 (1994) 806.
1. Smoliner, J.: Semicond. Sci Technol. 11 (1996) 1.
2. Paulavicius, G.: Physica Status Solidi B 210 (1998) 87.
3. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.
Cambel, V., Moško, M., : The influence of ionized impurities on electron-electron drag between parallel two-dimensional gases: Monte Monte Carlo simulation with molecular dynamics Semicond. Sci Technol. 8 (1993) 364.
1. Tanatar, B.: Phys. Rev. B 58 (1998) 1154.
2. Bonsager, M.C.: Phys. Rev. B 57 (1998) 7085.
3. Tanatar, B.: Phys. Rev. B 61 (2000) 15959.
# 4. Tanatar, B.: Turkish J. Phys. 24 (2000) 143.
5. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
6. Laikhtman, B.: Phys. Rev. B 72 (2005) Art. No. 125338.
* 7. Volokitin, A.I.: Arxiv preprint cond-mat/0605520 (2006).
8. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.
Moško, M., Cambel, V., Mošková, A., : Electron-electron drag between parallel two-dimensional gases Phys. Rev. B 46 (1992) 5012.
1. Gramila, T.J.: Physica B 197 (1994) 442.
2. Olejníková, B.: Superlattice Microstruct. 14 (1994) 215.
3. Olejníková, B.: Acta Physica Polonica A 87 (1995) 353.
4. Bonsager, M.C.: Phys. Rev. B 46 (1998) 7085.
5. Noh, H.: Phys. Rev. B 59 (1999) 13114.
6. Bostrom, M.: Physica Scripta T79 (1999) 89.
7. Kawashima, I.: Electron Devices Meeting, 2000. IEDM Technical Digest. P. 113.
8. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
9. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
10. Laikhtman, B.: Phys. Rev. B 72 (2005) 125338.
11. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.
Moško, M. and Mošková, A.: Ensemble Monte Carlo simulation of electron-electron scattering: Improvements of conventional methods, Phys. Rev. B 44 (1991) 10794.
* 1. Rota, L.: Semiconductors `92. Inter. Soc Optics Photon. (1992) 146.
* 2. Bair, J.E.: Semiconductors `92. Inter. Soc Optics Photon. (1992) 157.
3. Collet, J.H.: Phys. Rev. B 47 (1993) 10 279.
4. Rota, L.: Phys. Rev. B. 47 (1993) 4226.
5. Sirenko, Y.M.: Phys. Rev. B 50 (1994) 4631.
* 6. Collet, J.H.: OE/LASE `94. Inter. Soc Optics Photon. (1994) 246.
7. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
8. Rota, L.: Phys. Rev. B 52 (1995) 5183.
9. Fischetti, M.V.: J. Appl. Phys. 78 (1995) 1058.
10. Borowik, P.: J. Applied Physics 82 (1997) 4350.
11. Matulionis, A.: Phys. Rev. B 56 (1997) 2052.
* 12. Hartnagel, H.L.: Microwave Noise in Semicond. Devices. Wiley-Intersci 2001. ISBN: 0-471-38432-1.
13. Kalna, K.: Math. Comput. Simulat. 62 (2003) 357.
14. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
15. Gao, X.: J. Applied Phys. 101 (2007) 063101.
16. Bellotti, E.: Appl. Phys. Lett. 92 (2008) Art. No. 101112.
17. Kalna, K.: IEEE Trans. Electron Dev. 55 (2008) 2297.
18. Xu, K.Y.: IEEE Trans. Nanotechnol. 7 (2008) 451.
19. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
20. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
21. Pozela. J.: Semiconductors 43 (2009) 1177.
22. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
23. Lu, I.-L.: Proc. SPIE 7602 (2010) 76021H.
24. Lu, I.-L.: J. Applied Phys. 108 (2010) 124508.
25. Kamra, A.: J. Applied Phys. 109 (2011) 024501.
26. Willis, K.J.: J. Applied Phys. 110 (2011) 063714.
27. Bishnoi, B.: Proc. 10th IEEE Inter. Conf. Semicond. Electron., ICSE 2012. (2012) art. no. 6417093, pp. 69.
28. Spezia, S.: EPL 104 (2013) 47011.
29. Huthmacher, K.: Proc. SPIE 8777 (2013) 87770S.
30. Katiyar, S.: J. Comput. Theoret. Nanosci 11 (2014) 1983.
31. Ghosh, B.: AIP Adv. 4 (2014) 017116.
32. Ghosh, B.: J. Low Power Electron. 10 (2014) 365.
33. Spagnolo, B.: Chaos Solitons Fractals 81 (2015) 412.
34. Katiyar, S.: Applied Phys. A 122 (2016) Iss. 2.
35. Spagnolo, B.: Entropy 19 (2017) 20.
36. Borowik, P.: J. Computat. Phys. 341 (2017) 397.
37. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
# 38. Wu, Y. R.: In Handbook GaN Semicond. Mater. Devices. CRC Press 2017. ISBN 978-149874714-1. P. 117-140.
39. Korotyeyev, V.V.: Appl. Phys. Lett. 113 (2018) 041102.
40. Manuel Iglesias, J.: Semicond. Sci Technol. 34 (2019) 065011.
41. Adorno, D.P.: J. Stat. Mechanics-Theory Experiment (2019) 094019.
42. Korotyeyev, V.V.: Phys. Rev. B 101 (2020) 235420.
Moško, M., Novák, I., : Picosecond real-space electron transfer in GaAs-N-AlxGa1-x heterostructures with graded barriers: Monte Carlo simulation J. Applied Phys. 67 (1990) 890.
* 1. Beneking, H.: Halbleiter – Technologie. Stuttgart: 1991.
2. Patil, M.B.: J. Applied Phys. 72 (1992) 161.
* 3. Asche, M.: In: Negative Differential Resistance and Instabilities in 2-D Semicond. Springer 1993. ISBN 978-1-4615-2822-7 P. 317.
4. Kleinert, P.: Phys. Rev. B 50 (1994) 11 022.
5. Gribnikov, Z.S.: J. Appl. Physics 77 (1995) 1337.
6. Cheng, M.C.: J. Phys. D 28 (1995) 160.
Moško, M., Novák, I., : Energy exchange between heterostructures layers by real space electron transfer J. Applied Phys. 66 (1989) 2011.
* 1. Schroeder, D.: Moddeling of Interface Carrier Transport for Device Simulation. Wien: Spjringer-Verlag 1994. ISBN 3-211-82539.
2. Gribnikov, Z.S.: J. Appl. Physics 77 (1995) 1337.
3. Hoare, D.: Solid State Electr. 39 (1996) 610.
4. Su, J.S.: IEEE Electron Dev. Lett. 17 (1996) 43.
5. Su, J.S.: Applied Physics Letters 70 (1997) 1002.
Moško, M., Novák, I., Quittner, P., : On the analytical approach to the real space electron transfer in GaAs-AlGaAs heterostructures Solid State Electr. 31 (1988) 363.
1. Aoki, K.: Solid State Electr. 32 (1989) 1149.
2. Balkansky, B.: Solid State Electr. 32 (1989) 1641.
3. Schroeder, D.: Solid State Electr. 33 (1990) 217.
4. Luryi, S.: Superlatt. Microstruct. 8 (1990) 395.
* 5. Schroeder, D.: IEEE Trans. Computer-Aided Design Integr. Circ. Syst. 9 (1990) 1136.
6. Balkan, N.: Semicond. Sci Technol. 6 (1991) 175.
7. Schroeder, D.: J. Applied Phys. 72 (1992) 964.
8. Patil, M.B.: J. Applied Phys. 72 (1992) 161.
* 9. Kizilyalli, I.C.: In: Hot Carriers in Semiconductor Nano-structures. New York: Academic 1992. P. 235.
* 10. Pozela, J.: In: Physics of High-Speed Transistors. New York: Academic Press 1993. P. 197.
11. Hjelmgren, H.: Solid State Electr. 37 (1994) 1649.
* 12. Schroeder, D.: Modelling of Interface Carrier Transport for Device Simulation. Wien: Springer-Verlag 1994. ISBN: 3-211-82539.
* 13. Fatemi, E.: Proc. IWCE 3. New York: Plenum Press. P. 135.
14. Gribnikov, Z.S.: J. Applied Phys. 77 (1995) 1373.