Dr. rer. nat. Hulman Martin

Hulman, M., Sojková, M., Végso, K., Mrkývkova, N., Hagara, J., Hutár, P., Kotrusz, P., Hudec, J., Tokar, K., Majková, E., and Šiffalovič, P.: Polarized Raman reveals alignment of few-layer MoS2 films, J. Phys. Chem. C 123 (2019) 29468-29475.

1. Zuo, S.: Mater. Sci Semicond. Process. 121 (2021) 105457.

Hutár, P., Španková, M., Sojková, M., Dobročka, E., Végso, K., Hagara, J., Halahovets, Y., Majková, E., Šiffalovič, P., and Hulman, M.: Highly crystalline MoS2 thin films fabricated by sulfurization, Phys. Status Solidi B 256 (2019) 1900342.

1. Johari, M.H.: Nanomater. Nanotechnol.‏ 11 (2021) 1847980420981537.

Sojková, M., Šiffalovič, P., Babchenko, O., Vanko, G., Dobročka, E., Hagara, J., Mrkývková, N., Majková, E.,  Ižák, T., Kromka, A., and Hulman, M.: Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond, Sci Rep. 9 (2019) 2001.

1. Ou, N. C.: Organometall. 39 (2020) 956.

Brndiarová, J., Šiffalovič, P., Hulman, M., Kalosi, A., Bodik, M., Skákalová, V., Micusik, M., Markovič, Z., Majková, E., and Fröhlich, K.:  Functionalized graphene transistor for ultrasensitive detection of carbon quantum dots, J. Applied Phys. 126 (2019) 214303.

1. Huang, C.-H.: Biosensors & Bioelectron.‏ 164 (2020) 112320.

Sojková, M., Végso, K., Mrkývkova, N., Hagara, J., Hutár, P., Rosová, A., Čaplovičová, M., Ludacka, U., Skákalová, V., Majková, E., Šiffalovič, P., and Hulman, M.: Tuning the orientation of few-layer MoS2 films using one-zone sulfurization, RSC Adv. 9 (2019) 29645-29651.

1. Balasubramanyam, S.: ACS Applied Mater. Interfaces 12 (2020) 3873.
2. Cichocka, M.O.: ACS Applied Mater. Interfaces 12 (2020) 15867.
3. Lee, J.: ACS Nano 14 (2020) 17114.

Hotový, I., Spiess, L., Sojková, M., Kostič, I., Mikolášek, M., Predanocy, M., Romanus, H., Hulman, M., and Řeháček, V.: Structural and optical properties of WS2 prepared using sulfurization of different thick sputtered tungsten films, Applied Surface Sci 461 (2018) 133-138.

1. Kumar, P.: Applied Surface Sci 480 (2019) 680.
2. Xie, Y.: Applied Surface Sci 499 (2020) 143964.
3. Lin, J.: Ceramics Inter. 46 (2020) 218.
4. Dhongade, S.: ACS Applied Nano Mater. 3 (2020) 9749.

Skákalová, V., Kotrusz, P., Jergel, M., Susi, T., Mittelberger, A., Vretenár, V., Šiffalovič, P., Kotakoski, J., Meyer, J.C., and Hulman, M.: Chemical oxidation of graphite: evolution of the structure and properties, J. Phys. Chem. C 122 (2018) 929−935.

1. Liao, C.: Inter. J. Molecular Sci 19 (2018) 3564.
2. Kamali, A.R.: Applied Surface Sci 476 (2019) 539.
3. Li, Y.: Nanomater. 9 (2019) 590.
4. Yadav, N.: ACS Omega 4 (2019) 9407.
5. Pazarceviren, A.E.: Biomed. Mater.14 (2019) 035018.
6. Lavin-Lopez, M. P.: Colloids Surfaces A 582 (2019) 123935.
7. Chai, W.S.: J. Molecul. Liquids 293 (2019) UNSP 111496.
8. Sun, L.: Chinese J. Chem. Engn. 27 (2019) 2251.
9. Luo, D.: Mater. Today Phys. 9 (2019) UNSP 100097.
#   10. Majumdar D.: Graphene Functionalization Strategies. Carbon Nanostr. Springer 2019. ISBN 978-981-32-9056-3,  pp. 63-103.
11. Xu, Z.-L.: Sci Total Environ. 708 (2020) 134614.
12. Clarke, R.W.: Macromolecul. 53 (2020) 640.
13. Sauermoser, M.: Front. Energy Res. 8 (2020) 13.
14. Dimiev, A.M.: Carbon 166 (2020) 1.
15. Kamali, A.R.: Polymer Degradation Stab.177 (2020) 109184.
16. Bounegru, A.V.: Catalysts 10 (2020) 680.
17. Mintz, K.: Carbon 173 (2021) ‏ 433.
18. Kashif, M.: Arabian J. Chem. 14 (2021) 102953.
19. Mittal, H.: J. Molecul Liquids 323 (2021) 115034.

Sojková, M., Chromik, Š., Rosová, A., Dobročka, E., Hutár, P., Machajdík, D., Kobzev, A.P., and Hulman, M.: MoS2 thin films prepared by sulfurization, Proc. SPIE 10354 (2017) 103541K-1.

1. Kokalj, D.: Coatings 10 (2020) 755.
2. Ghosh, S.: Energy 203 (2020) 117918.

Susi, T., Skákalová, V., Mittelberger, A., Kotrusz, P., Hulman, M., Pennycook, T.J., Mangler, C., Kotakoski, J., and Meyer, J.C.: Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide, Sci Reports 7 (2017) 4399. (Not IEE SAS)

1. Gutzler, R.: Zeitschrift Anorgan. Allgem. Chemie 643 (2017) SI1368.
2. Ziatdinov, M.: ACS Nano 11 (2017) 12742.
3. Belarouci, S.: Comput. Mater. Sci 151 (2018) 288.
4. Ulian, G.: Composite Struct. 202 (2018) SI551.
5. Guo, S.-D.: Phys. Chem. Chem. Phys. 20 (2018) 22038.
6. Peng, C.: Materials 11 (2018) 1699.
7. Yaghoubi, A.: Chem. Mater. 30 (2018) 7234.
8. Cai, Z.: Chem. Rev. 118 (2018) 6091.
9. Cao, Y.: Nano Research 11 (2018) 4074.
10. Islam, Md.R.: J. Comput. Electron. 18 (2019) 407.
11. Islam, A.S.M.J.: Mater. Res. Express 6 (2019) 125073.
12. Islam, A.S.M.J.: Nanotechnol. 30 (2019) 445707.
13. Geng, D.: ACS Applied Mater. Interfaces 11 (2019) 39109.
14. Rashid, A.S.: J. Comput. Electron. 18 (2019) 836.
15. Davydov, S.Yu.: Semiconductors 54 (2020) 523.
16. Borlido, P.: Phys. Chem. Chem. Phys. 22 (2020) 8442.
17. Hess, P.: Nanoscale Horizons 5 (2020) 385.
18. Zhou, L.: Nanoscale 12 (2020) 4269.
19. Lee, Y.-T.: Phys. Rev. B 102 (2020) 075143.
20. Islam, A.S.M.J.: Phys. Chem. Chem. Phys. 22 (2020) 13592.
21. Majid, A.: J. Magnetism Magnetic Mater.‏ 503 (2020)  16664.
22. Islam, Md.S.: Sci Rep. 10 (2020) 22050.
23. Ahammed, S.: Nanotechnol. 31 (2020) 505702.
24. Chabi, S.: Nanomater. 10 (2020) 2226.
25. Hassanzada, Q.: Phys. Rev. B 102 (2020) 134103.
26. Manju, M. S.: Applied Surface Sci 541 (2021) 148417.
27. Lingerfelt, D.B.: Nano Lett. 21 (2021) 236.
28. Kilic, M.E.: Carbon 174 (2021) 368.

Janke, D., Hulman, M., Wenisch, R., Gemming, S., Rafaja, D., and Krause, M.: Influence of nickel catalyst morphology on layer-exchange-based carbon crystallisation of Ni/a-C bilayers, Phys. Status Solidi B 254 (2017) 1700234.

1. Romanyuk, O.: J. Phys. Chem. C 122 (2018) 6629.
2. Merchel, S.: Nuclear Instr. Methods in Phys. Res. B 455 (2019) 293.

Chromik, Š., Sojková, M., Vretenár, V., Rosová, A., Dobročka, E., and Hulman, M.: Influence of GaN/AlGaN/GaN (0001) and Si (100) substrates on structural properties of extremely thin MoS2 films grown by pulsed laser deposition, Applied Surface Sci 395 (2017) 232-236.

1. Li, D.: Applied Surface Sci 421 (2017) 884.
2. Hao, L.: Nanoscale Research Lett. 12 (2017) 567.
3. Yao, J.: ACS Applied Mater. Interfaces 10 (2018) 38166.
4. Rozenfeld, S.: Bioelectrochem. 123 (2018) 201.
5. Wang, W.: J. Mater. Chem. C 6 (2018) 6641.
6. Banday, S.: J. Tribol.-Trans. ASME 141 (2019) 022003.
7. Wu, Z.: Mater. Today Nano 12 (2020) 100092.

Varga, M., Ižák, T., Vretenár, V., Kozak, H., Holovsky, J., Artemenko, A., Hulman, M., Skákalová, V., Lee, D., and Kromka, A.: Diamond/carbon nanotube composites: Raman, FTIR, and XPS spectroscopic studies, Carbon 111 (2017) 54-61.

1. Li, H.: Water Air Soil Poll. 228 (2017) 201.
2. Silva, A.A.: MRS Adv. 2 (2017) 2247.
3. Li, D.: Corrosion Sci 124 (2017) 103.
4. Li, H.: Water Air Soil Pollut. 228  (2017) 201.
5. Silva, A.A.: Diamond Related Mater. 75 (2017) SI116.
6. Kim, S.H.: Sci Rep. 7 (2017) 13756.
7. Wang, C.: Composites B 125 (2017) 181.
8. Zhang, J.: Phys. Chem. Chem. Phys. 19 (2017) 22462.
9. Ulyanov, A.N.: J. Alloys Comp. 722 (2017) 77.
10. Sanyal, O.: Carbon 127 (2018) 688.
11. Wang, J.: J. Mater. Sci 53 (2018) 1833.
12. Xiao, J.: Coatings 8 (2018) 18.
13. Bardestani, R.: Biomass Bioenergy 108 (2018) 101.
14. Su, L.-X.:Carbon 130 (2018) 384.
15. Wang, L.: Mater. Chem. Phys. 207 (2018) 58.
16. Beigmoradi, R.: Beilstein J. Nanotechnol. 9 (2018) 415.
17. Kumar, U.: J. Power Sources 394 (2018) 140.
18. Shi, X.: Electrochim. Acta 278 (2018) 61.
19. Yang, X.: Inorg. Chem. Front. 5 (2018) 1432.
20.Ma, Q.: Chemistry-A Europ. J. 24 (2018) 6886.
21. Nakaramontri, Y.: Express Polymer Lett. 12 (2018) 867.
22. Hodoroaba, B.: Monthly Notices Royal Astron. Soc 481 (2018) 2841.
23. Bhunia, M.M.: Carbon 139 (2018) 1010.
24. Guo, L.: Inter. J. Refractory Metals & Hard Mater. 79 (2019) 47.
25. Pehlivan, Z.S.: Composite Struct. 208 (2019) 418.
26. Lu, C.: Chemistryopen 8 (2019) 87.
27. Li, M.: J. Non-Crystall. Solids 503 (2019) 252.
28. Lv, Z.: RSC Adv. 9 (2019) 10578.
29. Ferreira, F.V.: Carbon-Based Nanofillers and their Rubber Nanocomposites: Carbon Nano-Objects 2019, p. 1-45.
30. Hu, L.: Carbon 144 (2019) 805.|
31. de los Reyes, C.A.: ACS Omega 4 (2019) 5098.
32. Ma, X.: Applied Phys. Lett. 114 (2019) 253502.
33. Zhou, J.: J. Applied Polymer Sci 136 (2019) 47653.
34. Kasahara, S.: Analyt. Chem. 91 (2019) 4980.
35. Duan, Q.: Applied Surface Sci 486 (2019) 144.
36. Guan J.: Mater. Res. Express 6 (2019) 085633.
37. Naidek, N.: New J. Chem. 43 (2019) 10482.
38. Zheng, Y.: J. Phys. Chem. Solids 130 (2019) 111.
39. Zeng, Y.: Functional Mater. 26 (2019) 816.
40. Wang, X.: Nanomater. 9 (2019) 1476.
41. Wang, Z.: ACS Macro Lett. 8 (2019) 1240.
42. Nilkar, M.: Diamond Related Mater. 98 (2019) UNSP 107482.
43. Zheng, Y.: Surface Coat. Technol. 374 (2019) 409.
44. Gurova, O.A.: Physica Status Solidi B 256 (2019) 1800742.
45. Marton, M.: Vacuum 167 (2019) 182.
46. Liu, J.: Applied Catalysis B 257 (2019) UNSP 117880.
47. Zhou, J.: Macromol. Research 27 (2019) 1144.
48. Steffen, T.T.: Applied Surface Sci 491 (2019) 405.
#      49. Li, C.: Guocheng Gongcheng Xuebao/Chinese J. Process Engn. 19 (2019) 809.
#       50. Li, X.: Gongneng Cailiao/J. Function. Mater. 50 (2019) 6128.
51. Sarac, Elcin C.: J. Applied Polymer Sci 136 (2019) 48347.
52. Zhou, S.: J. Alloys Comp. 817 (2020) 152737.
53. Chang, C.-W.: Chemical Engn. J. 383 (2020) 123116.
54. Wang, S.: J. Coat. Technol. Res. 17 (2020) 91.
55. Wang, A.-Y.: Sci Total Environ. 698 (2020) 134238.
56. Dong, H.: Energy & Fuels 34 (2020) 1453.
57. Fang, S.: CRYSTENGCOMM 22 (2020) 602.
58. Wang, Y.: Nanomater.‏ 10 (2020) 178.
59. Vozniakovskii, A.: J.Colloid Interface Sci 565 (2020) ‏ 305.
60. Zheng, Y.: J. Mater. Res. 35 (2020) SI462.
61. Zhou, J.: Bioinspired Biomim. Nanobiomater.‏ 9 (2020) 33.
62. Tasleem, S.: J. Alloys Comp. 842 (2020) 155752.
63. Gao, W.: Nanotechnol. 31 (2020) 475601.
64. Dong, H.: Fuel 280 (2020) 118514.
65. Yin, X.: Fuel 280 (2020) 118601.
66. Li, X.: J. Hazardous Mater. 398 (2020) 122938.
67. Zhang, Z.: Carbon 166 (2020) 436.
68. Wang, J.: Surface Coat. Technol. 398 (2020) 126103.
69. Kim, K.H.: Mater. Chem. Phys. 252 (2020) 123471.
70. Zhang, J.: Electrochim. Acta 354 (2020) 136649.
71. Kertsomboon, T.: Polymer Degradation Stab. 179 (2020) 109266.
72. Zhang, H.: Fuel 275 (2020) 117879.
73. Hussain, S.: ACS Sustainable Chem. Engn. 8 (2020) 12248.
74. Qi, Z.: Applied Thermal Engn. 177 (2020) 115489.
75. Deng, J.: Bioresource Technol. 310 (2020) 123438.
76. Chen, N.: ACS Nano 14 (2020) 8059.
77. Li, S.: J. Hazardous Mater. 394 (2020) 122541.
78. Tsen, W.-C.: Polymer Engn. Sci‏ 60 (2020) 1832.
79. Li, Q.: Industrial Engn. Chem. Res. 59 (2020) 11453.
80. Fang, S.: CRYSTENGCOMM 22 (2020) 3854.
81. Neves, T.de F.: Water Air Soil Pollution 231 (2020) 304.
82. Shen, Y.: ACS Applied Mater. Interfac. 12 (2020) 25484.
83. Zhou, Q.: Applied Organometall. Chem. 34 (2020) e5700.
84. Wang, X.: Nanomater.10 (2020) 838.
85. Wang, J.: Carbon 166 (2020) 71.
86. Dong, H.: ACS Omega 5 (2020) 9078.
87. Mukhiya, T.: ACS Applied Energy Mater. 3 (2020) 3435.
88. Kuchtova, G.: J. Electroanalyt. Chem. 863 (2020) 114036.
89. Chen, X.: Fulleren. Nanotub. Carbon Nanostruct. 28 (2020)‏ 1048.

Kostiuk, D., Bodik, M., Šiffalovič, P., Jergel, M., Halahovets, Y., Hodas, M., Pelletta, M., Pelach, M., Hulman, M., Spitalsky, Z., Omastová, M.,  and Majková, E.: Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy, J. Raman Spectrosc. 47 (2016) 391-394.

1. Agresti, A.: Adv. Functional Mater. 26 (2016) 2686.
2. Shih, J.-F.: IEEE CLEO 2016.
3. Nikolaou, I.: Phys. Status Solidi B 214 (2017) 1600492.
4. Large, M.J.: Langmuir 33 (2017) 14766.
5. Li, N.: J. Mater. Chem. A 5 (2017) 16803.
6. Li, N.: ACS Applied Mater. Interf. 9 (2017) 42093.
7. Mombeshora, E.T.: J. Mater. Sci 28 (2017) 18715.
8. Nafie, L.A.: J. Raman Spectrosc. 48 (2017)  1692.
9. Wong, K.C.: Inter. J. Greenhouse Gas Control 64 (2017) 257.
10. Castro, V.L.: Environmen. Toxicol. Chem. 37 (2018) 1998.
11. Singh, J.: J. Tribol.-Trans. ASME 140 (2018) 032001.
12. Velicky, M.: Nanotechnol. 29 (2018)  275205.
13. Pravin, M.D.: RSC Adv. 8 (2018) 38416.
14. Quispe, L.T.: Optics Express 26 (2018) 31253.
15. Rekha, M.Y.: Corrosion Sci 152 (2019) 234.
16. Wang, J.: Nanomater. 9 (2019) 640.
17. Croitoru, A.: Medicina-Lithuania 55 (2019) 230.
18. Berrellez-Reyes, F.: J. Phys. Chem. C 123 (2019) 30021.
19. Cheng, Z.: J. Phys. Chem. C 123 (2019) 26912.
20. Rekha, M.Y.: Metall. Mater. Trans. A 50 (2019) 5896.
21. Behar, D.: J. Phys. Chem. C 124  (2020) 5425.
22. Nair, S.: Nat. Sci Rev.‏ 7 (2020)‏ 620.
23. Lin, L.-S.: Carbon 167 (2020) 307.
24. Wang, Y.: ACS Applied Mater. Interfac. 12 (2020) 44273.
25. Ibarra-Garcia, V.G.: Fulleren. Nanotub. Carbon Nanostruct. 29 (2020)‏ 352.

Lobato, B., Vretenár, V., Kotrusz, P., Hulman, M., and Centeno, T.: Reduced graphite oxide in supercapacitor electrodes, J. Colloid Interface Sci 446 (2015) 203-207.

1. Prekodravac, J.: Synthetic Metals 209 (2015) 461.
2. Vermisoglou, E.C.: Applied Surface Sci 358 (2015) 110.
3. Zhang, L.: Electrochim. Acta 186 (2015) 522.
4. Vermisoglou, E. C.: Applied Surface Sci 392 (2015) 244.
5. Xu, X.: J. Alloys Compounds 654 (2016) 23.
6. Wan, M.M.: ACS Applied Mater. Interfaces 8 (2016) 1252.
7. Ren, J.: Inter.  J. Electrochem. Sci 11 (2016) 2550.
8. Huang, G.: Electrochimica Acta 196 (2016) 450.
9. Smirnov, M.: J. Power Sources 304 (2016) 102.
#    10. Kumbhar, V.S.: Mater. Sci Semicond. Process. 46 (2016) 29.
11. Yang, H.: J. Phys. Chem. Lett. 8  (2017) 153.
12. Rasul, S.: Carbon 111 (2017) 774.
13. Vermisoglou, E.C.: Applied Surface Sci 392 (2017) 244.
14. Cossutta, M.: Green Chem. 19 (2017) 5874.
15. Kim, H.J.: Chem. Phys. Lett. 686 (2017) 49.
16. El-Gendy, D.M.: Sci Rep. 7 (2017) 43104.
17. Ma, W.: J. Mater. Sci 53 (2018) 12295.
18. Liu, D.: J. Colloid Interface Sci 513 (2018) 295.
19. Vignesh, V.: Colloids Surfaces A 538 (2018) 668.
20. Zhang, X.: Electrochim. Acta 259 (2018) 793.
21. Li, H.: Adv. Energy Mater. 9 (2019) 1900079.
22. Chang, Y.: J. Mater. Sci-Mater. Electron. 30 (2019) 7216.
23. Naik, S.: New J. Chem. 43 (2019) 16017.
#     24. Loganathan, A.: Rasayan J. Chem. 12 (2019) 1710.

Skákalová, V., Vretenár, V., Kopera, Ľ., Kotrusz, P., Mangler, C., Meško, M., Meyer, J., and Hulman, M.:Electronic transport in composites of graphite oxide with carbon nanotubes, Carbon 72 (2014) 224-232.

1. Han, Z.J.: NPG Asia Mater. 6 (2014) e140.
2. Kumar, R.: IET Circuits Dev. Systems 9 (2015) SI392.
3. Maarouf, A.A.: Carbon 102 (2016) 74.
4. Fan, M.: Green Chem. 18 (2016) 1731.
5. Al-Jumaili, A.: Materials 10 (2017) 1066.
6. Kharissova, O.V.: Industr. Engn. Chem. Res. 58 (2019) 3921.
#     7. Loganathan, A.: Rasayan J. Chem. 12 (2019)1710.
8. Karachevtsev, V.A.:Low Temp. Phys. 45 (2019) 1109.
9. Kurnosov, N.V.:Low Temp. Phys. 46 (2020) 346.
10. Glamazda, A. Y.: Physica E 124 (2020) 114279.

Hulman, M.: Raman spectroscopy of graphene. In: Graphene. Eds. V.Skákalová, and A.B.Kaiser. London: Woodhead Publ. 2014. ISBN 978-0-85709-508-4. P. 156-183. (Not IEE SAS).

1. Lopes, J.H.: Langmuir 31 (2015) 9718.
2. Tatti, R.: RSC Adv. 6 (2016) 37982.
3. Al-khattib, M.G.: Optics Laser Technol. 115 (2019) 433.
4. Mopoung, K.: Proc. 14th Annual IEEE Inter. Conf. Nano/Micro Engn. Molecul. Systems – NEMS 2019, 8915664, pp. 64-67.
5. Kurapova, O.Y.: J. Alloys Compounds 835 (2020) 155463.
6. Rizal, M.Y.: J. Environmen. Chemical Engn.‏ 8 (2020) UNSP 103610.
7. Zhu, W.: Inter. J. Hydrogen Energy 45 (2020)‏ 8385.
8. Jing, Z.: J. Mater. Sci 56 (2021) 3296.

Meško, M., Vretenár, V., Kotrusz, P., Hulman, M., Skákalová, V., : Synthesis of carbon nanowalls on macroporous nickel foam by atmospheric glow discharge chemical vapour deposition,. Phys. Status Solidi B 251 (2014) 933–936. (Not IEE SAS).

         1. Bo, Z.: Phys. Status Solidi B 252 (2015) 2236.

Meško, M., Vretenár, V., Kotrusz, P., Hulman, M., Šoltýs, J., Skákalová, V., : Carbon nanowalls synthesis by means of atmospheric dcPECVD method. Phys. Status Solidi B 249 (2012) 2625–2628.

1. Bo, Z.: Phys. Status Solidi B 251 (2014) 155.
2. Zhang, X.: Phys. Status Solidi B 251 (2014) 829.
3. Mishin, M.V.: Russian J. General Chem. 85 (2015) 1209.
4. Zou, H.H.: Composites B 73 (2015) 57.
5. Bo, Z.: Phys. Status Solidi B 252 (2015) 2236.
6. Michniak, P.: NANOCON 2015. P. 143.
7. Li, M.: Advanced Sci 3 (2016) 1600003.
8. Bo, Z.: Phys. Status Solidi B 254 (2017) 1600804.
9. Vesel, A.: Materials 12 (2019) 2968.
10. Li, L.: Applied Phys. Lett. 115 (2019) 081101.
11. Jasek, O.: Diamond Related Mater. 105 (2020) 107798.

Neubauer, E., Kitzmantel, M., Hulman, M., and Angerer, P.: Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Comp. Sci Technol. 70 (2010) 2228–2236. (Not IEE SAS).

1. Marcos-Gomez, D.: Composites Sci Technol. 70 (2010) SI2276.
2. Suo, X.: Advanced Mater. Research 314-316 (2011) 253.
3. Niu, Z.: Adv. Functional Mater. 22 (2012) 5209.
4. Li, J.: Composites Part B 43 (2012) 1681.
5. Inoue, Y.: Chem. Lett. 41 (2012) 531.
6. Stein, J.: Carbon 50 (2012) 2264.
7. Jiang, L.: Carbon 50 (2012) 1993.
8. Kang, K.: Mater. Chem. Phys. 133 (2012) 495.
9. Kong, J.: Applied Phys. A 112 (2013) 631.
10. Liu, Q.: J. Mater. Sci 48 (2013) 5810.
11. Chu, K.: Phys. Status Solidi A 210 (2013) 594.
12. Chu, K.: Mater. & Design 45 (2013) 407.
13. Sun, F.: J. Alloys Compounds 551 (2013) 496.
14.  Miranda, A.: Mater. Sci Forum 765 (2013) 245.
15. Rajmohan, T.: ICANMEET 2013. P. 116.
16. Tjong, S.C.: Mater. Sci Engn. R: Reports 74 (2013) 281.
17. Rajmohan, T.: Composites Part B 59 (2014) 43.
18. Chu, K.: Phys. Status Solidi A 211 (2014) 184.
19. Liu, Z.: Mater. Sci Engn. A 610 (2014) 6.
20. Mani, M.K.: J. Alloys Compounds 601 (2014) 146.
21. Zanden, C.: Composites Sci Technol. 94 (2014) 54.
22. Tang, Y.: Mater. Sci Engn. A 599 (2014) 247.
23. Hu, J.: Inter. J. Applied Ceramic Technol. 11 (2014) 207.
24. Kim, W. J.: Composites A 67 (2014)  308.
25. Liu, Z.-Y.: Rare Metals  33 (2014) 563.
26. Sahraei, A.A.: Applied Phys. A 116 (2014) 1677.
27. Victor-Roman, S.: Chemical Engn. J. 262 (2015) 691.
28. Moghadam, A.D.: Composites Part B 77 (2015) 402.
29. Sakharova, N.A.: Composites Part B 75 (2015) 73.
30. Khisamov, R.K.: Phys. Solid State 57 (2015) 1206.
31. Li, M.: Mater. Research Innov. 19 (2015) S59.
32. Han, G.: Mater. Sci Engn. A 628 (2015) 350.
33. Moghadam, A.D.: Composites B-Engn. 77 (2015) 402.
34. Munir, K.S.: Adv. Engn. Mater. 17 (2015)  1660.
35. Yang, W.: Mater. Sci Engn. A 648 (2015) 41.
36. Yang, X.: Mater. Sci Engn. A 660 (2016) 11.
37. Kang, K.: Surface & Coatings Technol. 289 (2016) 124.
38. Liu, J.: Mater. & Design 94  (2016) 87.
39. Pereira, A.F.G.: Phys. Status Solidi B 253 (2016) 366.
40. Rezaei, R.: Comput. Mater. Sci 119 (2016) 19.
41. Sahin, Y.: Mater. Testing 58 (2016) 453.
42. Hu, Z.: J. Mater. Process. Technol. 231 (2016) 143.
43. Choi, B.K.: Composites B-Engn. 91 (2016) 119.
44. Costa, D.M.S.: AIMS MATER. SCI 3  (2016) 808.
45. Munir, K.S.: Critical Rev. Solid State Mater. SCI 41 (2016) 347.
46. Zhang, D.-D.: RSC Adv. 6  (2016) 52219.
47. Simon-Herrero, C.: J. Mater. Sci 51 (2016) 8977.
48. Homa, M.: J. Mater. Engn. Perform. 25  (2016) SI3317.
49. Saboori, A.: Front. Mater. Sci 11  (2017) 171.
50. Chen, B.: Carbon 114 (2017) 198.
51. Cadavid, O.J.: J. Phys. Conf. Ser. 786  (2017) UNSP 012002.
52. Zhao, K.: J. Mater. Sci Technol. 33 (2017) 1004.
53. Khodabakhshi, F.: Mater. Character. 131 (2017) 359.
54. Islak, S.: Sci Sintering 49 (2017) 347.
55. Khan, M.U.: Composites A 101 (2017) 353.
56. Khodabakhshi, F.: Mater. Character. 132 (2017) 92.
57. Wu, L.: J. Mater. Engn. Perform. 26 (2017) 5495.
58. Rikhtegar, F.: J. Alloys Comp. 723 (2017) 633.
59. Gao, C.: Composites Sci Technol. 152 (2017) 120.
60. Mahanthesha, P.: AIP Conf. Proc. 1943 (2018) UNSP020098.
61. Li, L.: Powder Technol. 325 (2018) 107.
62. Zhao, K.: Acta Metall. Sinica-Engl. Lett. 31 (2018) 134.
63. Saboori, A.: Metals 8 (2018) 172.
64. Shin, A.: J. Alloys Comp. 737 (2018) 21.
65. Kumar, S.: Progress Polymer Sci 80 (2018) 1.
66. Liu, L.: J. Alloys Comp. 747 (2018) 91.
67. Saboori, A.: Metals 8 (2018) 423.
68. Cong, Z.: Composite Struct. 194 (2018) 80.
69. Dasari, B.L.: Composites B 145 (2018) 136.
70. Ye, Y.: High Performance Struct. Mater. (2018) 899.
71. Sundaram, R.M.: Royal Soc. Open Sci 5 (2018) 180814.
#    72. Guo, L.: Cailiao Gongcheng/J. Mater. Engn. 45 (2017) 122.
#    73. Kim, J.-K.: Comprehen. Composite Mater. II 4-8 (2018) 22.
#    74. Wang, J.: Cailiao Daobao/Mater. Rev. 32 (2018) 2932 and 2948.
75. Okoro, A.M.: JOM 71 (2019) 567.
76. Lin, B.: J. Mater. Sci 54 (2019) 2256.
77. Xiong, N.: J. Alloys Comp. 770 (2019) 204.
78. Khobragade, N.: J. Alloys Comp. 776 (2019) 123.
79. Wang, J.: Metallurg. Mater. Trans. A 50A (2019) 1448.
80. Miranda, A.: J. Alloys Comp. 774 (2019) 820.
81. Munir, K.S.: Adv. Biosyst. 3 (2019) 1800212.
82. Sohn, Y.: Carbon 149 (2019) 152.
83. Murugesan, R.: Mater. Res. Express 6 (2019) 066530.
84. Awotunde, M.A.: J. Mater. Res. Technol.-JMR&T 8 (2019) 2432.
85. Royes, P.: Mater. Sci Forum 941  (2018) 2018.
86. Rubel, R.I.: AIMS Mater. Sci 6 (2019) 756.
87. Murugesan, R.: Applied Surface Sci 495 (2019) UNSP 143542.
88. Fereiduni, E.: Materials 12 (2019) 3673.
89. Pei, B.: Nanomater. 9 (2019) 1501.
90. Murugesan, R.: J. Ceramic Process. Res. 20  (2019) 505.
91. Thomas, S.: Mater. Perform. Character. 8 (2019) SI371.
92. Li, X.: Korean J. Metals Mater. 57  (2019) 529.
#    93. Awotunde, M.A.: Key Engn. Mater. 821 (2019) 54.
94. Wang, P.: Nanotechnol. 31 (2020) 115703.
95. Ishraaq, R.: Comput. Mater. Sci 174 (2020) 109486.
96. Goel, M.: Mater. Today-Proc. 26 (2020) 897.
97. Ali, Md. H.: AIMS Mater. Sci 7 (2020) 217.
98. Safina, L.L.: Micro & Nano Lett. 15 (2020) 176.
99. Oliveira, H.S.: Inter. Nano Lett. 10 (2020) 141.
100. Prakasam, M.: Composites A 133 (2020) 105858.
101. Wang, Z.: J. Phys.-Cond. Matter 32 (2020) 205301.
102. Golubtsov, G. V.: J. Struct. Chem. 61 (2020) 640.
103. Saba, F.: Adv. Comp. Hybrid Mater. 2 (2019) 540.
104. Velmurugan, V.: Mater. Today-Proc.33 (2020) 3520.
105. Abazari, S.: Materials 13 (2020) 4421.
106. Awotunde, M.A.: Particulate Sci Technol.‏ 39 (2021) 298.
107. Karim, M.R.A.: Applied Phys. A 127 (2021)  172.
108. Wang, X.: Chem. Phys.‏ 542 (2021) 111019.

Hulman, M., Skákalová, V., Krasheninnikov, A., Roth, S., : Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes. Applied Phys. Lett. 94 (2009) 071907. (Not IEE SAS).

1. Walker, D.: Applied Phys. Lett. 101 (2012) 103111.
2. Tiwari, A.: Radiation Effects Defects Solids 168  (2013) 940.
3. Cox, N.D.: J. Phys. Chem. C 118  (2014) 14031.
4. Zhang C.: Chem. Res. Chinese Univ. 32 (2016) 803.
5. Galli, A.: Planet. Space Sci 155 (2018) SI91.
6. Saikiran, V.: Applied Surface Sci 439 (2018) 823.
7. Madduri, P.V.P.: Physica B 577 (2020) 411773.

Uddin, S., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Hulman, M., Neubauer, E., Roth, S., : Thermal expansion co-efficient of nanotube–metal composites. Phys. Status Solidi B 246 (2009) 2836–2839. (Not IEE SAS).

#      1. Wu, Y.: Mater. Sci Technol Conf. Exhibition 2010. P. 2254.
2. Rakov, E.G.: Russian Chem. Rev. 82 (2013) 27.
3. Suarez, S.: Carbon 51 (2013) 404.
4. Pal, H.: Inter. J. Mater. Res. 105  (2014) 566.
5. Pham Van Trinh.: Composites A 105 (2018) 126.
6. Sundaram, R.: J. Mater. Res. Technol.-JMR&T 9 (2020)‏ 6944.
7. Mendoza, M.E.: Diamond Related Mater. 110 (2020) 108083.

Hulman, M., Haluška, M., Scalia, G., Obergfell, D., Roth, S., : Effects of charge impurities and laser energy on raman spectra of graphene. Nano Lett. 8 (2008) 3594–3597. (Not IEE SAS).

1. Saito, Y.: J. Raman Spectroscopy 40 (2009) 1434.
2. Chang, Y. M.: Applied Phys. Lett. 97 (2010) 211102.
3. Caridad, J. M.: J. Applied Phys. 108 (2010) 084321.
4. Alzina, F.: Phys. Rev. B 82 (2010) 075422.
5. Lim, H.: Langmuir 26 (2010) 12278.
6. Daranyi, M.: Thin Solid Films 520 (2011)57.
7. Wu, J.-Y.: J. Applied Phys. 110 (2011) 063718.
8. Wang, W. X.: J. Applied Phys. 109 (2011) 07C501.
9. Chang, Y. M.: 2011 OFC/NFOEC.
10. Zhang Q.-H.: Acta Phys. Sinica 61 (2012) 214209.
11. Mortazavi, S. Z.: Laser Phys. Lett. 9 (2012) 547.
12. Liu, B.-T.: Carbon 63 (2013) 390.
13. Tiberj, A.: Sci Reports 3(2013) 2355.
14. Li, Z.-F.: ACS Applied Mater. & Interf. 5 (2013) 2685.
15. Song, Y.-W.: Woodhead Publ. Ser. Electronic Optical Mater. Iss. 47  (2013) 57.
16. Lee, M.H.: Philosoph. Magazine 94 (2014) 2812.
17. Ghamsari, B.G.: Phys. Rev. B 91 (2015) 201408.
18. Zheng, X.: AIP Adv.5 (2015) 057133.
19. Singh, S.K.: ACS Applied Mater. Interf. 7 (2015)21138.
20. Serrano-Esparza, I.: J. Phys. D 49 (2016) Iss. 10.
21. Jeong, S.-J.: Sci Rep. 6 (2016) 20907.
22. Maiti, R.: Nanotechnol. 28 (2017) 075707.
23. Mondal, S.: Optical Mater. 73 (2017) 555.
24. Zhang Q.-H.: Spectrosc. Spectral Anal. 37 (2017) 2294.
25. Hemasiri, B.W.N.H.: Sci Rep. 7 (2017)17868.
26. Dey, A.: ACS NANO 12 (2018) 5473.
27. Awang, N. A.: Optical Fiber Technol. 52 (2019) 101956.
28. Cai, J.: New J. Chem. 44 (2020)‏ 7417.
29. Yitzhak, N.M.: Applied Surface Sci‏ 536 (2021) 147812.

Haluška, M., Obergfell, D., Meyer, J., Scalia, G., Ulbricht, G., Krauss, B., Chae, D., Lohmann, T., Lebert, M., Kaempgen, M., Hulman, M., Smet, J., Roth, S., and von Klitzing, K.: Investigation of the shift of Raman modes of graphene flakes, Phys. Status Solidi B 244 (2007) 4143–4146. (Not IEE SAS).

1. Abdula, D.: J. Phys. Chem. C 112 (2008) 20131.
2. Tedesco, J.L.: ECS Trans. 19 (2009) 137.
3. Thompson-Flagg, R.C.: EPL 85 (2009) 46002.
4. Bera, S.:Phys. Rev. B 82 (2010) 195445.
5. Hsiao, M.C.: J. Mater. Chem. 20 (2010) 8496.
6. Juang, Z.-Y.: Carbon 48 (2010) 3169.
#      7. Yang, W.: New J. Chem. 35 (2011) 780.
8. Hsiao, M.-C.: Nanoscale 3 (2011) 1516.
9. Lee, J.H.: Composites B 45 (2013) 682.
10. Saravanan, N.: J. Reinforced Plastics Comp. 33  (2014) 1158.
11. Chang, Y.-H.: Optics Express 23 (2015) A1245.
12. Shi, W.: J. Phys. Chem. C 120 (2016) 13807.
13. Kim, D.: Japan. J. Applied Phys. 56 (2017) 067001.
14. Huang, C.-Y.: Japan. J. Applied Phys. 56 (2017) 045201.
15. Shih, C.-K.: Nanomater. 8 (2018) 491.
16. Huang, C.-Y.: Nanotechnol. 29 (2018) 445201.
17. Kweon, H.: ACS Applied Polymer Mater. 1 (2019) 3233.
18. Wahab, M.S.: J. Phys.: Conf. Ser. 1402 (2019) 066017.

Michel, K., Verberck, B., Hulman, M., Kuzmany, H., and Krause, M.: Superposition of quantum and classical rotational motions in Sc2C2@C84 fullerite. J. Chem. Phys. 126 (2007) 064304. (Not IEE SAS).

1. Okimoto, H.: Nano 3 (2008) 21.
2. Popov, A.A.: Chemistry – A Europ. J. 15 (2009) 9707.
3. Dunsch, L.: J. American Chem. Soc 132 (2010) 5413.
4. Mamone, S.: Coord. Chem. Rev. 255 (2011) 938.
5. Ge, M.: J. Chem. Phys. 134 (2011) 054507.
6. Room, T.: Phil. Trans. Royal Soc A 371, no. 1998 (2013) 20110631.
7. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
8. Jin, P.: Coordination Chem. Rev. 270 (2014) SI89.
9. Shinohara, H.: Phil. Trans. Royal Soc A 374 (2016) 20150325.
10. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.
11. Wu, B.: Chem. Comm. 54 (2018) 775.
12. Lumb, S.: Chem. Phys. 510 (2018) 37.
13. Pitsevich, G. A.: Spectrochim. Acta A 239 (2020) 118209.

Hulman, M. and Tajmar, M.: The dielectrophoretic attachment of nanotube fibres on tungsten needles. Nanotechnol. 18 (2007) 145504. (Not IEE SAS).

1. Wei, H.: Nanotechnol. 19 (2008) 455303.
2. Plaado, M.: Nanotechnol. 22 (2011) 305711.
3. Keller, M.: Pharmazeutische Ind. 73 (2011) 919.
#     4. Dai, Z.: J. Semicond. 33 (2012) 114001
5. Brown, D.A.: Sensors (Swit.) 12 (2012) 5725.
6. Jose, J.: ACS Photon. 1  (2014) 464.
7. Shin, K.-Y.: Adv. Electronic Mater. 2 (2016) 1600233.
8. Slattery, A.D.: Nanomater. 7 (2017) 346.
9. Barik, A.: Integrated Analyt. Systems 2018, p. 123.

Hölzl, C., Kuzmany, H., Hulman, M., Wu, J., Müllen, K., Boroviak-Palen, E., Kalenczuk, R., Kukovecz, A., :Surface enhanced Raman spectroscopy of flat and curved carbon cluster. Phys. Status Solidi B 243 (2006) 3142–3145. (Not IEE SAS).

1. Calizo, I.: Applied Phys. Lett. 91 (2007) 201904.
2. Martin, N.M.: Chemical Physics 368 (2010) 49.
3. Chopra, N.: Carbon 62 (2013) 76.

Haluška, M., Hulman, M., Hornbostel, B., Čech, J., Skákalová, V., Roth, S., : Synthesis of SWCNTs for C82 peapods by arc-discharge process using nonmagnetic catalysts. Phys. Status Solidi B 243 (2006) 3042–3045. (Not IEE SAS).

1. Harutyunyan, A.R.: J. Nanosci Nanotechnol. 9 (2009) 2480.
2. Ashino, M.: Sci Reports 7 (2017) 46083.

Kuzmany, H., Pfeiffer, R., Simon, F., Kramberger, C., Hulman, M., Costa, P., : Physics and chemistry inside nanotubes. Fullerenes Nanotubes and Carbon Nanostr. 13 (SUPPL. 1) (2005) 179-188. (Not IEE SAS).

      1. Anis, B.: Phys. Status Solidi B 249 (2012) 2345.
      2. Anis, B.: J. Phys. Chem. C 11(201427048.

Hulman, M., Skákalová, V., Roth, S., and Kuzmany, H.: Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by γ rays, J. Applied Phys. 98 (2005) 024311. (Not IEE SAS).

1. Gupta, S.: Diamond and Related Mater. 16 (2007) 236.
2. Gupta, S.: J. Raman Spectroscopy 38(2007) 188.
3. Dmytrenko, O.P.: Molecular Crystals Liquid Cryst. 497 (2008) 38/[370]-45/[377].
4. Bhalerao, G.M.: Physica E 41 (2008) 54.
5. Itoh, C.: Nuclear Instrum. Methods in Phys. Res. B 266 (2008) 2772.
6. Wu, W.-T.: Nanotechnol. 19 (2008) 125607.
7. Caillier, Ch.: Phys. Rev. B 77 (2008) 125418.
8. Zobelli, A.: Phys. Rev. B 77 (2008) 045410.
9. Nielsen, K.L.C.: Polymer Degradation Stab.93 (2008) 169.
10. Jovanović, S.P.: Nanotechnol. 20 (2009) 445602.
11. Xu, Z.: Mater. Lett. 63 (2009) 1814.
12. Kumar, A.: Thin Solid Films 517 (2009) 4322.
13.  Xu, Z.: Nanotechnol. 20 (2009) 125706.
14. Qian, W.: Nano 4 (2009) 7.
15. Nishihara, H.: Carbon 47 (2009) 1220.
16. Dmytrenko, O.P.: Fullerenes Nanotubes Carbon Nanostr. 17 (2009) 123.
17. Dresselhaus, M.S.: Phil. Trans. Royal Soc A 368 (2010) 5355.
18. Cress, C.D.: IEEE Trans. Nuclear Sci 57 (2010) 5658050.
19. Xu, Z.: Radiation Phys. Chem. 79 (2010) 839.
20. Gupta, S.: J. Applied Phys. 107 (2010) 104308.
21. Krasheninnikov, A.V.: J. Applied Phys. 107 (2010) 071301.
22. Ritter, U.: Materialwiss. Werkstofftech.  41 (2010) 675.
23. Walker, D.: IEEE Photovoltaic Spec. Conf. (2011)  6186268.
24. Cançado, L.G.: Nano Lett. 11 (2011) 3190.
25. Suyetin, M.V.: Phys. Chem. Chem. Phys. 13 (2011) 9863.
26. Suyetin, M.V.: J. Phys. Chem. C 115 (2011) 5485.
27. Xu, Z.: J. Applied Phys. 109 (2011) 054303.
28. Suyetin, M.V.: Micro Nano Lett. 6 (2011) 39.
29. Gupta, S.: J. Applied Phys. 109 (2011) 014314.
30. Chang, C.-C.: Nano Research 5 (2012) 854.
31. Saxena, K.: Canadian J. Phys. 90 (2012) 975.
32. Picher, M.: Carbon 50 (2012) 2407.
33. Moura, C.S.: AIP Adv. 2 (2012) 012174.
34. Zhou, B.: Chinese Phys. Lett. 30 (2013) 113402.
35. Zhao, C.X.: Nanotechnol. 24 (2013) 275703.
36. Xiao, H.: Carbon 52 (2013) 427.
37. Xu, Z.: RSC Adv. 3 (2013) 10579.
38. Yadav, S.K.: J. Mater. Chem. C 1 (2013) 5463.
39. Xiao, H.: J. Mater. Sci 49 (2014) 794.
40. Jovanovic, S.P.: J. Phys. Chem. C 118 (2014) 16147.
41. Aitkaliyeva, A.: Phys. Rev. B 89 (2014) 235437.
42. Saxena, K.: Indian J. Phys. 88 (20141099.
43. Neyts, E.C.: Carbon 77 (2014790.
44. Liu, L.: Applied Surface Sci 337 (2015) 241.
45. Hopkins, A.R.: Carbon 107 (2016) 77.
46. Lu, S.: J. Luminesc. 175 (2016) 88.
47. Islam, A.E.: IEEE Trans. Device Mater. Reliab. 16 (2016) 647.
48. Wang, H.: J. Mater. Sci 51 (2016) 10690.
49. Zhao, Y.: Carbon 108 (2016) 363.
50. Hu, Y.F.: J. Applied Polymer Sci 134 (2017) 45027.
51. Elsehly, E.M.: Europ. Phys. J. D 71 (2017) 79.
52. Fu, Z.: Polymers Adv. Technol. 28 (2017) 1662.
53. Wang, L.: Nuclear Instr. Methods in Phys. Res. B 406 (2017) 600.
54. Evora, M.C.: Mater. Res.-Ibero-Amer. J. Mater. 20 (2017) 386.
55. Fu, Z.: Polymer Degrad. Stability 140 (2017) 104.
56. Saif, M.J.: J. Ind. Engn. Chem. 60 (2018) 218.
57. Kim, S.J.: ACS Sensors 4 (2019) 1097.
58. Aisida, Samson O.: Nuclear Instrum. Methods In Phys. Res. B 458 (2019) 61.
#     59. Poudel, N.: World Sci Ser. Carbon Nanosci 9-10 (2019) 123.
60. Bodik, M.: Mater. Today Comm. 25 (2020) 101432.
61. Guo, K.: J. Mater. Chem. A 8 (2020) 23029.
62. Sumikura, H.: Phys. Rev. B 102 (2020) 125432.
63. Jorio, A.: J. Applied Phys. 129 (2021) 021102.

Krause, M., Hulman, M., Kuzmany, H., Dubay, O., Kresse, G., Vietze, K., Seifert, G., Wang, C., and Shinohara, H.: Fullerene quantum gyroscope. Phys. Rev. Lett. 93 (2004) 137403. (Not IEE SAS).

1. Yumura, T.: J. Phys. Chem. B 109 (2005) 20251.
2. Shigeta, Y.: J. Chem. Phys. 123 (2005) 131101.
3. Tan, K.: Chemical Comm.(2005) 4444.
4. Kottas, G.S.: Chem. Rev. 105 (2005) 1281.
#       5. Edelmann, F.T.: Coordination Chem. Rev. 250 (2006) 2511.
6. Tan, K.: J. Phys. Chem. B 110 (2006) 11098.
7. Feil, S.: Inter. J. Mass Spectrometry 249-250 (2006) 396.
8. Tan, K.: J. Phys. Chem. A 110 (2006) 1171.
9. Iiduka, Y.: Angewandte Chemie-Inter. Ed. 46 (2007) 5562.
10. Skopek, K.: Coord. Chem. Rev. 251 (2007) S1723.
11. Zhang, J.: J. Phys. Chem. C 111 (2007) 7862.
12. Otani, M.: Chem. Phys. Lett. 438 (2007) 274.
13. Wu, X.: J. Nanosci Nanotechnol. 7 (2007) 1346.
14. Lemos, V.: Phys. Status Solidi B 244 (2007) 151.
15. Glukhova, O. E.: J. Struct. Chem. 48 (2007) S141.
16. Taubert, S.: Phys. Chem. Chem. Phys. 10 (2008) 7158.
17. Morton, J.J.L.: Phys. Rev. Lett. 101 (2008) 013002.
#     18. Popov, A.A.: Europ. J. A 15 (2009) 9707.
19. Fajardo, M.E.: J. Chem. Phys. 130 (2009) 244508.
20. Mamone, S.: J. Chem. Phys. 130 (2009) 081103.
21. Kah, C.B.: J. Phys. Chem. C 114 (2010) 13017.
22. Raynal, P.: Phys. Rev. A 81 (2010) 052327.
23. Dunsch, L.: J. American Chem. Soc 132 (2010) 5413.
24. Yang, S.: Chem. Comm. 47 (2011) 11822.
25. Pei, Y.: J. Cluster Sci 22 (2011) 343.
26. Chen, Z.: Chem. Phys. Lett. 506 (2011) 230.
27. Mamone, S.: Coord. Chem. Rev. 255 (2011) 938.
28. Burke, B.G.: Phys. Rev. B 83 (2011) 115457.
29. Ge, M.: J. Chem. Phys. 134 (2011) 054507.
30. Wang, D.-L.: Phys. Chem. Chem. Phys. 14 (2012) 15099.
31. Nishimoto, Y.: Phys. Status Solidi B 249 (2012) 324.
32. Raynal, P.: AIP Conf. Proc. 1469 (2012) 63.
33. Room, T.: Phil. Trans. Royal Soc A 371 no.1998 (2013) 20110631.
34. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
35. Deng, Q.: J. American Chem. Soc 136 (2014) 4257.
36. Glukhova, O.E. Proc. SPIE  8956 (2014).
37. Jin, P.: Coordination Chem. Rev. 270 (2014) SI89.
38. Glukhova, O.E.: J. Computat. Chem. 35 (2014) 1270.
39. Zhao, C.: ChemPhysChem 15 (2014) 2780.
40. Gan, L.-H.: RSC Adv. (2015) 30409.
41. Prack, E.: J. American Chem. Soc 137 (2015) 13464.
42. Liu X.-S.: Acta Physico-Chimica Sinica 32 (2016) 929.
43. Mu, L.: RSC Adv. 7 (2017) 16149.
44. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.
45. Mahdavifar, Z.: J. Electron. Mater. 47 (2018) 550.
46. Wu, B.: Chem. Comm. 54 (2018) ‏775.
47. Wu, B.: Angewandte Chemie-Inter. Ed. 59 (2020)‏ 3942.
48. Bubenchikov, M.A.: Phys. Status Solidi A 218 (2021) SI2000174.

Hulman, M., Kuzmany, H., Costa, P., Friedrichs, S., and Green, M.: Light-induced instability of PbO-filled single-wall carbon nanotubes. Applied Phys. Lett. 85 (2004) 2068. (Not IEE SAS).

1. Sendova, M.: J. Applied Phys. 98 (2005) 104304.
2. Monthioux, M.: J. Mater. Res. 21 (2006) 2774.
3. Bairavarasu, S.R.: Proc. SPIE 6698 (2007) 669806.
4. Liu, H.: J. Chem. Phys. 126 (2007) 134705.
5. Davidson, G.: Specialist Periodical Rep. Spectrosc. Prop. Inorg. Organometall. Comp. 39 (2007) 197.
6. Bairavarasu, S.R.: Spectrochim. Acta A 71 (2008) 1581.
7. Zakalyukin, R.M.: Carbon 46 (2008) 1574.
8. Chernysheva, M.V.: Physica E 40 (2008) 2283.
9. Wilson, M.: J. Chem. Phys. 131 (2009) 214507.
10. Eliseev, A.A.: Russian Chem. Rev. 78 (2009) 833.
#    11. Kharlamova, M.V.: Nanotechnol. in Russia 4 (2009) 634.
12. Bishop, C.L.: J. Mater. Chem. 19 (2009) 2929.
13. Bishop, C.L.: J. Phys. Cond. Mat. 21 (2009) 115301.
14. Yang, H.: J. Molecular Catal. A 323 (2010) 33.
#   15. Joswig, J.-O.: Chem. Modelling 8 (2011) 127.
16. Mandal, S.K.: J. Nanosci Nanotechnol. 11 (2011) 10234.
17. Wilson, M.: RSC Theoret. Comput. Chem. Ser. (2011) 307.
#   18. Sloan, J.: Carbon Meta-Nanotubes (2011) 225.
19. Zhang, Y.C.: J. Mater. Sci: Mater. Electr. 22 (2011) 309.
20. Lukanov, P.: Carbon Nanostr. (2011) 41.
21. Kharlamova, M.V.: Phys. Status Solidi B 250 (2013) 2575.
22. Kharlamova, M.V.: JETP Lett. 98 (2013) 272.
23. Kharlamova, M.V.: Applied Phys. A 112 (2013) 297.
24. Jafry, H.R.: Main Group Chem. 12 (2013) 67.
25. Kharlamova, M. V.: J. Mater. Sci 48 (2013) 8412.
26. Kharlamova, M.V.: Physics-Uspekhi 56 (2013) 1047.
27. Kharlamova, M.V.: J. Mater. Sci 49 (2014) 8402.
28. Spencer, J.H.: ACS NANO 8 (2014) 9044.
29. Kharlamova, M.V.: Progress in Mater. Sci 77 (2016) 125.
30. Chen, G.: RSC Adv. 6 (2016) 58805.
31. Serpell, C.J.: Nature Comm. 7 (2016) 13118.
32. Kharlamova, M.V.: Applied Phys. A 122 (2016) Iss. 9.
33. Kharlamova, M.V.: J. Mater. Sci 53 (2018) 13018.
34. Kharlamova, M.V.: Physica Status Solidi B 255 (2018) 1800178.
35. Kharlamova, M.V.: Applied Phys. A 125 (2019) 320.
36. Meldrum, F.C.: Adv. Mater. 32 (2020) 2001068.

Kuzmany, H., Pfeiffer, R., Hulman, M., and Kramberger, C.: Raman spectroscopy of fullerenes and fullerene–nanotube composites, Phil. Trans. Royal Soc A 362, no. 1824 (2004) 2375-2406. (Not IEE SAS).

1. Ricco, M.: Phys. Rev. B 72 (2005) 155437.
2. Krause, M.: Phys. Status Solidi B 244  (2007) 4236.
3. Zou, Y.: Phys. Rev. B 76  (2007) 195417.
4. Sathish, M.: Chem. Mater. 19 (2007) 2398.
5. Sasthish, M.: Nano 3 (2008) 409.
6. Pensack, R.D.: Proc. SPIE 7034 (2008) 703404.
7. Campestrini, S.: Small 4 (2008) 350.
8. Xie, H.: J. Peptide Sci 14 (2008) 139.
9. Sathish, M.: J. Solid State Electrochem. 12 (2008) 835.
#     10. Zou, Y.: Proc. NAS USA 106 (2009) 22135.
11. Zhang, X.: Angewandte Chemie-Inter. Ed. 48 (2009) 9646.
#     12. Pensack, R.D.: Proc. SPIE 7396 (2009) 73960R.
13. Wakahara, T.: J. American Chem. Soc 131 (2009) 9940.
14. Sathish, M.: J. American Chem. Soc 131 (2009) 6372.
15. Pensack, R.D.: Phys. Chem. Chem. Phys. 11 (2009) 2575.
16. Gupta, S.: J. Raman Spectrosc. 40 (2009) 1127.
17. Utko, P.: Nature Comm. 1 (2010) 37.
#     18. Czerwosz, E.: Proc. Inter. Semicond. Conf. CAS, 1 (2010) 5650263.
19. Sathish, M.: CrystEngComm 12 (2010) 4146.
20. Amer, M.S.: RSC Nanosci Nanotechnol. (2010) 182.
21. Sakhaee-Pour, A.: Applied Phys. Lett. 96 (2010) 021903.
22. Pensack, R.D.: ACS Symp. Ser. 1034 (2010) 53.
23. Sathish, M.: Mater. Chem. Phys. 130 (2011) 211.
24. Chipara, D.M.: Spectroscopy (Santa Monica) 26 (2011) 42.
25. Falke, S.: J. Raman Spectroscopy 42 (2011) 1897.
26. Shang, N.G.: Carbon 49 (2011) 3048.
27. Ji, S.: J. Surgical Research 168 (2011) e1.
28. Adhikari, S.: Phys. Lett. A 375 (2011) 2166.
29. Keczkowska, J.: Central Europ. J. Phys. 9 (2011) 330.
30. Arvanitidis, J.: Nanoscale  3 (2011) 2490.
31. Wang, D.: ICOM 2012. P. 434.
32. Vaez-Taghavi, H.: Diamond Related Mater. 30 (2012) 9.
33. Xu, P.: Nanotechnol. 23 (2012) 315706.
34. Shrestha, L.K.: J. Nanosci Nanotechnol. 12 (2012) 6380.
35. Pinna, A.: J. Synchrotron Radiation 19 (2012) 586.
36. Sathish, M.: Molecules 17 (2012) 3858.
37. Narayanan, R.: J. Phys. Chem. C 116 (2012) 7189.
38. Xu, P.: Applied Phys. Lett. 100 (2012) 131907.
39. Zou, Y.: Advanced Mater. Res. 442 (2012) 26.
40. Casella, G.: Phys. Chem. Chem. Phys. 15 (2013) 18030.
#      41. Paipetis, A.S.: Solid Mechanics and its Applic. 188 (2013) 185.
42. Wang, B.: J. Nanomater. (2013) 646040.
43. Wang, R.: Small 9 (2013) 2420.
44. Matz, D.L.: ACS Applied Mater. Interfaces 5 (2013) 6001.
45. Rymarczyk, J.: Optica Applicata 43 (2013) 123.
46. De Luca, A.: J. Applied Phys. 113 (2013) 214907.
47. Belka, R.: Central Europ. J. Phys. 11 (2013) 245.
48. Umair, A.: Nanoscale Research Lett. 8 (2013) 476.
49. Giannopoulos, G.I.: Physica E 56 (2014) 36.
50. Abdullin, K.A.: Canadian J. Phys. 92 (2014) SI813.
51. Donazzi, A.: Applied Catalysis A 474 (2014) SI149.
52. Wu, J.: Acta Chimica Sinica 72 (2014) SI301.
53. Shumilova, T.: Europ. J. Mineral. 26 (2014) 267.
54. Al-Hartomy, O.A.: Fullerenes Nanotubes Carbon Nanostr. 22 (2014) 332.
55. Bautista-Flores, C.: Applied Phys. Lett. 105 (2014) 191116.
56. Czerwosz, E.: Proc. SPIE 9290 (2014) 929016.
57. Segerie, A.: J. Phys. Chem. C 119 (2015) 803.
58. Chen, X.: Chemical Comm. 51 (2015) 2399.
59. Zhang, R.: Chemical Comm. 51 (2015) 1108.
60. Dwivedi, N.: Sci Rep. 5 (2015) 11607.
61. Mondal, T.: J. Phys. Chem. C 119 (2015) 12698.
62. Bento, D.C.: J. Mater. Sci-Mater. Electron.: 26 (2015) 7844.
63. Zhang, R.: Chem. Comm. 51 (2015) 1108.
64. Wang, D.: IEEE ICOM 2015. P. 482.
65. Kumar, R.: Carbon 107 (2016) 765.
66. Bento, D.C.: J. Mater. Sci-Mater. in Electron. 27 (2016) 5371.
67. Li, H.: Chem. Comm. 52 (2016) 5973.
68. Tucureanu, V.: Critical Rev. Analyt. Chem. 46 (2016) 502.
69. Munir, K.S.: Critical Rev. Solid State Mater. Sci 41 (2016) 347.
70. Choi, Y.-H.: ACS Catal. 6 (2016) 6246.
71. Henao-Holguin, L.V.: J. Nanosci Nanotechnol. 16 (2016) 6173.
72. Krishnamurthy, M.: Mater. & Design 108 (2016) 34.
73. Haikal, R.R.: Carbon 118 (2017) 215.
74. Herreros-Lopez, A.: Carbohydrate Polym. 164 (2017) 92.
75. Tan, Z.: Adv. Mater. 29 (2017) UNSP 1603414.
76. Merlen, A.: Coatings 7 (2017) 153.
77. Vimalanathan, K.: Angewandte Chemie-Inter. Ed. 56 (2017) SI8398.
78. Dallas, P.: Chemphyschem 18 (2017) 3540.
79. Jose Gonzalez-Vazquez, M.: Micromachines 8 (2017) UNSP 307.
80. Velarde-Salcedo, M.V.: J. Phys. Chem. C 122 (2018) 13117.
81. Smazna, D.: Nanoscale 10  (2018) 10050.
82. Basiuk, V.A.: Fullerenes Nanotubes Carbon Nanostruct. 26 (2018) 491.
83. Wang, G.: Materials 11 (2018) 1677.
84. Kouloumpis, A.: J. Colloid Interface Sci 524 (2018) 388.
85. Chen, Z.: J. Mater. Chem. A 6 (2018) 11236.
86. Hao, H.-H.: Cailiao Gongcheng/J. Mater. Engn. 46 (2018) 1.
87. Ren, X.: Mater. Res. Express 6 (2019) 076403.
88. Khan, Abdul J.: J. Mater. Sci-Mater. Electron. 30 (2019) 8568.
89. Gao, Y.: Carbon 146 (2019) 364.
90. Olaya, D.: FLATCHEM 14 (2019) 100089.
91. Wu, Y.: J. Phys. Chem. C 123 (2019) 29908.
92. Bayramov, A.: Thin Solid Films 690 (2019) 137566.
93. Jeon, I.: J. American Chem. Soc 141 (2019) 16553.
94. Liu, Z.: Coatings 10 (2020) 643.
95. Zygouri, P.: Sci Rep. 10 (2020) Iss.‏ 1.
96. Dmitruk, I.: J. Phys. Chem. A 124 (2020) 3398.
97. Sedov, V. P.: Russian J. Applied Chem. 93 (2020) 527.
98. Afanas’ev, V. P.: JETP Lett. 111 (2020) 218.
99. Xu, T.: Chem.-A Europ. J.‏ 26 (2020) 10811.
100. Islam, T.: Molecules 25 (2020) 5787.
101. Hang, P.: Adv. Mater.‏ 33 (2021) 2006910.
102. Jorio, A.: J. Applied Phys. 129 (2021) 021102.

Hulman, M., Costa, P., Green, M., Friedrichs, S., Kuzmany, H., : Raman spectroscopy of PbO-filled single wall carbon nanotubes AIP Conf. Proc. 723 (2004) 278-281. (Not IEE SAS).

1. Davidson, G.: Specialist Periodical Rep. Spectrosc. Prop. Inorg. Organometall. Comp. 39 (2007) 197.
2. Stoppiello, C.T.: Nanoscale 9 (2017) 14385.

Hulman, M., Kuzmany, H., Dubay, O., Kresse, G., Li, L., Tang, Z., Knoll, P., Kaindl, R., : Raman spectroscopy of single wall carbon nanotubes grown in zeolite crystals. Carbon 42 (2004) 1071–1075. (Not IEE SAS).

1. De Lucas, A.: Indust. Engn. Chem. Res. 44 (2005) 8225.
2. Ravy, S.: Zeitschrift Kristall. 220 (2005) 1059.
3. Behler, K.: J. Nanopart. Res. 8 (2006) 615.
4. Davidson, G.: Specialist Periodical Rep. Spectrosc. Prop. Inorg. Organometall.  Comp. 38 (2006) 189.
5. Braga, S.F.: J. Comput. Chem. 28 (2007) 1724.
6. Borka, D.: Phys. Rev. A 77 (2008) 032903.
7. Romero, A.: Micropor. Mesopor. Mater. 110 (2008) 318.
8. Borka, D.: J. Phys. Cond. Matt. 20 (2008) 474212.
9. Borka, D.: J. Phys.: Conf. Ser. 133 (2008) 012015.
10. Yu, K.: Chem. Lett. 37 (2008) 1084.
11. Li, D.: J. Mater. Chem. 20 (2010) 4551.
12. Zhou, X.: Phys. Rev. B 82 (2010) 075433.
13. Zhao, W.: Electron. Mater. Lett. 7 (2011) 139.
14. Baudot, C.: Carbon 49 (2011) 2362.
15. Zhao, W.: Asian J. Chem. 23 (2011) 5457.
16. Shamsudin, M.S.: Adv. Cond. Matter Phys. (2012) 420619.
17. Li, D.: Functional Nanostruct. Mater. Membranes for Water Treatment (2013) 163.
18. Mazumder, S.: Chem. Phys. Lett. 635 (2015) 334.
19. Zhao, W.: J. Ceramic Process. Res. 16 (2015) 462.

Hulman, M., Pfeiffer, R., and Kuzmany, H.: Raman spectroscopy of small-diameter nanotubes, New J. Phys. 6 (2004) 1. (Not IEE SAS).

1. Kalbáč, M.: Carbon 42 (2004) 2915.
2. Fantini, C.: Phys. Rev. Lett. 93 (2004) 147406.
3. Jorio, A.: Phys. Rev. B 71 (2005) 075401.
4. Belin, T.: Mater. Sci Engn. B 119 (2005) 105.
5. Burghard, M.: Surface Sci Rep. 58 (2005) 1.
6. Cardenas, J.F.: Chem. Phys. Lett. 430 (2006) 367.
7. Zhong, Y.-L.: Sci Technol. Adv. Mater. 7 (2006) S78.
8. Gouadec, G.: Progress in Crystal Growth Character. Mater. 53 (2007) 1.
9. Puech, P.: J. Raman Spectrosc. 38 (2007) 714.
10. Ye, J.T.: J. Phys. Cond. Matt. 19 (2007) 445003.
11. Wunderlich, D.: European J. A 14 (2008) 1607.
12. Wunderlich, D.: J. Mater. Chem. 18 (2008) 1493.
13. Udomvech, A.: J. Korean Phys. Soc 52 (2008) 1350.
14. Murakami, T.: J. Applied Phys. 103 (2008) 114305.
15. Lee, S.: Carbon 46 (2008) 2124.
16. Kalbac, M.: J. Phys. Chem. C 113 (2009) 1751.
17. Arvanitidis, J.: High Pressure Res. 29 (2009) 554.
18. Lee, S.: Carbon 47 (2009) 3488.
19. Do Nascimento, G.M.: Carbon 49 (2011) 3585.
20. Lee, S.: J. Phys. Chem. Solids 72 (2011) 1133.
21. Menendez-Proupin, E.: Phys. Rev. Lett. 109 (2012) 105501.
22. Fang, L.: Carbon 91 (2015) 408.
23. Mykhailiv, O.: CHEMPHYSCHEM  16 (2015) 2182.
24. Jackson, E.M.: Composites B-Engn. 89 (2016) 362.
25. Alijani, H.: Chem. Engn. Res. Design 129 (2018) 132.
26. Kar, S.: Carbon 144 (2019) 731.
27. Ahmad, H.: Chinese Phys. Lett. 36 (2019) 104202.
#   28. Michel, T.: World Sci Ser. Carbon Nanosci 9-10 (2019) 75-112

Skákalová, V., Hulman, M., Fedorko, P., Lukac, P., and Roth, S.: Effect of gamma-irradiation on single-wall carbon nanotube paper AIP Conf. Proc. 685 (2003) 143-147. (Not IEE SAS).

1. Davidson, G.: Specialist Periodical Rep. Spectrosc. Prop. Inorg. Organometall.  Comp. 38 (2006) 189.
2. Tang, X.W.: Phys. Medicine Biol. 50 (2005) N23.
3. Whitten, P.G.: Carbon 43 (2005) 1891.
4. Gupta, S.: J. Applied Phys. 109 (2011) 014314.
5. Martinez-Morlanes, M.J.: Composit. Sci Technol. 71 (2011) 282.
6. Fagan, J.A.: Nano Res. 4 (2011) 393.
7. Miao, M.: Carbon 49 (2011) 4940.
8. Xu, Z.: RSC Adv. 3 (2013) 10579.
9. Filleter, T.: Carbon 56 (2013) 1.
10. Zhao, C.X.: Nanotechnol. 24 (2013) 275703.
11. Danilchenko, B.A.: Phys. Status Solidi B 250 (2013) 1488.
12. Mortazavi, S.Z.: RSC Adv.3 (2013) 1397.
13. Sydoruk, V. A.: Nanotechnol. 25 (2014) 035703.
14. Su, F.: ACS Applied Mater. Interfac. 6 (2014) 2552.
15. Cai, J.Y.: Fibers Polymers 15 (2014) 322.
16. Liu, L.: Applied Surface Sci 337 (2015) 241.
17. Zhao, Y.: Carbon 108 (2016) 363.
18. Saif, M.J.: J. Ind. Engn. Chem. 60 (2018) 218.
19. Varma, S.J.: ADV. SCI 5 (2018) 1800340.
20. Ortiz-Morales, A.: Applied Radiation Isotop. 145 (2019) 32.
21. Thurakitseree, T.: Diamond Related Mater. 101 (2020) 107569.
22. Guo, K.: J. Mater. Chem. A 8 (2020) 23029.

Becher, M., Haluška, M., Hirscher, M., Quintel, A., Skákalová, V., Dettlaff-Weglikovska, U., Chen, X., Kappes, M., Hulman, M., Choi, Y., Roth, S., Meregalli, V., Parrinello, M., Ströbel, R., Jörissen, L., Fink, J., Züttel, A., Stepanek, I., and Bernier, P.: Hydrogen storage in carbon nanotubes Stockage d’hydrogène dans les nanotubes de carbone. Comptes Rendus Physique 4 (2003) 1055–1062. (Not IEE SAS).

1. Rowsell, J.L.C.: J. American Chem. Soc 126 (2004) 5666.
2.  Koi, N.: Solid State Comm. 131 (2004) 121.
3. Koi, N.: Sci Technol. Advanced Mater. 5 (2004) 625.
4. Xia, Y.: Phys. Rev. B 71 (2005) 075412.
5. Zhao, X.B.: J. Phys. Chem. B 109 (2005) 8880.
6. Garberoglio, G.: J. Phys. Chem. B 109 (2005) 13094.
7. Rowsell, J.L.C.: Angewandte Chemie – Inter. Ed. 44 (2005) 4670.
8. Fletcher, A.J.: J. Solid State Chem. 178 (2005) S2491.
9. Joubert, J.-M.: Annales de Chimie 30 (2005) 441.
10. Mueller, T.: J. Phys. Chem. B 109 (2005) 17974.
11. Koi, N.: Physica E 29 (2005) 541.
12. Rowsell, J.L.C.: J. American Chem. Soc 127 (2005) 14904.
13. Rowsell, J.L.C.: J. American Chem. Soc 128 (2006) 1304.
14. Pettersson, J.: J. Power Sources 157 (2006) 28.
15. Weinberger, B.: J. Chem. Phys. 124 (2006) 234712.
16. Poirier, E.: Langmuir 22 (2006) 8784.
17. Lin, X.: Angewandte Chemie-Inter. Ed. 45 (2006) 7358.
18. Lochan, R.C.: Phys. Chem. Chem. Phys. 8 (2006) 1357.
19.  Latroche, M.: Angewandte Chemie-Inter. Ed. 45 (2006) 8227.
20. Coluci, V.R.: Phys. Rev. B 75 (2007) 125404.
21. Mpourmpakis, G.: J. Chem. Phys. 126 (2007) 144704.
22. Bénard, P.: Scripta Materialia 56 (2007) 803.
23. Felderhoff, M.: Phys. Chem. Chem. Phys. 9 (2007) 2643.
24. Li, Y.: J. Phys. Chem. C 111 (2007) 11086.
25. Takei, T.: Chem. Lett. 36 (2007) 1136.
26. Broom, D.P.: J. Alloys Comp. 446-447 (2007) 687.
27. Bénard, P.: J. Alloys Comp. 446-447 (2007) 380.
28. Broom, D.P.: Inter. J. Hydrogen Energy 32 (2007) 4871.
29. Biniwale, R.B.: Inter. J. Hydrogen Energy 33 (2008) 360.
30. Lipson, A.G.: Phys. Rev. B 77 (2008) 081405.
31. Banerjee, S.: Nanotechnol. 19 (2008) 155702.
32. Hashemi, F.S.: Fullerenes Nanotubes Carbon Nanostr. 16 (2008) 186.
33. Zhou, Q.-L.: Wuji Cailiao Xuebao/J. Inorganic Mater. 23 (2008) 805.
34. Zhou, Q.: J. Alloys Comp. 463 (2008) 317.
35. Lipson, A.G.: JETP Lett. 88 (2008) 178.
36. Bhattacharya, S.: J. Phys. Chem. C 112 (2008) 17487.
37. Karl Johnson, J.: Adsorption by Carbons (2008) 369.
38. Von Wild, J.: VDI Berichte no. 2030, (2008) 273.
39. Vaseashta, A.: NATO Sci Peace Security Ser. B (2008) 3.
40. Wang, L.: Energy Environmental Sci 1 (2008) 268.
#    41. Vaseashta, A.: Mater. Research Soc Symp. Proc. 1106 (2008) 15.
42. Benard, P.: Solid-State Hydrogen Storage: Mater. Chem. (2008) 261.
43. Varin, R.A.: Nanomater. Solid State Hydrogen Storage (2009) 291.
44. Joshi, R.: Solid State Sci 11 (2009) 422.
45. Lee, S.M.: J. Korean Phys. Soc 54 (2009) 682.
46. Lipson, A.G.: Diamond Related Mater. 18 (2009) 984.
47. Borodina, T.N.: ACS Applied Mater. Interf. 1 (2009) 996.
#    48. Vaseashta, A.: NATO Security through Sci Ser. C (2009) 105.
49. Brieño-Enriquez, K.M.: Mater. Chem. Phys. 115 (2009) 521.
50. Lee, S.M.: ChemPhysChem 10 (2009) 1825.
51.  Patchkovskii, S.: Phys. Rev. E 80 (2009) 031603.
52. Llorens, J.: Colloids Surfaces A 350 (2009) 63.
#    53. Vaseashta, A.: NATO Sci Peace Security Ser. B (2009) 105.
54. Borodina, T.: J. Mater. Chem. 20 (2010) 1452.
55. Martin, N.M.: Chem. Phys. 368 (2010) 49.
56. Bansal, M.: Physica B 405 (2010) 1745.
#    57. Solodkova, L.N.: Protect. Metals Phys. Chem. Surf. 46 (2010) 524.
58. Luzan, S.M.: Micropor. Mesopor. Mater. 135 (2010) 201.
#    59. Sun, B.: IEEE 5th NEMS 2010. (2010) 5592192.
#    60.  Boublík, T.: Molecular Phys. 109 (2011) 75.
61. Dodziuk, H.: Carbon Mater.-Chem. Phys. 4 (2011) 117.
62. Assfour, B.: Adv. Mater. 23 (2011) 1237.
63. Liu, Y.-C.: Adv. Mater. Res. 221 (2011) 540.
64. Suzuki, K.: J. Alloys Comp.509 (2011)S868.
65. Suzuki, K.: Comput. Theor. Chem. 975 (2011) 128.
66. Broom, D.P.: Green Energy Technol. 27 (2011) 1.
67. Bell, D.: Coal Gasification and Its Appl. (2011).
68. Lipson, A.G.: Inter. J. Hydrogen Energy 37 (2012) 5676.
69. Fechete, I.: Catal. Today 189 (2012) 2.
70. Bastos-Neto, M.: Energy and Environmental Sci 5 (2012) 8294.
#    71. Godula-Jopek, A.: Hydrogen Storage Technol.: New Mater., Transport and
Infrastr. (2012).
72. Shakirullah, M.: Fullerenes Nanotubes Carbon Nanostr. 21 (2013) 171.
73. Percheron-Guegan, A.: IFP Energies Nouvelles Publ. (2013) 259.
74. Contreras, M.L.: Structural Chem. 25 (2014) 1045.
75. Klechikov, A.G.: Microporous Mesoporous Mater. 210 (2015) 46.
76. Sun, Y.: Nanosci Nanotechnol. Lett. 7 (2015) 648.
77. Juarez-Mosqueda, R.: Frontiers in Chem. 3 (2015) 2.
78. Contreras, L.M.: Structural Chem. 27 (2016) 1479.
79. Krasnov, P.O.: Applied Surface Sci 416 (2017) 766.
80. Pedicini, R.: Inter. J. Hydrogen Energy 42 (2017) 10089.
81. Broom, D. P.: Inter. J. Hydrogen Energy 42 (2017) 29320.
82. Klechikov, A.: Microporous Mesoporous Mater. 250 (2017) 27.
83. Elsabawy, K.M.: Mater. Lett. 221 (2018)139.
84. Calvo, F.: J. Phys. Chem. A 122 (2018) 2792.
85. Iakunkov, A.: Phys. Chem. Chem. Phys. 20 (2018) 27983.
86. Yurdusen, A.: Inter. J. Hydrogen Energy 45 (2020) ‏12394.
87. Gotzias, A.: C-J. Carbon Res. 6 (2020) ‏11.
88. Yurdusen, A.: Inter. J. Energy Res. 44 (2020) ‏2875.
89. Prasetyo, N.: Inter. J. Hydrogen Energy ‏ 46 (2021) SI4222.

Hulman, M., Kuzmany, H., Dubay, O., Kresse, G., Li, L., Tang, Z., : Raman spectroscopy of template grown single wall carbon nanotubes in zeolite crystals. J. Chem. Phys. 119 (2003) 3384. (Not IEE SAS).

1. Damnjanović, M.: J. Phys. Cond. Matt. 16 (2004) L505.
2. Xiao, Y.: Phys. Rev. B 71 (2005) 233405.
3. Milošević, I.: Phys. Rev. B 72 (2005) 085426.
4. Fiori, G.: Proc. ESSDERC 2005. P. 537.
5. Lawler, H.M.: Mater. Research Soc Symp. Proc. 899 (2005) 135.
6. Lawler, H.M.: Phys. Rev. B 72 (2005) 233403.
7. Davidson, G.: Specialist Periodical Rep. Spectrosc. Prop. Inorg. Organometall.  Comp. 37 (2006) 17.
8. Gao, K.: J. Phys. Cond. Matt. 19 (2007) 486210.
9. Roussel, T.: Phys. Rev. B 76 (2007) 235418.
10. Jiang, J.-W.: J. Phys. Cond. Matt. 20 (2008) 045228.
11. Borka, D.: Phys. Rev. A 77 (2008) 032903.
12. Freitas Jr.: J. Comput. Theoret. Nanosci 5 (2008) 760.
13. Deretzis, I.: J. Chem. Phys. 128 (2008) 164706.
14. Borka, D.: J. Phys. Cond. Matt. 20 (2008) 474212.
15. Van Noyen, J.: ECS Trans. 19 (2009) 161.
16. Liu, J.W.: J. Comput. Chem. 31 (2010) 1681.
17. Artyukhov, V.I.: Nanotechnol. 21 (2010) 385304.
18. Lee, S.: J. Phys. Chem. Solids 72 (2011)  1133.
19. Labropoulos, A.: Chem. Mater. 27 (2015) 8198.
20. Wang, Y.: Chemistryselect 4 (2019) 12676.

Hasi, F., Simon, F., Hulman, M., Kuzmany, H., : Temperature activated BN substitution of SWCNT AIP Conf. Proc. 685 (2003) 370-373. (Not IEE SAS).

     1. Davidson, G.: Specialist Periodical Rep. Spectrosc. Prop. Inorg. Organometall. Comp. 38 (2006) 189.

Chen, X., Dettlaff-Weglikovska, U., Haluška, M., Hulman, M., Roth, S., : Pressure isotherms of hydrogen adsorption in carbon nanostructures Mater. Research Soc Symp. Proc. 706 (2002) 295-300. (Not IEE SAS).

1. Corma, A.: J. Molecular Catal. A 230 (2005) 97.
2. Ströbel, R.: J. Power Sources 159 (2006) 781.
3. Oh, K.S.: Proc. ASME/JSME 1 (2007) 33.
4. Li, F.: Carbon Nanomater. for Advanced Energy Systems: Adv. Mater. Synthesis Device Appl. 2015. P. 407.

Kuzmany, H., Plank, W., Hulman, M., Kramberger, C., Grüneis, A., Pichler, T., Peterlik, H., Kataura, H., and Achiba, Y.: Determination of SWCNT diameters from the Raman response of the radial breathing mode. European Phys. J. B 22 (2001) 307-320. (Not IEE SAS).

1. Jiang, C.: Nano Lett. 2 (2002) 1209.
2. Ruffieux, P.: Phys. Rev. B 66 (2002) 245416.
3. Dubay, O.: Phys. Rev. B 67 (2003) 035401.
4. Dresselhaus, M.S.: J. Nanosci Nanotechnol. 3 (2003) 19.
5. Milošević, I.: Phys. Rev. B 67 (2003) 165418.
6. Akdim, B.: Phys. Rev. B 67 (2003) 245404.
7. Karachevtsev, V.A.: Carbon 41 (2003) 1567.
8. Bokova, S.N.: Quantum Electr. 33 (2003) 645.
9. Weisman, R.B.: Nano Lett. 3 (2003) 1235.
10. Cao, J.X.: J. Phys. Soc Japan 72 (2003) 2256.
11. Filho, A.G.S.: Nanotechnol. 14 (2003) 1130.
12. Menna, E.: Phys. Rev. B 68 (2003) 193412.
13. Lian, Y.: J. Phys. Chem. B 107 (2003) 12082.
14. Venkateswaran, U.D.: Phys. Rev. B 68 (2003) 241406.
15. Osadchy, A.V.: JETP Lett. 77 (2003) 405.
16. Osadchy, A.: AIP Conf. Proc. 685 (2003) 394.
17. Hartschuh, A.: AIP Conf. Proc. 723 (2004) 163.
18. Obraztsova, E.D.: NATO Sci Ser. II 169 (2004) 391.
19. Karachevtsev, V.A.: NATO Sci Ser. II 165 (2004) 139.
20. Sato, Y.: Chem. Phys. Lett. 385 (2004) 323.
21. Gupta, S.: J. Applied Phys. 95 (2004) 2038.
22. Souza Filho, A.G.: Phys. Rev. B 69 (2004) 115428.
23. Jorio, A.: MRS Bull. 29 (2004) 276-280+239-243.
24. Ruffieux, P.: Applied Phys. A 78 (2004) 975.
25. Strano, M.S.: Nano Lett. 4 (2004) 543.
26. Keogh, S.M.: J. Phys. Chem. B 108 (2004) 6233.
27. Hartschuh, A.: Inter. J. Nanosci 3 (2004) 371.
28. Heller, D.A.: J. Phys. Chem. B 108 (2004) 6905.
29. Samsonidze, Ge.G.: Applied Phys. Lett. 85 (2004) 1006.
30. Dresselhaus, M.S.: Annual Rev. Mater. Research 34 (2004) 247.
31. Jorio, A.: Phil. Trans. Royal Soc A 362 no. 1824 (2004) 2311.
#      32. Luo, Z.: Mater. Research Soc Symp. Proc. 858 (2004) 277.
33. Luo, Z.: Phys. Rev. B 70 (2004) 1.
34. Hedderman, T.G.: J. Phys. Chem. B 108 (2004) 18860.
35. Murakami, Y.: Phys. Rev. B 71 (2005) 085403.
36. Jorio, A.: Phys. Rev. B 71 (2005) 075401.
37. Osswald, S.: Chem. Phys. Lett. 402 (2005) 422.
38. Sinani, V.A.: J. American Chem. Soc 127 (2005) 3463.
39. An, K.H.: J. American Chem. Soc 127 (2005) 5196.
40. Belin, T.: Mater. Sci Engn. B 119 (2005) 105.
41. Burghard, M.: Surface Sci Reports 58 (2005) 1.
42. Akdim, B.: Phys. Rev. B 72 (2005) 121402.
43. Terekhov, S.V.: AIP Conf. Proc. 786 (2005) 166.
44. Sato, Y.: J. Applied Phys. 98 (2005) 094313.
45. Kukovecz, Á.: Carbon 43 (2005) 2842.
46. Hedderman, T.G.: Proc. SPIE 5826 (2005) 12.
47. Brar, V.W.: J. Nanosci Nanotechnol. 5 (2005) 209.
#      48. Kabir, M.S.: Doktorsavhandl. vid Chalmers Tek. Hogskola no. 2330 (2005).
49. An, K.H.: J. Electronic Mater. 35 (2006) 235.
50. Hedderman, T.G.: J. Phys. Chem. B 110 (2006) 3895.
51. Lee, Y.: J. Phys. Chem. B 110 (2006) 5310.
52. Liu, A.: Nanotechnol. 17 (2006) 2845.
53. An, K.H.: Current Applied Phys. 6 (2006) e99.
54. Lin, Y.: Carbon Nanotechnol. (2006) 255.
55. Thomsen, C.: Topics in Applied Phys. 108 (2006) 115.
56. An, K.H.: Nano 1 (2006)115.
57. Gouadec, G.: Progress in Crystal Growth Character. Mater. 53 (2007) 1.
58. Rincon, M.E.: J. Nanosci Nanotechnol. 7 (2007) 1596.
59. Simon, F.: J. Nanosci Nanotechnol. 7 (2007) 1197.
60. Liu, H.: J. Power Sources 171 (2007) 1054.
61. Kim, S.N.: Advanced Mater. 19 (2007) 3214.
62. Khoshnevisan, B.: Inter. J. Hydrogen Energy 32 (2007) 3860.
63. Li, Z.: J. Chem. Phys. 127 (2007) 154713.
64. Geng, H.-Z.: Nano 2 (2007) 157.
65. Liu, J.: Physica E 40 (2008) 2343.
66. Borowiak-Palen, E.: Physica E 40 (2008) 2227.
67. Haffner, M.: Microelectr. Engn. 85 (2008) 768.
68. Tausenev, A.V.: Applied Phys. Lett. 92 (2008) 171113.
69. Casey, A.: Toxicol. Lett. 179 (2008) 78.
70. Bachmatiuk, A.: Mater. Sci-Poland 26 (2008) 105.
71. Costa, S.: Mater. Sci-Poland 26 (2008) 433.
72. Bachmatiuk, A.: Nanotechnol. 19 (2008) 365605.
73. Kim, S.N.: NSTI-Nanotech, Nanotechnology (2008) 1, pp. 132.
74. Kim, S.N.: Proc. IEEE (2008) 4806524.
75. Kim, S.N.: Nano Lett. 8 (2008) 4415.
76. Sawatsuk, T.: Diamond Related Mater. 18 (2009) 524.
77. Nerushev, O.A.: Technical Phys. Lett. 35 (2009) 203.
78. Dervishi, E.: Particulate Sci Technol. 27 (2009) 222.
79. Dervishi, E.: J. Mater. Chem. 19 (2009) 3004.
80. Khoshnevisan, B.: Physica B 404 (2009) 1733.
81. Kim, J.-H.: J. Applied Phys. 105 (2009) 103506.
82. Grebenyukov, V.V.: J. Nanoelectr. Optoelectr. 4 (2009) 281.
83. Dervishi, E.: Mater. Research Soc Symp. Proc. 1142 (2009) 157.
84. Dervishi, E.: Chem. Mater. 21 (2009) 5491.
85. Spudat, C.: Phys. Status Solidi B 246 (2009) 2498.
86. Debnath, S.: Carbon 48 (2010) 1489.
87. Debnath, S.: J. Phys. Chem. C 114 (2010) 8167.
88. Chowdhury, R.: Comput. Mater. Sci 48 (2010) 730.
89. Verma, P.: Laser Photonics Rev. 4 (2010) 548.
90. Castrucci, P.: Nanoscale 2 (2010) 1611.
91. Brownlow, S.R.: Composites Sci Technol. 70 (2010) 1460.
92. Singh, D.K.: Diamond Related Mater. 19 (2010) 1281.
93. Gao, Y.: Chinese Sci Bull. 55 (2010) 3978.
94. Abdel-Fattah, T.M.: ECS Trans. 25 (2010) 1.
95. Dora, B.: Adv. Cond. Matt. Mater. Res. 6 (2010) 129.
96. Makam, V.S.: Carbon Nanotubes (2011) 105.
97. Sheng, L.: Chem. Phys. Lett. 502 (2011) 101.
98. Liu, K.: Phys. Rev. B 83 (2011) 113404.
99. Scheibe, B.: Central Europ. J. Phys. 9 (2011) 325.
100. Shi, L.: Nano Research 4 (2011) 759.
101. Kupka, T.: Magnetic Resonance in Chem. 49 (2011) 549.
102. Lukaszczuk, P.: Mater. Research Bull. 46 (2011) 1535.
103. Kim, W.S.: J. Mater. Chem. 21 (2011) 15655.
104. Danilchenko, B.A.: Low Temp. Phys. 37 (2011) 710.
105. Liu, Z.: Nano Lett. 11 (2011) 5117.
106. Wei, H.-Z.: J. Phys. Chem. A 115 (2011) 14570.
107. Saito, R.: Adv. Phys. 60 (2011) 413.
108. Paratala, B.S.: Carbon Nanostr. (2011) 27.
109. Aqel, A.: Arabian J. Chem. 5 (2012) 1.
110. Kupka, T.: Magnetic Resonance in Chem. 50 (2012) 142.
111. Schönfelder, R.: Applied Phys. A 106 (2012) 843.
112. Chełmecka, E.: J. Molecular Modeling 18 (2012) 1463.
113. Kupka, T.: Synthetic Metals 162 (2012) 573.
114. Liu, X.: J. Mater. Sci 47 (2012) 6086.
115. Scarselli, M.: J. Phys. Cond. Matt. 24 (2012) 313202.
116. Yan, X.: J. Phys. Chem. C 116 (2012) 17897.
117. Jung, W.: Measurement Sci Technol. 23 (2012) 125501.
118. Jedrzejewska, A.: Fullerenes Nanotubes Carbon Nanostr. 21 (2013) 273.
119. Palaniappan, A.: Biosens. Bioelectr. 43 (2013) 143.
120. Kupka, T.: Magnetic Resonance Chem. 51 (2013) 463.
121. Kupka, T.: J. Chem. Theory Comput. 9 (2013) 4275.
122. Ingle, T.: J. Applied Toxicol. 33 (2013) 1044.
123. Abdel-Fattah, T.M.: J. Nanomater. (2013) 421503.
124. Trejo, A.: Physica E 51 (2013) S10.
126. Wang, X.:  Proc. SPIE 9043 (2013) 90431A.
127. Kharlamova, M.V.: Physics-Uspekhi 56 (2013) 1047.
128. Mahmoudinezhad, E.: Computat. Mater. Sci 85 (2014) 121.
129. Somanathan, T.: J. Nanosci Nanotechnol. 14 (2014) 3272.
130. Liu, Y.: SMALL  10 (2014) 944.
131. Schoenfelder, R.: J. Experimen. Nanosci 9 (2014) 931.
132. Kramberger, C.: Phys. Status Solidi B 251 (2014) 2432.
133. Nicolle, J.: EPL 107 (2014) 67003.
134. Ma, W.: Carbon 77 (2014) 266.
#    135. Thanh, N.D.: Inter. J. Nuclear Energy Sci Technol. 8 (2014) 249.
136. Arutyunyan, N.R.: Laser Phys. 25 (2015) 015902.
137. Ma, Y.: Solid State Sci 46 (2015) 49.
138. Dal Bosco, L.: PLOS ONE 10 (2015) e0129156.
139. Das, R.: Current Nanosci 11 (2015) 23.
140. Lee, T.: RSC Adv. 5 (2015) 69410.
141. Ghavanloo, E.: Inter. Mater. Rev. 60 (2015) 312.
142. Zhang, J.-C.: Chinese J. Chem. Phys. 28 (2015) 617.
143. Toyoda, N.: Nuclear Instr. Methods in Phys. Res. B  371 (2016) 317.
144. De Souza, L.A.: Inorganica Chimica Acta 447 (2016) 38.
145. Kupka, T.: J. Molecul. Graphics & Modell. 67 (2016) 14.
146. Kupka, T.: Phys. Chem. Chem. Phys. 18 (2016) 25058.
147. Khmelinskii, I.: Photonics Nanostr.-Fundamen. Appl. 21 (2016) 67.
148. Zhang J.-C.: New Carbon Mater. 31 (2016) 568.
149. Ben-David, J.: Thin Solid Films 616 (2016) 515.
150. Wang, Y.: J. Raman Spectroscopy 47 (2016) 1231.
151. Fang, Y. H.: J. Applied Phys. 121 (2017) 224301.
152. Senkovskiy, B.V.: Adv. Electron. Mater. 3 (2017) 1600490.
153. Guo, Y.: AIP Adv. 8 (2018) 035111.
154. Yan, M.: J. Mater. Sci-Mater. Electron. 29 (2018) 20260.
155. Yadav, M.D.: Chem. Engn. Sci 196 (2019) 91.
#     156. Tan, W.H.: Key Engn. Mater. 723 (2017) 470.
#     157. Sun, X.: Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica 35 (2018) 1279.
158. Yadav, M.D.: Chem. Engn. Sci 196 (2019) 91.
159. Zhu, T.: ACS Applied Mater. Interfaces 11 (2019) 10856.
160. Chipara, D.M.: Polymer 176 (2019) 74.
161. Ahmad, S.: Carbon 149 (2019) 318.
162. Park, Y.: J. Phys. Chem. C 123 (2019) 14003.
163. Yuldashova, I. I.: Physica B 571 (2019) 280.
164. Yan, H.M.: J. Applied Phys. 126 (2019) 045101.
#      165. Ghavanloo, E.: In Comput. Continuum Mechanics of Nanoscopic Struct. Springer Tracts in Mechanical Engn. Springer 2019. ISBN 978-3-030-11649-1.
166. Kroeckel, C.: J. American Chem. Soc 142 (2020) 2327.
167. Sielicki, K.: Applied Surface Sci‏ 508 (2020) 145144.
168. Rojwal, V.: IEEE Sensors J. 21 (2021) 2627.
169. Zhu, T.: Mater. Sci Engn. C 120 (2021) 111757.
170. Chiba, T.: AIP Adv. 11 (2021) 015332.
171. Roy, D.: Bull. Mater. Sci 44 (2021) 31.

Hulman, M., Plank, W., Kuzmany, H., : Distribution of spectral moments for the radial breathing mode of single wall carbon nanotubes. Phys. Rev. B 63 (2001) 081406(R). (Not IEE SAS).

1. Teredesai, P.V.: Applied Surface Sci 182 (2001) 196.
2. Ichida, M.: Phys. Rev. B 65 (2002) 241407.
3. Ghosh, S.: J. Applied Phys. 92 (2002) 1165.
4. Ghosh, S.: Pure Applied Chem. 74 (2002) 1719.
5. Venkateswaran, U.D.: Phys. Status Solidi B 235 (2003) 364.
6. Holzinger, M.: J. American Chem. Soc 125 (2003) 8566.
7. Ichida, M.: J. Phys. Soc Japan 73 (2004) 3479.
8. Sheng, C.-X.: Phys. Rev. B 71 (2005) 125427.
9. Burghard, M.: Surface Sci Rep. 58 (2005) 1.
10. Sheng, C.X.: Proc. SPIE 5725 (2005) 02.
11. Lim, S.H.: Functional Mater. Lett. 1 (2008) 1.
12. Bhattacharyya, K.: J. Nanosci Nanotechnol. 9 (2009) 1897.
#   13. Pugno, N.: Acta Astronautica 64 (2009) 524.
14. Lee, J.-A.: J. Electrochem. Soc 157 (2010) K131.
15. Wang, Y.: J. Raman Spectroscopy 47 (2016) 1231.

Hulman, M., Krause, M., Kuzmany, H., Inakuma, M., Shinohara, H., : Fullerene quantum gyroscope, low energy modes of metals in fullerene cages. Ferroelectr. 249 (2001) 107-115. (Not IEE SAS).

1. Popov, A.A.: J. Comput. Theoret. Nanosci 6 (2009) 292.
2. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
3. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.
4. Spree, L.: Chemistry-A Europ. J. 26 (2020) 2436.

Haluška, M., Hulman, M., Hirscher, M., Becher, M., Roth, S., Stepanek, I., Bernier, P., : Hydrogen storage in mechanically treated single wall carbon nanotubes AIP Conf. Proc. 591 (2001) 603-608. (Not IEE SAS).

1. Takeda, H.: J. Phys. D 35 (2002) 3225.
2.  Hilding, J.: J. Dispersion Sci Technol. 24 (2003) 1.
3. Eletskii, A.V.: Phys.-Uspekhi 47 (2004) 1119.
4. Corma, A.: J. Molecular Catal. A 230 (2005) 97.
5. Haas, M.K.: J. Mater. Res. 20 (2005) 3214.
6. Kim, H.-S.: Modern Phys. Lett. B 22 (2008) 2493.
7. Kim, D.-Y.: Molecular Cryst. Liquid Cryst. 491 (2008) 255.
8. Kim, J.K.: Adv. Struct. Mater. 9 (2011) 3.
9. Miansari, M.: Adv. Functional Mater. 25 (2015) 1014.

Hirscher, M., Becher, M., Haluška, M., Dettlaff-Weglikovska, U., Quintel, A., Duesberg, G., Choi, Y., Downes, P., Hulman, M., Roth, S., Stepanek, I., and Bernier, P.: Hydrogen storage in sonicated carbon materials. Applied Phys. A 72 (2001) 129-132. (Not IEE SAS).

1. Zandonella, C.: Nature 410 no. 6830 (2001) 734.
2. Orimo, S.: J. Applied Phys. 90 (2001) 1545.
#         3. Yang, Q.: Cailiao Yanjiu Xuebao/Chinese J. Mater. Res. 15 (2001) 375.
4. Schlapbach, L.: Nature 414 no.6861 (2001) 353.
#         5. Orimo, S.: Process. Fabric. Adv. Mater. X (2001) 214.
6. McRae, E.: Vide 2 (2001) 235.
7. Ding, R.G.: J. Nanosci Nanotechnol. 1 (2001) 7.
8. Lawrence, J.: Mater. Research Soc Symp.-Proc. 704 (2002) 219.
9. Weidenkaff, A.: Mater. Sci Engn. C 19 (2002) 119.
10. Wang, P.: Applied Phys. Lett. 80 (2002) 318.
11. Meunier, V.: Phys. Rev. Lett. 88 (2002) 755061.
12. Du, W.-F.: Nano Lett. 2 (2002) 343.
13. Ritschel, M.: Applied Phys. Lett. 80 (2002) 2985.
14. Dai, G.-P.: Nano Lett. 2 (2002)  503.
15. Unger, E.: Current Applied Phys. 2 (2002) 107.
16.  Froudakis, G.E.: J. Phys. Cond. Matt. 14 (2002) R453.
17. Shiraishi, M.: Chem. Phys. Lett. 358 (2002) 213.
18. Bom, D.: Nano Lett. 2 (2002) 615.
19. Patzke, G.R.: Angewandte Chemie-Inter. Ed. 41 (2002) 2446.
20. Arellano, J.S.: J. Chem. Phys. 117 (2002) 2281.
21. Pradhan, B.K.: J. Mater. Res. 17 (2002) 2209.
22. Zuttel, A.: MRS Bull. 27 (2002) 705.
23. Chen, B.: Analyt. Chem. 74 (2002) 4774.
24. Maultzsch, J.: Applied Phys. Lett. 81 (2002) 2647.
#       25. Takagi, H.: Nihon Enerugi Gakkaishi/J. Japan Inst. Energy 81 (2002) 891.
26. Levesque, D.: J. Phys. Cond. Matt. 14 (2002) 9285.
27. Chen, P.: Nature 420 no. 6913 (2002) 302.
28. Orimo, S.-I.: Molecular Crystals Liquid Cryst. Sci Technol. A 386 (2002) 173.
29. Dai, G.P.: New Carbon Mater. 17 (2002) 49.
30. Schlapbach, L.: MRS Bull. 27 (2002) 675.
31. Heben, M.J.: AIP Conf. Proc. 671 (2003) 77.
32. Zhou, L.G.: NANOTECH 3 (2003) 154.
33. Orimo, S.: Process. Fabrication Adv. Mater. XI  (2003) 123.
34. Yang, Z.Q.: New Carbon Mater. 18 (2003) 75.
35. Zhang, H.Y.: J. Applied Phys. 94 (2003) 6417.
36. Zhou, L.G.: Carbon 41 (2003) 613.
37. Matsumoto, K.: Fullerenes Nanotubes Carbon Nanostr. 11 (2003) 15.
38. Wang, P.: J. Alloys Comp. 350 (2003) 218.
39. Xia, Y.: Phys. Rev. B 67 (2003) 115117.
#       40. Fujii, H.: ACS Div. Fuel Chem. Prep. 48 (2003) 273.
41. Takenobu, T.: Synthetic Metals 135-136 (2003) 787.
#       42. Miranda-Hernandez, M.: J. Solid State Electrochem. 7 (2003) 264.
43. Prosini, P.P.: J. Power Sources 118 (2003) 265.
44. Lueking, A.: AIChE J. 49 (2003) 1556.
45. Agostino, R.G.: Phys. Rev. B 68 (2003) 035413.
46. Li, J.: J. Chem. Phys. 119 (2003) 2376.
47. Tarasov, B.P.: J. Alloys Comp. 356-357 (2003) 510.
48. Chen, J.: J. Alloys Comp. 356-357 (2003) 413.
49. Atsumi, H.: J. Alloys Comp. 356-357 (2003) 705.
50. Orimo, S.: J. Alloys Comp. 356-357 (2003) 716.
51. Lee, J.Y.: J. Phys. Chem. B 107 (2003) 8812.
52. Tasis, D.: Chemistry A Europ. J. 9 (2003) 4000.
53. Sudan, P.: Carbon 41 (2003) 2377.
54. Sonela, Y.: Electrochem. 71 (2003) 883.
55. Schimmel, H.G.: Chemistry A Europ. J. 9 (2003) 4764.
56. Hu, Y.H.: Industrial Engn. Chem. Res. 42 (2003) 5135.
57. Tomaselli, M.: Molecular Phys. 101 (2003) 3029.
58. Kadono, K.: Applied Phys. Lett. 83 (2003) 3392.
59. Hu, Y.H.: J. Phys. Chem. A 107 (2003) 9737.
#       60. Tang, S.: Chem. Bull./Huaxue Tongbao 66 (2003) 687.
61. Furuya, Y.: Carbon 42 (2004) 331.
62. Lueking, A.D.: Langmuir 20 (2004) 714.
63. Lawrence, J.: Applied Phys. Lett. 84 (2004) 918.
64. Jhi, S.-H.: Solid State Comm. 129 (2004) 769.
65. Heine, T.: Phys. Chem. Chem. Phys. 6 (2004) 980.
66. Yamanaka, S.: J. Alloys Comp. 366 (2004) 264.
67. Seifert, G.: Solid State Ionics 168 (2004) 265.
68. Shiraishi, M.: Applied Phys. A 78 (2004) 947.
69. Rawat, D.S.: Applied Phys. A 78 (2004)  969.
70. Poirier, E.: Applied Phys. A 78 (2004)  961.
71. Zuttel, A.: Naturwissenschaften 91 (2004) 157.
72. Deng, W.-Q.: Phys. Rev. Lett. 92 (2004) 166103.
73. Takagi, H.: Mater. Sci Engn. B 108 (2004) 143.
74. Kiyobayashi, T.: Mater. Sci Engn. B 108 (2004) 134.
75. Zuttel, A.: Mater. Sci Engn. B 108 (2004) 9.
76. Callejas, M.A.: Mater. Sci Engn. B 108 (2004) 120.
77. Piseri, P.: J. Phys. Chem. B 108 (2004) 5157.
78. Roh, S.: J. Vacuum Sci Technol. B 22 (2004) 1411.
79. Wang, P.: Applied Phys. A 78 (2004) 1235.
80. Hu, Y.H.: Industrial Engn. Chem. Res. 43 (2004) 2464.
81. Zheng, H.: Sci in China B 47 (2004) 222.
82. Jhi, S.-H.: Phys. Rev. B 69 (2004) 245407.
83. Leng, H.Y.: J. Phys. Chem. B 108 (2004) 8763.
84. Hu, Y.H.: Industrial Engn. Chem. Res. 43 (2004) 4174.
85. Han, S.S.: Carbon 42 (2004) 2169.
86. Guay, P.: Carbon 42 (2004) 2187.
87. Vajo, J.J.: J. Phys. Chem. B 108 (2004) 13977.
88. Kayiran, S.B.: J. Phys. Chem. B 108 (2004) 15211.
89. Shindo, K.: J. Alloys Comp. 379 (2004) 252.
90. Sclüth, F.: Chemical Comm. (2004) 2249.
91. Kang, J.K.: J. Chem. Phys. 121 (2004) 10623.
92. Takagi, H.: J. Alloys Comp. 385 (2004) 257.
93. Yartys, V.A.: NATO Sci Ser. II 172 (2004) 75.
94. Tanabe, E.: Nippon Kinzoku Gakkaishi/J. Japan Inst. Metals 69 (2005) 113.
95. Jhi, S.-H.: Phys. Rev. B 71 (2005) 035408.
96. Xia, Y.: Phys. Rev. B 71 (2005) 075412.
97. Sandrock, G.: Applied Phys. A 80 (2005) 687.
98. Yun, H.H.: Industrial Engn. Chem. Res. 44 (2005) 1510.
99. Shen, K.: J. Phys. Chem. B 109 (2005) 4455.
100. Costa, P.M.F.J.: Nanotechnol. 16 (2005) 512.
101. Muto, S.: Japan. J. Applied Phys. 44 (2005)  2061.
102. Poirier, E.: Rev. Sci Instrum. 76 (2005) 055101.
103. Lafi, L.: Carbon 43 (2005) 1347.
104. Hu, Y.H.: Industrial Engn. Chem. Res. 44 (2005) 4304.
105. Centrone, A.: Phys. Rev. B 71 (2005) 245406.
106. Zhou, L.: Progress Chem. 17 (2005) 660.
107. Centrone, A.: Carbon 43 (2005) 1593.
108. Lucking, A.D.: J. Phys. Chem. B 109 (2005) 12710.
109. Spotp, G.: Studies in Surface Sci Catal. 155 (2005) 481.
110. Liu, C.: J. Phys. D 38 (2005) R231.
111. Patchkovskii, S.: Proc. NAS USA 102 (2005) 10439.
112. Lenardi, C.: Europ. Phys. J. B 46 (2005) 441.
113. Kang, J.K.: Applied Phys. Lett. 87 (2005) 111904.
114. Du, A.J.: Nanotechnol. 16 (2005) 2118.
115. Jang, J.W.: J. Applied Phys. 98 (2005)  074316.
116. Wagemans, R.W.P.: J. American Chem. Soc 127 (2005) 16675.
117. Wang, Y.: Mater. Research Soc Symp.-Proc. 837 (2005) 125.
118. Zhou, L.: Renewable & Sust. Energy Rev. 9 (2005) 395.
119. Hu, Y.H.: Industrial Engn. Chem. Res. 45 (2006) 182.
120. Kim, Y.-H.: Phys. Rev. Lett. 96 (2006).
121. Hayashi, Y.: Diamond Related Mater. 15 (2006) 1138.
122. Bell, M.S.: Topics Applied Phys. 100 (2006) 77.
123. Zhou, L.: Chemical Engn. Comm. 193 (2006) 564.
124. Yang, Y.: Progress Chem. 18 (2006) 648.
125. Zhang, B.-Y.: Chinese Phys. Lett. 23 (2006) 1536.
126. Hu, Y.H.: Industrial Engn. Chem. Res. 45 (2006) 4993.
127. Zhou, Z.: J. Phys. Chem. B 110 (2006) 13363.
128. Kojima, Y.: J. Alloys Comp. 421 (2006) 204.
129. Rawat, D.S.: Phys. Rev. B 74 (2006) 113403.
130. Strobel, R.: J. Power Sources 159 (2006) 781.
131. Banerjee, S.: Proc. IEEE 94 (2006) 1806.
132. Pundt, A.: Annual Rev. Mater. Res. 36 (2006) 555.
133. Baierle, R.J.: J. Phys. Chem. B 110 (2006) 21184.
134. Jhi, S.-H.: Phys. Rev. B 74 (2006) 155424.
135. Monthioux, M.: J. Mater. Res. 21 (2006) 2774.
136. Zhang, Y.: J. Phys. Chem. B 110 (2006) 22532.
#     137. Oshima, S.: WHEC 2006. P. 1169.
138. Yang, Q.-H.: Carbon Nanotechnol. (2006) 323.
#     139. Zacharia, R.: Mater. Research Soc Symp.-Proc. 973 (2006) 109.
#     140. Lee, J.B.: WHEC 2006. P. 3225.
#     141. Guo, J.: Proc. SPIE 6340 (2006) 634006.
142. Guo, J.: Proc. SPIE 6340 (2006) U28-U38.
143. Maier, J.: Faraday Discuss. 134 (2007) 51.
144. Ye, X.: Carbon 45 (2007) 315.
145. Waqar, Z.: J. Mater. Sci 42 (2007) 1169.
146. Jain, P.: J. Phys. Chem. C 111 (2007) 1788.
147. Cho, J.H.: Catalysis Today 120 (2007) S407.
148. Lee, J.B.: Catalysis Today 120 (2007) S363.
#     149. Zuttel, A.: Mitigation and Adaptation Strateg. Global Change 12 (2007) 323.
150. Langmi, H.W.: Coord. Chem. Rev. 251 (2007) 925.
151. Skowronski, J.M.: Electrochim. Acta 52 (2007) 5677.
#    152. Chen, R.: Fuhe Cailiao Xuebao/Acta Mater. Compos. Sinica 24 (2007) 126.
#    153. Luxembourg, D.: Inter. J. Hydrogen Energy 32 (2007) 1016.
154. Felderhoff, M.: Phys. Chem. Chem. Phys. 9 (2007) 2643.
155. Georgakis, M.: Inter. J. Hydrogen Energy 32 (2007) 1999.
156. Hassan, N.H.A.: Diamond Related Mater. 16 (2007) 1517.
157. Jones, C.P.: Langmuir 23 (2007) 9501.
158. Rawat, D.S.: J. Phys. Chem. C 111 (2007) 12980.
159. Lim, S.C.: Inter. J. Hydrogen Energy 32 (2007) S3442.
160. Farhat, S.: J. Nanosci Nanotechnol. 7 (2007). 3537.
161. Georgakis, M.: Inter. J. Hydrogen Energy 32 (2007) S3465.
162. Kopac, T.: Inter. J. Hydrogen Energy 32 (2007) 3990.
163. Malciolu, O.B.: Inter. J. Modern Phys. C 18 (2007) 1951.
164. de Wit, M.P.: Inter. J. Hydrogen Energy 32 (2007) 4859.
165. Zhang, Y.: Theoret. Comput. Chem. 18 (2007) 127.
166.  Mao, S.S.: Inter. J. Energy Res. 31 (2007) 619.
167. Miao, L.: J. Applied Phys. 103 (2008) 016106.
168. Hu, Q.: J. Phys. Chem. C 112 (2008) 1516.
169. Qu, D.: Chemistry A Europ. J. 14 (2008) 1040.
170. Kocabas, S.: Inter. J. Hydrogen Energy 33 (2008) 1693.
171. Rafati, A.A.: J. Phys. Chem. C 112 (2008) 3597.
#    172. Zhang, Y.: Theoret. Comput. Chem. 18 (2008) 127.
173. Sankaran, M.: Indian J. Chem. A 47 (2008) 808.
174.  Fomkin, A.A.: Colloid J. 70 (2008) 372.
175. Lachawiec Jr., A.J.: Rev. Sci Instrum. 79 (2008) 063906.
176. Malvadkar, N.: J. Power Sources 182 (2008) 323.
177. Skowronski, J.M.: Energy Conversion Management 49 (2008) 2440.
178. Wang, P.: Dalton Trans. 40 (2008) 5400.
179. Zhou, B.: J. Phys. Chem. C 112 (2008) 18516.
180. Karl Johnson, J.: Adsorption by Carbons (2008) 369.
181. Migone, A.D.: Adsorption by Carbons (2008) 403.
182. Moghaddam, S.: J. Microelectromech. Syst. 17 (2008) 1388.
#    183. Chen, R.-S.: Cailiao Gongcheng/J. Mater. Engn. (2009) 41.
184. Adelhelm, P.: J. Mater. Chem. 19 (2009) 1616.
185. Fomkin, A.A.: Russian Chem. Bull. 58 (2009) 712.
186. Smith, C.I.: J. Phys. Chem. C 113 (2009) 5409.
187. Yurum, Y.: Inter. J. Hydrogen Energy 34 (2009) 3784.
188. Gracia, J.: J. Mater. Chem. 19 (2009) 3020.
189.  Meisner, G.P.: Nanotechnol. 20 (2009) 204023.
190. Skowronski, J.M.: J. Nanosci Nanotechnol. 9 (2009) 3858.
191. Brieno-Enriquez, K.M.: Mater. Chem. Phys. 115 (2009) 521.
192. Lee, S.M.: ChemPhysChem 10 (2009) 1825.
193. Oguchi, H.: Rev. Sci Instrum. 80 (2009) 073707.
#    194. Lee, Y.S.: J. Korean Industrial Engn. Chem. 20 (2009) 465.
195. Ganji, M.D.: Digest J. Nanomater. Biostruct. 4 (2009) 673.
196. Beyaz, S.: Inter. J. Hydrogen Energy 35 (2010) 217.
197. Kim, B.H.: Inter. J. Hydrogen Energy 35 (2010) 1300.
198. Geng, H.-Z.: Inter. J. Hydrogen Energy 35 (2010) 2073.
199. Chen, Y.: Carbon 48 (2010) 714.
200. Ishikawa, S.: Applied Phys. A 99 (2010) 29.
201. Mann, M.: Microelectr. Engn. 87 (2010) 1491.
202. Ng, T.Y.: Inter. J. Hydrogen Energy 35 (2010) 4543.
203. Leela Mohana Reddy, A.: Inter. J. Hydrogen Energy 35 (2010) 4138.
204. Wu, H.: Inter. J. Hydrogen Energy 35 (2010) 6345.
205. Wu, C.: J. Mater. Chem. 20 (2010) 5390.
206. Wu, H.: Renewable Energy 35 (2010) 6345.
207. Gao, L.: Carbon 48 (2010) 3250.
#    208. Monajjemi, M.: Inter. J. Nanosci 9 (2010)  517.
209. Mann, M.: Emerging Nanotechnol. Manufact. (2010) 131.
210. Cabria, I.: Sci Technol. Atomic, Molecular, Cond. Matt. Biolog. Syst. 1 (2010) 299.
211. Srinivasa Murthy, S.: IHTC 14. (2010) P. 325.
212. Dodziuk, H.: Carbon Mater.-Chem. Phys. 4 (2011) 117.
213. Wu, H.: Inter. J. Hydrogen Energy 36 (2011) 9032.
214. Jhi, S.-H.: MRS Bull. 36 (2011) 198.
215. Lopez-Corral, I.: J. Phys. Chem. C 115 (2011) 4315.
216. Khaleghian, M.: Fullerenes Nanotubes Carbon Nanostr. 19 (2011) 251.
217. Dzhurakhalov, A.A.: Carbon 49 (2011) 3258.
218. Tedds, S.: Faraday Discuss. 151 (2011) 75.
219. Cho, J.H.: Inter. J. Hydrogen Energy 36 (2011) 12286.
220. Kim, B.H.: Inter. J. Hydrogen Energy 36 (2011) 12887.
#    221. Sloan, J.: Carbon Meta-Nanotubes: Synthesis, Properties Appl. (2011) 225.
222. Doi, K.: CMES 77 (2011) 113.
223. Broom, D.P.: Green Energy Technol. 27 (2011) 19.
#    224. Timonina, A.V.: Russian Microelectr. 40 (2011) 595.
225. Li, M.: J. Comput. Theoret. Nanosci 8 (2011) 2398.
226. Broom, D.P.: Green Energy Technol. 27 (2011) 183.
#    227. Bell, D.: Coal Gasification Its Appl. (2011).
228. Singh, P.: Applied Surface Sci 258 (2012) 3405.
229. Srinivasa Murthy, S.: J. Heat Transfer 134 (2012) 031020.
#    230. Yadav, R.S.: Smart Nanomater. Space Energy Appl. (2012) 213.
231. Koh, G.: Inter. J. Hydrogen Energy 37 (2012) 4170.
232. Wu, H.: Inter. J. Hydrogen Energy 37 (2012) 5686.
233. Yu, Y.: Inter. J. Hydrogen Energy 37 (2012) 5762.
234. Chilev, Ch.: Inter. J. Hydrogen Energy 37 (2012) 10172.
235. Pukazhselvan, D.: Nano Energy 1 (2012) 566.
236. Doi, K.: Comput. Theoret. Chem. 994 (2012) 54.
237. Broom, D.P.: Carbon Nanomater. for Gas Adsorption (2012) 1.
238. Chakraborty, B.: J. Phys. Chem. C 116 (2012) 22502.
239. Goncharov, A.: Inter. J. Hydrogen Energy 37 (2012) 18061.
#    240. Christian, F.: Front. Energy 7 (2013) 6.
241. Kalidindi, S.B.: Phys. Status Solidi B 250 (2013) 1119.
242. He, Z.: Inter. J. Hydrogen Energy 38 (2013) 754.
243. Babu, D.J.: Carbon 61 (2013) 616.
244. Choi, G.P.: J. Mechanical Sci Technol. 27 (2013) 3131.
245. Barghi, S.H.: Inter. J. Hydrogen Energy 39 (2014) 1390.
246. Kustov, L.M.: Mendeleev Comm. 24 (2014) 1.
247. Sorkin, V.: Critical Rev. Solid State Mater. Sci 39   (2014) 319.
248. Jin, J.: Functional Mater. Lett. 7 (2014) 1450027.
249. Sheng, Q.: J. Nanosci  Nanotechnol. 14 (2014) 4706.
250. Reisi-Vanani, A.: Surface Sci 621 (2014) 146.
251. Broom, D. P.: In: Advances in Hydrogen Production, Storage and Distribution. Woodhead Publ. Ser. in Energy 2014. ISBN: 978-0857097682. P. 410.
252. Shissler, D.J.: Green Energy and Technol. Springer 2014. P. 297.
253. Alesaadi, S.J.: Inter. J. Hydrogen Energy 40 (2015) 1651.
254. Cai, J.: Mater. Chem. Phys. 161 (2015) 142.
255. Ansari, R.: Superlatt. Microstr. 82 (2015) 113.
256. Ishikawa, S.: Applied Phys. A 119 (2015) 1365.
257. Cole, M.T.: Micro Nano Technol. (2015) 125.
258. Singh, S.: Renewable & Sustainable Energy Rev. 51 (2015) 623.
259. Ariharan, A.: Inter. J. Hydrogen Energy 41 (2016) 3527.
260. Armakovic, S.: Phys. Chem. Chem. Phys. 18 (2016) 2859.
261. Al-Hamdani, Y.S.: J. Chem. Phys. 146 (2017) 094701.
262. Liew, K.M.: Micro & Nano Technol. (2017) 335.
263. Pan, L. J.: IOP Conf. Ser.-Mater. Sci Engn. 281 (2017) UNSP012010.
264. Galushkin, N.E.: J. Electrochem. Soc 164 (2017) A2555.
265. Babu, D.J.: Chemie Ingenieur Technik 89 (2017) SI1273.
266. Yadav, A.: J. Phys. Chem. C 121 (2017) 16721.
267. Noei, M.: Arabian J. Chem. 10 (2017) S3001.
268. Broom, D.P.: Inter. J. Hydrogen Energy 42 (2017) 29320.
269. Berlie, A.: Phys. Rev. Mater. 1 (2017) 054405.
270. Abdullahi, Y.Z.: Mater. Res. Express 5 (2018) 125605.
271. Balakumar, K.: Chemistryselect 3 (2018) 8901.
#     272. Rafiei, S.: Mater. Chem.: A Multidisciplinary Approach to Innovative Methods. CRC Press 2016. ISBN 978-177188252-1, pp. 111-122.
#     273. Liew, K.M.: Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches Elsevier 2017. ISBN: 978-032343176-7. pp. 1-449.
274. Fomkin, A.A.: Protect. Metals Phys. Chem. Surfaces 55 (2019) 413.
275. Petrushenko, I.K.: Vacuum 167 (2019) 280.
276. Mishra, P.: Inter. J. Hydrogen Energy 45 (2020) ‏12384.
277. Soldatov, A. P.: Russian J. Phys. Chem. A 94 (2020) 663.
278. Schuetz, C.: Crystals 10 (2020) 199.
279. Lyu, J.: Nanomater. 10 (2020) 255.
280. Kicinski, W.: Carbon 168 (2020) 748.
281. Hassan, A.J.: Russian J. Phys. Chem. A 94 (2020) 1636.
282. Hosseini, S.E.: Inter. J. Green Energy 17 (2020) 13.
283. Karimzadeh, S.: J. Molecular Graphics & Modell. 101 (2020) 107745.

Kuzmany, H., Milnera, M., Hulman, M., Jogl, C., Plank, W., and Kurti, J.: Low energy excitations in fullerene dimers and in single wall carbon nanotubes. Ferroelectr. 249 (2001) 125-134. (Not IEE SAS).

1. de Leon, A.: Chem. Phys. Lett. 457 (2008) 174.
2. Jalbout, A.F.: J. Comput. Theoret. Nanosci 6 (2009) 1021.
3. Zhang, C.: Applied Phys. Lett. 103 (2013) 231902.

Hulman, M., Plank, W., Kuzmany, H., : Oscillatory behaviour of the photoselective resonance scattering of single wall carbon nanotubes. Synthetic Metals 121 (2001) 1241–1242. (Not IEE SAS).

      1. Ryabenko, A.G.: Carbon 42 (2004) 1523.

Kuzmany, H., Hulman, M., Plank, W., : Carbon nanostructure characterization by optics and resonance raman scattering Front. Nano-Optoelectr. Systems 6 (2000) 243-258. (Not IEE SAS).

       1. Bom, D.: Nano Lett. 2 (2002) 615.

Krause, M., Hulman, M., Kuzmany, H., Kuran, P., Dunsch, L., Dennis, T., Inakuma, M., Shinohara, H., : Low-energy vibrations in Sc2@C84 and Tm@C82 metallofullerenes with different carbon cages☆. J. Molecular Struct. 521 (2000) 325–340. (Not IEE SAS).

1. Bettinger, H.F.: Chem. Phys. Lett. 332 (2000) 35.
2. Kobayashi, K.: Molecular Phys. 101 (2003) 249.
3. Grupp, A.: AIP Conf. Proc. 723 (2004) 12.
4. Sun, B.Y.: Angew. Chemie-Inter. Ed. 44 (2005) 4568.
5. Tamuliene, J.: Fullerenes Nanotubes Carbon Nanostr. 13 (2005) 279.
6. Kemner, E.: J. Phys. Chem. B 109 (2005) 15048.
7. Guha, S.: Coord. Chem. Rev. 249 (2005) 1111.
8. Haufe, O.: Zeitsch. Anorg. Allgemeine Chemie 631 (2005) 126.
9. Kovalenko, V.I.: Russian Chem. Rev. 75 (2006) 981.
10. Popov, A.A.: J. Comput. Theoret. Nanosci 6 (2009) 292.
#   11. Burke, B.G.: Mater. Research Soc Symp.-Proc. 1204 (2010) 147.
12. Brown, R.M.: Phys. Rev. B 82 (2010) 033410.
13. Khamatgalimov, A.R.: Russian J. Phys. Chem. A 84 (2010) 636.
14. Burke, B.G.: Phys. Rev. B 81 (2010) 115423.
15. Lu, X.: Angewandte Chemie-Inter. Ed. 51 (2012) 5889.
16. Khamatgalimov, A.R.: Inter. J. Quantum Chem. 112 (2012) 1055.
17. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
18. Krisilov, A.V.: Optics Spectrosc. 115 (2013) 802.
19. Jin, P.: Coordination Chem. Rev. 270 (2014) SI89.
20. Jovanovic, T.: Diamond Related Mater. 44 (2014) 44.
21. Khataee, H.: Nanosci Nanotechnol. Lett. 6 (2014) 532.
22. Teng, Y.: Indian J. Chemistry Sec. A 53 (2014) 1371.
23. Jovanovic, T.: J. Nanomater. (2014) 701312.
24. Krisilov, A.V.: Comput. Theoret. Chem. 1054 (2015) 100.
25. Kim, S.-H.: J. Korean Chem. Soc 59 (2015) 9.
26. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.
27. Wu, B.: Chem. Comm. 54 (2018) 775.

Milnera, M., Kurti, J., Hulman, M., and Kuzmany, H.: Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett. 84 (2000) 1324–1327. (Not IEE SAS).

1. Duesberg, G.S.: Phys. Rev. Lett. 85 (2000) 5436.
2. Reich, S.: Phys. Rev. B 62 (2000) 4273.
3. Jorio, A.: Phys. Rev. Lett. 85 (2000) 2617.
4. Launois, P.: Solid State Comm. 116 (2000) 99.
5. Liu, K.: AIP Conf. Proc. 544 (2000) 288.
6. Henrard, L.: AIP Conf. Proc. 544 (2000) 266.
7. Jorio, A.: AIP Conf. Proc. 590 (2001) 129.
8. Reich, S.: AIP Conf. Proc. 591 (2001) 388.
9. Duesberg, G.S.: AIP Conf. Proc. 591 (2001) 308.
10. Jorio, A.: AIP Conf. Proc. 591 (2001) 298.
11. Ravindran, T.R.: Chem. Mater. 13 (2001) 4187.
12. Henrard, L.: Phys. Rev. B 64 (2001) 205403.
13. Kavan, L.: J. Phys. Chem. B 105 (2001) 10764.
14. Souza Filho, A.G.: Phys. Rev. B 63 (2001) 241404.
15. Jorio, A.: Phys. Rev. B 63 (2001) 245416.
16. Saito, R.: Phys. Rev. B 64 (2001) 085312.
17. Brown, S.D.M.: Phys. Rev. B 64 (2001) 073403.
18. Popov, V.N.: Phys. Rev. B 63 (2001) 233407.
19. Alvarez, L.: Phys. Rev. B 63 (2001) 153401.
20. Pimenta, M.A.: Phys. Rev. B 64 (2001) 041401.
21. Reich, S.: Phys. Rev. B 63 (2001) 041401.
22. Yu, Z.: J. Phys. Chem. B 105 (2001) 1123.
23. Jorio, A.: Phys. Rev. Lett. 86 (2001) 1118.
24. Venkateswaran, U.D.: Phys. Status Solidi B 223 (2001) 225.
25. Dresselhaus, M.S.: Molecular Crystals Liquid Cryst. Sci Technol. A 387 (2002) 245.
26. Jorio, A.: Brazilian J. Phys. 32 (2002) 921.
27. Jiang, C.: Nano Lett. 2 (2002) 1209.
28. Jorio, A.: Phys. Rev. B 66 (2002) 115411.
29. Zhao, J.: Nano Lett. 2 (2002) 823.
30. Sauvajol, J.-L.: Carbon 40 (2002) 1697.
31. Lambin, Ph.: Carbon 40 (2002) 1635.
32. Maultzsch, J.: Phys. Rev. B 65 (2002) 233402.
33. Ichida, M.: Phys. Rev. B 65 (2002) 241407.
34. Canonico, M.: Phys. Rev. B 65 (2002) 201402.
35. Jorio, A.: Phys. Rev. B 65 (2002) 155412.
36. Dresselhaus, M.S.: Mater. Research Soc Symp.-Proc. 706 (2002) 219.
37.  Dresselhaus, M.S.: Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci B  77B (2003) 75.
38. Jorio, A.: New J. Phys. 5 (2003) 139.
39. Maultzsch, J.: Phys. Rev. Lett. 91 (2003) 874021.
40. Loa, I.: J. Raman Spectros. 34 (2003) 611.
41. Ponomarenko, O.: Phys. Lett. A 310 (2003) 203.
42. Milosevic, I.: Phys. Rev. B 67 (2003) 165418.
43. Dresselhaus, M.S.: J. Nanosci Nanotechnol. 3 (2003) 19.
44. Liu, F.-M.: Chinese Phys. 13 (2004) 2169.
45. Jorio, A.: Phil. Trans. Royal Soc A 362 no. 1824 (2004) 2311.
46.  Lucas, M.: Composites Sci Technol. 64 (2004) S2297.
47. Popov, V.N.: Nano Lett. 4 (2004) 1795.
48. Atalay, H.: J. Nanosci Nanotechnol. 4 (2004) 749.
49. Fantini, C.: Phys. Rev. Lett. 93 (2004) 087401.
50. Zhang, Q.: Proc. SPIE 5275 (2004) 24.
51. O’Connell, M.J.: Phys. Rev. B 69 (2004) 235415.
52. Keogh, S.M.: J. Phys. Chem. B 108 (2004) 6233.
53. Callejas, M.A.: Mater. Sci Engn. B 108 (2004) 120.
54. Jiang, J.: Phys. Rev. B 71 (2005) 205420.
55. Izard, N.: Phys. Rev. B 71 (2005) 195417.
56. Doorn, S.K.: J. Nanosci Nanotechnol. 5 (2005) 1023.
57. Athalin, H.: Synthetic Metals 154 (2005) 201.
58. Burghard, M.: Surface Sci Rep. 58 (2005) 1.
59. Paillet, M.: Phys. Rev. Lett. 94 (2005) 237401.
60. Belin, T.: Mater. Sci Engn. B 119 (2005) 105.
61. Dou, X.Y.: Physica E 27 (2005) 469.
62. Costa, P.M.F.J.: Nanotechnol. 16 (2005) 512.
63. Shen, K.: J. Phys. Chem. B 109 (2005) 4455.
64. Dresselhaus, M.S.: Phys. Report. 409 (2005) 47.
65. Jorio, A.: Phys. Rev. B 71 (2005) 075401.
66. Athalin, H.: Inter. J. Nanosci 4 (2005) 31.
67. Machón, M.: Phys. Rev. B 71 (2005) 035416.
68. Reich, S.: Phys. Rev. B 71 (2005) 033402.
69. Thomsen, C.: Topics Applied Phys. 108(2006) 115.
70. Kawamoto, H.: Chem. Phys. Lett. 432 (2006) 172.
71. Harutyunyan, A.R.: J. Applied Phys. 100 (2006) 044321.
72. Zhang, Q.: Smart Mater. Struct. 15 (2006) S1.
73. Paillet, M.: J. Phys. Chem. B 110 (2006) 164.
74. Uchida, T.: Japan. J. Applied Phys. 45 (2006) 8027.
75. Shahtahmasebi, N.: Proc. 6th WSEAS (2007) 73.
76. Guo, Z.X.: Nanotechnol. 18 (2007) 465706.
77. Kim, K.K.: Phys. Rev. B 76 (2007) 205426.
78. Agnihotri, S.: J. Phys. Chem. C 111 (2007) 13747.
79. Deacon, R.S.: Phys. Rev. B 76 (2007) 081406.
80.  Szekrenyes, Zs.: J. Optoelectron. Adv. Mater. 9 (2007) 605.
81.  Honda, H.: J. Phys. Chem. C 111 (2007) 3220.
82. Saito, R.: Topics Applied Phys. 111 (2008) 251.
83. Feng, M.: Electrochem. Sensors, Biosens. their Biomed. Appl. (2008) 459.
84. Jeong, H.J.: Nano 3 (2008) 145.
85. Jaisi, D.P.: Environment. Sci Technol. 42 (2008) 8317.
86. Richter, H.: J. Nanosci Nanotechnol. 8 (2008) 6065.
87. Kang, D.: Applied Phys. Lett. 93 (2008) 133102.
88. Araujo, P.T.: Phys. Status Solidi B 245 (2008) 2201.
89. Li, Q.M.: Proc. Royal Soc A 464 no. 2096 (2008) 1941.
90. Toita, S.: Diamond Related Mater. 17 (2008) 1389.
91. Araujo, P.T.: Phys. Rev. B 77 (2008) 241403.
92. Fujimori, T.: J. Phys. Chem. C 112 (2008) 7552.
93. Ma, J.: Chem. Mater. 20 (2008) 2895.
94. Araujo, P.T.: Phys. Rev. Lett. 103 (2009) 146802.
95. Gozzi, D.: J. American Chem. Soc 131 (2009) 12474.
96. Liu, W.-W.: Nano 4 (2009) 77.
97. Ruch, P.W.: Electrochim. Acta 54 (2009) 4451.
98. Wang, H.: J. Phys. Chem. C 113 (2009) 12079.
99. Ma, J.: J. Mater. Chem. 19 (2009) 3033.
100. Hatton, R.A.: Organic Electron. 10 (2009) 388.
101. Sbai, K.: J. Phys. Cond. Matt. 21 (2009) 045302.
102. Wang, J.: J. Phys. Chem. C 113 (2009) 5075.
103. Pyrgiotakis, G.: Ceramic Engn. Sci Proc. 29 (2009) 197.
104. Gao, Y.: Chinese Sci Bull. 55 (2010) 3978.
105. Soares, J.S.: Phys. Status Solidi B 247 (2010) 2835.
106. Schmidt, U.: Springer Series in Optical Sci 158 (2010) 237.
107. Cheng, H.-C.: Computer Methods in Applied Mechanics Engn. 199 (2010) 820.
108. Zhang, J.: Acta Phys. Sinica 59 (2010) 7966.
109. Liu, C.-H.: Nanoscale 2 (2010) 1901.
110. Liu, Z.: J. Nanosci Nanotechnol. 10 (2010) 5570.
111. Gao, P.Q.: Inter. J. Nanosci 9 (2010) 277.
112. Jeet, K.: J. Applied Phys. 108 (2010) 034302.
113. Wang, H.: Carbon 48 (2010) 2882.
114.  Ma, J.: J. Mater. Chem. 20 (2010) 5742.
115. Wang, H.: J. Nanosci Nanotechnol. 10 (2010) 3988.
116. Kang, D.: Diamond Related Mater. 19 (2010) 578.
117. Shi, M.X.: Inter. J. Mechanical Sci 52 (2010) 663.
118. Dharamvir, K.: J. Nano Research 10 (2010) 1.
119. Calogero, G.: Dalton Trans. 39 (2010) 2903.
120. Araujo, P.T.: Physica E 42 (2010) 1251.
121. Tachibana, M.: Horizons in DNA Res. 1 (2010) 203.
122. Hasan, T.: Molecular- Nano-Tubes (2011) 279.
123. Saito, R.: Adv. Phys. 60 (2011) 413.
124. Wei, H.-Z.: J. Phys. Chem. A 115 (2011) 14570.
125. Liu, Z.: Nano Lett. 11 (2011) 5117.
126. Maley, J.: J. Nanotechnol. (2011) 408151.
127. Costa, S.D.: Carbon 49 (2011) 4719.
128.  Ma, J.: Applied Surface Sci 257 (2011) 10471.
129. Narasimhamurthy, K.C.: IET Circuits, Devices Systems 5 (2011) 365.
130. Narasimhamurthy, K.C.: Semicond. Sci Technol. 26 (2011) 075002.
131.  Narasimhamurthy, K.C.: IEEE Trans. Electron Dev. 58 (2011) 5771085.
132. Mallajosyula, A.T.: J. Applied Phys. 109 (2011) 124908.
133. Amer, M.S.: J. Phys. Chem. C 115 (2011) 10483.
134. Hakamatsuka, M.: Carbon 49 (2011) 1869.
#     135. Narasimhamurthy, K.C.: Proc. IEEE Inter. Conf. VLSI Design (2011) 5718803.
136. Girao, E.C.: Nanotechnol. 22 (2011) 075701.
137. Narasimhamurthy, K.C.: Adv. Mater. Res. (2011) 181.
138. Teong Ooi, J.H.: Physica E 43 (2011) 1011.
139. Cheng, Q.: Applied Phys. A 102 (2011) 309.
#    140. Jorio, A.: Raman Spectros. Graphene Related Systems (2011).
141. Mustonen, K.: Beilstein J. Nanotechnol. 3 (2012) 692.
142. Li, Y.: Chemical Engn. J. 211-2012 (2012) 255.
143. Kleut, D.: Mater. Character. 72 (2012) 37.
144. Yu, F.: Physica E 44 (2012) 2032.
145. Costa Girão, E.: Phys. Rev. B 85 (2012) 235431.
146.  Kimura, H.: J. American Chem. Soc 134 (2012) 9219.
147. Grossiord, N.: Polymer Carbon Nanotube Composites. (2012).
148. Passacantando, M.: Applied Phys. Lett. 100 (2012) 163119.
149. Zhang, Y.: Acta Chimica Sinica 70 (2012) 2293.
150. Rigoni, F.: Analyst 138 (2013) 7392.
151. Zhang, C.: Applied Phys. Lett. 103 (2013) 231902.
#     152. Xu, K.: IEEE Nanotechnol. Magazine 7 (2013) 6587515.
#     153. Paipetis, A.S.: Solid Mechanics Its Appl. 188 (2013) 185.
154. Chang, I.-L.: Japan. J. Applied Phys. 52 (2013) 105101.
155. Chang, I.-L.: Modell. Simul. Mater. Sci Engn. 21 (2013) 045011.
156. Xu, K.: Chemical Engn. J. 225 (2013) 210.
157. Fang, L.: Physica E 50 (2013) 116.
158. Li, Y.F.: J. Applied Phys. 113 (2013) 054313.
159. Narasimhamurthy, K.C.: Solid-State Electr. 79 (2013) 37.
160. Girao, E.C.: Graphene Chem.: Theoret. Perspectives (2013) 319.
161. Duan, M.C.: J. Applied Phys. 115 (2014) 174101.
162. Xu, K.: Carbon 68 (2014) 511.
163. Paukner, C.: Sci Reports 4 (2014) 3903.
164. Liu, Wei-W.: Adv. Mater. Research 832 (2014) 56.
165. Pollack, A.: SMALL 10 (2014) 5077.
166. Ma, J.: CHEMSUSCHEM 7 (2014) 3304.
167. Rigoni, F.: Carbon 80 (2014) 356.
168. Li, W.: Industrial & Engn. Chem. Research 53 (2014) 18095.
169. Ma, W.: Carbon 77 (2014) 266.
#   170. Guo, Y.-H.: Rengong Jingti Xuebao/J. Synthetic Crystals 43 (2014) 2830 and 2845.
171. Baibarac, M.: Carbon 81 (2015) 426.
172. Li, G.: Mater. Sci Engn. B 193 (2015) 153.
173. Smaranda, I.: Current Organic Chem. 19 (2015) 652.
174. Sheremet, E.: Carbon 96 (2016) 588.
175. Fang, X.: Carbon 107 (2016) 273.
176. Kumar, D.: Mater. Chem. Phys. 177 (2016) 276.
177. Baibarac, M.: J. Phys. Chem. C 120 (2016) 5694.
178. Jorio, A.: Annual Rev. Mater. Research 46 (2016) 357.
179. Young, R.J.: CISM Courses and Lectures 563 (2016) 51.
180. Ohashi, T.: Carbon Nanomater. for Advanced Energy Systems: Adv. Mater. Synthesis Device Appl. 2015. P. 47.
181. Yoshida, Y.: J. Phys. Chem. C 120 (2016) 20454.
182. Kumar, D.: Defence Sci J. 66 (2016) SI413.
183. Laera, A.M.: Mater. Res. Express 3 (2016) 085007.
184. Baibarac, M.: Europ. Polymer J. 88 (2017) 109.
185. Ye, J.: CHEMPHYSCHEM 18 (2017) 1929.
186. Guo, Y.: AIP Adv. 8 (2018) 035111.
187. Krylov, A.: Phys. Chem. Chem. Phys. 19 (2017) 32099.
188. Bardi, N.: Radiation Phys. Chem. 140 (2017) 34.
189. Wang, M.: J. Mater. Sci 28 (2017) 12475.
190. Schmidt, U.: Springer Series in Surface Sci 66 (2018) 485.
191. Reinoso, C.: Carbon 140 (2018) 259.
192. Yan, M.: J. Mater. Sci-Mater. Electron. 29 (2018) 20260.
193. Agarwal, P.B.: Flexible Printed Electron. 3 (2018) 035001.
194. Rodriguez, R.D.: Physica Status Solidi B 256 (2019) SI1800412.
195. Kumar, A.: Ceramics Inter. 45 (2019) 1011.
196. Guo, Y.: AIP Adv. 8 (2018) 035111.
197. Li, J.: RSC Adv. 9 (2019) 18863.
198. Rahman, G.: C-J. Carbon Res.‏ 5 (2019) 3.
199. Zhao, C.: Nanophoton. 9 (2020) SI2437.
200. Allsop, T.: Nanoscale Adv. 2 (2020)‏ 4615.

 Inakuma, M., Yamamoto, E., Kai, T., Wang, C., Tomiyama, T., Shinohara, H., Dennis, T., Hulman, M., Krause, M., Kuzmany, H., : Structural and electronic properties of isomers of Sc2@C84(I, II, III): 13C NMR and IR/raman spectroscopic studies. J. Phys. Chem. B 104 (2000) 5072–5077. (Not IEE SAS).

1. Aihara, J.-I.: Phys. Chem. Chem. Phys. 3 (2001) 1427.
2. Schnepf, A.: Angewandte Chemie-Inter. Ed. 40 (2001) 712.
3. Aihara, J.-I.: J. Phys. Chem. A 106 (2002) 11371.
4. Kobayashi, K.: Molecular Phys. 101 (2003) 249.
5. Ge, Z.: J. American Chem. Soc 127 (2005) 16292.
6. Cao, B.: J. Phys. Chem. A 109 (2005) 10257.
7. Yumura, T.: J. Phys. Chem. B 109 (2005) 20251.
8. Tan, K.: Chemical Comm. (2005) 4444.
9. Yang, S.: J. Phys. Chem. B 109 (2005) 12320.
10. Guha, S.: Coord. Chem. Rev. 249 (2005) 1111.
11. Thilgen, C.: Chem. Rev. 106 (2006) 5049.
12. Gan, L.-H.: Chem. Phys. Lett. 429 (2006) 185.
13. Iiduka, Y.: Chemical Comm. (2006) 2057.
14. Yang, S.: Angewandte Chemie-Inter. Ed. 45 (2006) 1299.
15. Valencia, R.: Chemical Comm. (2007) 4161.
16. Liu, D.A.N.: Inter. J. Quantum Chem. 107 (2007) 2253.
17. Sun, H.: J. Molecular Struc.: THEOCHEM 868 (2008) 71.
18. Zhang, Z.: J. Molecular Struc.: THEOCHEM 857 (2008) 1.
19. Xu, B.-S.: Xinxing Tan Cailiao/ New Carbon Mater. 24 (2009) 289.
20. Popov, A.A.: J. Comput. Theoret. Nanosci 6 (2009) 292.
21. Dunsch, L.: J. American Chem. Soc 132 (2010) 5413.
22. Lu, X.: J. American Chem. Soc 133 (2011) 19553.
23. Yang, S.: Chemical Comm. 47 (2011) 11822.
24. Chen, C.-H.: Angewandte Chemie-Inter. Ed. 51 (2012) 13046.
25. Wang, D.-L.: Phys. Chem. Chem. Phys. 14 (2012) 15099.
26. Lu, X.: Angewandte Chemie-Inter. Ed. 51 (2012) 5889.
27. Yang, S.: Current Organic Chem. 16 (2012) 1079.
28. Kurihara, H.: J. American Chem. Soc 134 (2012) 3139.
29. Kurihara, H.: Inorg. Chem. 51 (2012) 746.
30. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
31. Lu, X.: Accounts Chem. Res. 46 (2013) 1627.
32. Xie, Y.-P.: Polyhedron 52 (2013) 3.
33. Jin, P.: Coordination Chem. Rev. 270 (2014) SI89.
34. Yuan, J.-Y.: Phys. Chem. Chem. Phys. 16 (2014) 5434.
35. Yamada, M.: Bulletin Chemical Soc Japan 87 (2014) 1289.
36. Fuhrer, T.J.: J. Computational Chem. 36 (2015146.
37. Okamura, N.: Applied Phys. Lett. 106 (2015043108.
38. Khamatgalimov, A.R.: Russian Chem. Rev. 85 (2016) 836.
39. Lu, S.-J.: Chem. Phys. Lett. 699 (2018) 218.
40. Wu, B.: Chem. Comm. 54 (2018) 775.
41. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.
42. Zhao, Y.: J. Phys. Chem. C 122 (2018) 13148.
43. Yang, W.: Inorg. Chem. 57 (2018) 11597.

 Dennis, T., Hulman, M., Kuzmany, H., Shinohara, H., : Vibrational infrared spectra of the two major isomers of [84]fullerene:  C84{D2(IV)} and C84{D2d(II)}. J. Phys. Chem. B 104 (2000) 5411–5413. (Not IEE SAS).

1. Bettinger, H.F.: Chem. Phys. Lett. 332 (2000) 35.
2. Sun, G.: J. Phys. Chem. A 105 (2001) 5212.
3. Furche, F.: J. American Chem. Soc 124 (2002) 3804.
4. Neretin, I.S.: Russian Chem. Rev. 73 (2004) 455.
5. Thilgen, C.: Chem. Rev. 106 (2006) 5049.
6. Kooistra, F.B.: Chem. Mater. 18 (2006) 3068.
7. Rojas, A.: J. Phys. Chem. B 111 (2007) 9031.
8. Ji, H.-X.: J. Phys. Chem. C 111 (2007) 10498.
9. Zhang, Z.: J. Molecular Struc.: THEOCHEM 857 (2008) 1.
#   10. Dodziuk, H.: Strained Hydrocarbons (2009) 205.
11. Jovanovic, T.: Fullerenes Nanotubes Carbon Nanostr. 17 (2009) 135.
12. Popov, A.A.: J. Comput. Theoret. Nanosci 6 (2009) 292.
13. Zhang, W.: J. Molecular Struc.: THEOCHEM 941 (2010) 61.
14. Jovanovic, T.: Fullerenes Nanotubes Carbon Nanostr. 19 (2011) 309.
15. Liu, L.: J. Phys. Chem. C 115 (2011) 5966.
16. Wang, P.: Carbon 50 (2012) 1762.
17. Jovanovic, T.: Fullerenes Nanotubes Carbon Nanostr. 21 (2013) 64.
18. Cataldo, F.: Fullerenes Nanotubes Carbon Nanostruct. 22 (2014) 901.
19. Jovanovic, T.: Diamond Related Mater. 44 (2014) 44.
20. Jovanovic, T.: Fullerenes Nanotubes Carbon Nanostruct. 22 (2014) 384.
21. Jovanovic, T.: Recent Patents Nanotechnol. 8 (2014) 62.
22. Jovanovic, T.: J. Nanomater. (2014) 701312.
23. Do, H.: Phys. Chem. Chem. Phys. 17 (20153898.
24. Jovanovic, T.: J. Nanomater. (2017) 4360746.
25. Pankratyev, E.Y.: Physica E 101 (2018) 265.
26. Ma, Y.: J. Phys. Chem. A 122 (2018) 1019.
27. Jovanovic, T.: J. Nanomater. (2018) 6862710.

Krause, M., Hulman, M., Kuzmany, H., Dennis, T., Inakuma, M., Shinohara, H., : A Raman study of empty C-84 isomers D-2 and D-2d and three isomers of Sc-2@C-84 AIP Conf. Proc. 486 (1999) 136-139. (Not IEE SAS).

       1. Nagy, P.R.: Phys. Status Solidi B 251 (2014) 2451.

Fedorko, P., Skákalová, V., Végh, D., Hulman, M., : Conformational transition in polypyrrole at low pressure. Synthetic Metals 101 (1999) 308–309. (Not IEE SAS).

1. Chen, F.: Chinese Sci Bull. 47 (2002) 1791.
2. Chen, F.: J. Applied Polymer Sci 89 (2003) 3390.
3. Chen, F.: Thin Solid Films 424 (2003) 283.
4. Shen, Y.: J. Chem. Phys. 119 (2003) 11415.
5. Varga, M.: J. Polymer Sci B 53 (2015) 1147.

Krause, M., Hulman, M., Kuzmany, H., Dennis, T., Inakuma, M., Shinohara, H., : Diatomic metal encapsulates in fullerene cages: A Raman and infrared analysis of C84 and Sc2@C84 with D2d symmetry. J. Chem. Phys. 111 (1999) 7976. (Not IEE SAS).

1. Bettinger, H.F.: Chem. Phys. Lett. 332 (2000) 35.
2. Tenegal, F.: Chem. Phys. Lett. 335 (2001) 155.
3. Grieves, G.A.: Inter. J. Mass Spectromet. 204 (2001) 223.
4. Wagberg, T.: Europ. Phys. J. B 35 (2003) 371.
5. Kobayashi, K.: Molecular Phys. 101 (2003) 249.
6. Even, W.: Inter. J. Molecular Sci 5 (2004) 333.
7. Golden, M.S.: Struct. Bonding 109 (2004) 201.
8. Tamuliene, J.: Fullerenes Nanotubes Carbon Nanostr. 13 (2005) 279.
9. Guha, S.: Coord. Chem. Rev. 249 (2005) 1111.
10. Popov, A.A.: J. Phys. Chem. A 110 (2006) 8645.
11. Iiduka, Y.: Chemical Comm. (2006) 2057.
12. Kimura, Y.: Meteorit. Planetary Sci 41 (2006) 673.
13. Yang, S.: Angewandte Chemie-Inter. Ed. 45 (2006) 1299.
14. Valencia, R.: Chemical Comm. (2007) 4161.
15. Iiduka, Y.: Angewandte Chemie-Inter. Ed. 46 (2007) 5562.
16. Todorovic-Markovic, B.: Applied Surface Sci 255 (2008) 3283.
#    17. Dodziuk, H.: Strained Hydrocarbons: Beyond the van-t Hoff and Le Bel   Hypothesis. (2009) P. 205.
18. Popov, A.A.: J. Comput. Theoret. Nanosci 6 (2009) 292.
19. Dunsch, L.: J. American Chem. Soc 132 (2010) 5413.
20. Mamone, S.: Coord. Chem. Rev. 255 (2011) 938.
21. Zheng, H.: J. Chem. Phys. 137 (2012) 014308.
22. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
23. Jin, P.: Coordination Chem. Rev. 270 (2014) SI89.
24. Jovanovic, T.: Diamond Related Mater. 44 (2014) 44.
25. Jovanovic, T.: J. Nanomater. (2014) 701312.
26. Okamura, N.: Applied Phys. Lett. 106 (2015043108.
27. Guo, Y.-J.: J. Phys. Chem. A 119 (2015) 10428.
28. Adjizian, J.-J.: Phil. Trans. Royal Soc A 374 (2016) 20150323.
29. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.
30. Mondal, T.: J. Phys. Chem. C 121 (2017) 3642.
31. Akhanova, N.Y.: J. Nanosci Nanotechnol. 21 (2021) 2446.

Hulman, M., Inakuma, M., Shinohara, H., Kuzmany, H., : Infrared measurements for two isomers of the endohedral metallofullerene Sc2@C84. Synthetic Metals 103 (1999) 2565-2566. (Not IEE SAS).

1. Kovalenko, V.I.: Russian Chem. Rev. 75 (2006) 981.
2. Sun, H.: J. Molecular Struc.: THEOCHEM 868 (2008) 71.
3. Khamatgalimov, A.R.: Russian J. Phys. Chem. A 84 (2010) 636.
4. Khamatgalimov, A.R.: Inter. J. Quantum Chem. 112 (2012) 1055.

Kurti, J., Kuzmany, H., Burger, B., Hulman, M., Winter, J., Kresse, G., : Resonance raman investigation of single wall carbon nanotubes. Synthetic Metals 103 (1999) 2508–2509. (Not IEE SAS).

1. Dresselhaus, M.S.: Adv. Phys. 49 (2000) 705.
2. Liu, B.: Chem. Phys. Lett. 320 (2000) 365.
3. Liu, B.B.: Molecular Mater. 13 (2000) 75.
4. Corio, P.: Chem. Phys. Lett. 350 (2001) 373.
#      5. Bandow, S.: Phys. Rev. B 66 (2002) 075416.
6. Strong, K.L.: Carbon 41 (2003) 1477.
7. Laxminarayana, K.: Proc. SPIE 5389 (2004) 135.
8. Titantah, J.T.: Phys. Rev. B 69 (2004) 125406.
9. Santangelo, S.: J. Applied Phys. 100 (2006) 104311.
10. Hedderman, T.G.: J. Phys. Chem. B 110 (2006) 3895.
11. Dmytrenko, O.P.: Proc. NANOMEETING 2007. P. 249.
12. Tantra, R.: Nanotoxicol. 1 (2007) 251.
13. Ritter, U.: Chem. Phys. Lett. 447 (2007) 252.
14. Delfino, I.: J. Phys. Cond. Matt. 19 (2007) 225009.
15. Donato, M.G.: J. Phys.: Conf. Ser. 61 (2007) 185.
16. Gibson, R.F.: Composites Sci Technol. 67 (2007) 1.
17. Costa, S.: Mater. Sci-Poland 26 (2008) 433.
18. Chelmecka, E.: J. Molecular Struc.: THEOCHEM 948 (2010) 93.
19. Kupka, T.: Magnetic Resonance in Chem. 49 (2011) 549.
20. Kupka, T.: Synthetic Metals 162 (2012) 573.
21. Kupka, T.: Magnetic Resonance in Chem. 50 (2012) 142.
22. Kupka, T.: J. Chem. Theory Comput. 9 (2013) 4275.
23. Kupka, T.: Magnetic Resonance in Chem. 51 (2013) 463.
24. Pandey, N.: Mater. Sci Semicond. Process. 27 (2014) 150.
25. Kupka, T.: Phys. Chem. Chem. Phys. 18 (2016) 25058.

Kuzmany, H., Burger, B., Hulman, M., Kurti, J., Rinzler, A., Smalley, R., : Spectroscopic analysis of different types of single-wall carbon nanotubes. Europhys. Lett. 44 (1999) 518. (Not IEE SAS).

1. Ichida, M.: J. Phys. Soc Japan 68 (1999) 3131.
2. Wei, Z.: Acta Physico-Chimica Sinica 17 (2001) 721.
3. Brown, S.D.M.: Phys. Rev. B 61 (2000) 7734.
4. Terranova, M.L.: Mater. Chem. Phys. 66 (2000) 270.
5. Terranova, M.L.: Chem. Phys. Lett. 327 (2000) 284.
6. Dresselhaus, M.S.: Adv. Phys. 49 (2000) 705.
7. Sokhan, V.P.: J. Chem. Phys. 113 (2000) 2007.
8. Lambin, Ph.: Carbon 40 (2002) 1635.
9. Liu, X.: Phys. Rev. B 66 (2002) 045411.
10. Nishimiya, N.: J. Alloys Comp. 339 (2002) 275.
11. Zhao, Y.: Phys. Rev. Lett. 91 (2003) 1755041.
12. Hennrich, F.: Phys. Chem. Chem. Phys. 5 (2003) 178.
13. Chen, Y.: J. Catal. 225 (2004) 453.
14. Kwon, Y.W.: J. Nanosci Nanotechnol. 5 (2005) 703.
15. Longhurst, M.J.: Molecular Simul. 31 (2005) 135.
16. Smajda, R.: Carbon 45 (2007) 1176.
17. Batra, R.C.: J. Applied Mechanics, Trans. ASME 75 (2008) 0610101.
18. Gupta, S.S.: Comput. Mater. Sci 43 (2008) 715.
19. Selbmann, D.: Applied Phys. A 90 (2008) 637.
20. Gupta, S.S.: J. Applied Phys. 106 (2009) 063527.
21. Knief, P.: Analyst 134 (2009) 1182.
22. Zhang, J.: Acta Phys. Sinica 59 (2010) 7966.
#    23. Negi, S.: Inter. J. Nanosci 9 (2010) 471.
24. Reddy, C.D.: J. Comput. Theoret. Nanosci 7 (2010) 1400.
25. Gupta, S.S.: Comput. Mater. Sci 47 (2010) 1049.
26. Romero, G.: Nanoscale Res. Lett. 6 (2011) 429.
#   27. Estrela-Lopis, I.: J. Phys.: Conf. Ser. 304 (2011) 012017.
28. Romero, G.: Soft Matter 7 (2011) 6883.
29. Ghavanloo, E.: Applied Mathemat. Modell. 36 (2012) 4988.
30. Romero, G.: J. Nanosci Nanotechnol. 12 (2012) 4836.
31. Antony, R.P.: J. Raman Spectroscop. 46 (2015) 231.
32. Ghaffari, R.: J. Sound Vibration 423 (2018) 161.
33. Gupta, P.: Mathemat. Mechan. Solids 24 (2019) 3897.
34. Murzashev, A. I.: Phys. Solid State 62 (2020) 555.
35. Murzashev, A.I.: Optics Spectroscopy 128 (2020) 1350.

Hulman, M., Kuzmany, H., Kappes, M., Yamamoto, E., Shinohara, H., : Infrared absorption line width of pristine and endohedral fullerenes. Physica B 244 (1998) 192–195. (Not IEE SAS).

1. Allen, K.: J. Chem. Phys. 111 (1999) 5291.
2. Popov, A.A.: Chem. Rev. 113 (2013) 5989.
3. Yang, S.: Chem. Soc Rev. 46 (2017) 5005.

Kurti, J., Kuzmany, H., Burger, B., Hulman, M., Rinzler, A., Smalley, R., : Resonance Raman scattering of the radial breathing mode in single wall carbon nanotubes AIP Conf. Proc. 442 (1998) 101-106. (Not IEE SAS).

1. Terranova, M.L.: Mater. Chem. Phys. 66 (2000) 270.
2. Ritter, U.: Chem. Phys. Lett. 447 (2007) 252.

Winter, J., Burger, B., Hulman, M., Kuzmany, H., Soldatov, A., : Experimental access to doped fullerene polymers. Applied Phys. A 64 (1997) 257-262. (Not IEE SAS).

1. Sundqvist, B.: Advances in Phys. 48 (1999) 1.
2. Lavrentiev, V.: Mater. Lett. 57 (2003) 4093.
3. Lavrentiev, V.: Fullerenes Nanotubes Carbon Nanostr. 12 (2004) 519.
4. Lavrentiev, V.: Fullerenes Nanotubes Carbon Nanostr. 20 (2012) 328.

Hulman, M., Pichler, T., Kuzmany, H., Zerbetto, F., Yamamoto, E., Shinohara, H., : Vibrational structure of C84 and Sc2@C84 analyzed by IR spectroscopy. J. Molecular Structure 408–409 (1997) 359–362. (Not IEE SAS).

1. Von Helden, G.: Chem. Phys. Lett. 299 (1999) 171.
2. Nishikawa, T.: J. Molecular Struc.: THEOCHEM 461-462 (1999) 453.
3. Alexandrescu, R.: Proc. SPIE 4430 (2000) 196.
4. Moriyama, M.: Chem. Lett. (2000) 524.
5. Sun, G.: J. Phys. Chem. A 105 (2001) 5212.
6. Iiduka, Y.: Chemical Comm. (2006) 2057.
7. Iiduka, Y.: Angewandte Chemie-Inter. Ed. 46 (2007) 5562.
8. Popov, A.A.: J. Comput. Theoret. Nanosci 6 (2009) 292.
9. Khamatgalimov, A.R.: Inter. J. Quantum Chem. 112 (2012) 1055.
10. Jin, P.: Coordination Chem. Rev. 270 (2014) SI89.
11. Jovanovic, T.: Diamond Related Mater. 44 (2014) 44.
     12. Jovanovic, T.: J. Nanomater. (2014) 701312.
13. Adjizian, J.-J.: Phil. Trans. Royal Soc A 374 (2016) 20150323.
14. Jovanovic, T.: J. Nanomater. (2017) 4360746.

Pichler, T., Haluška, M., Winter, J., Winkler, R., Burger, B., Hulman, M., Kuzmany, H., : Fullerene single crystals: structure and electronic properties. Fullerene Sci Technol. 4 (1996) 227-255. (Not IEE SAS)..

1. Kürti, J.: Fullerene Sci Technol. 5 (1997) 429.
2. Graja, A.: Fullerene Sci Technol. 5 (1997) 1219.
3. Glebov, A.: Phys. Rev. B 56 (1997) 9874.
4. Lyon, L.A.: Anal. Chem. 70 (11998) 341R.
5. Rath, M.C.: J. Phys. Chem. A 103 (1999) 4993.
6. Rathouský, J.: Fullerene Sci Technol. 8 (2000) 337.

Haluška, M., Zehetbauer, M., Hulman, M., Kuzmany, H., : Microhardness and raman spectroscopy for characterization of fullerite single crystals Mater. Sci Forum 210-213 (1996) 267-274. (Not IEE SAS).

1. Manika, I.: Fullerene Sci Technol. 7 (1999) 825.
2. Aleksandrovskii, A.N.:  Low Temp. Phys. 26 (2000) 75.
3. Manika, I.: Proc. SPIE 4415 (2001) 284.
4. Komatsu, T.: Phil. Magazine A 81 (2001) 659.
5. Manika, I.: Fullerenes Nanotubes Carbon Nanostr. 10 (2002) 69.
6. Manika, I.: Phys. Solid State 44 (2002) 432.
7.  Manika, I.: NATO Sci Ser. II 172 (2004) 167.
#      8. Fomenko, L.S.: Fizika Nizkikh Temp. (Kharkov) 31 (2005) 596.
9. Lubenets, S.V.: Phys. Solid State 47 (2005) 891.
10. Fomenko, L.S.: Mater. Sci Engn. A 400-401 (2005) S320.
#   11. Fomenko, L.S.: Bull. Russian Acad. Sci: Phys. 69 (2005) 1510.
12. Fomenko, L.S.: Low Temp. Phys. 31 (2005) 454.
#    13. Fomento, L.S.: Fizika Nizkikh Temp. (Kharkov) 34 (2008) 86.
14. Fomenko, L.S.: Low Temp. Phys. 34 (2008) 69.
15. Lubenets, S.V.: Low Temp. Phys. 45 (2019) 1.