Ing. Fedor Ján, PhD.

Hanzel, O., Lenčéš, Z., Kim, Y.-W., Fedor, J., and Šajgalík, P.: Highly electrically and thermally conductive silicon carbide-graphene composites with yttria and scandia additives, J. Europ. Ceramic Soc 40 (2020) 241-250.

1. Ma, Y.: Inter. J. Electrochem. Sci 15 (2020) 10315.
2. Chen, F.: Ceram. Inter. 46 (2020) 18428.
3. Anwar, M.S.: Ceram. Inter. 47 (2021) 31536.
4. Bukhari, S.Z.A.: Ceram. Inter. 47 (2021) 23045.
5. Zheng, Y.: Ceram. Inter. 47 (2021) 18466.
6. Hu, L.: J. Europ. Ceram. Soc 42 (2022) 1282.
7. Feoktistov, D.V.: Surface Coat. Technol. 435 (2022) 128263.

Moore, S.A., Plummer, G., Fedor, J., Pearson, J.E., Novosad, V., Karapetrov, G., and Iavarone, M.: Doppler-scanning tunneling microscopy current imaging in superconductor-ferromagnet hybrids, Applied Phys. Lett. 108 (2016) 042601.

1. Rollano, V.: Sci Rep. 8 (2018) 12374.
2. Mironov, S.: Applied Phys. Lett. 113 (2018) 022601.
3. Eley, S.: J. Applied Phys. 130 (2021) 050901.
4. Yang, F.: Phys. Rev. B 106 (2022) 144509.

Precner, M., Fedor, J., Šoltýs, J., and Cambel, V.: Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples. Nanotechnol. 26 (2015) 055304.

1. Wang, L.: Nanoscale Res. Lett. 11 (2016) 342.
2. Liu, J.: Micron 102 (2017) 15.
#    3. Passeri, D.: In Magnetic characterization techniques for nanomater. Springer 2017. ISBN 978-3-662-52779-5, p. 209.
4. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
5. Zhang, Y.: J. Controlled Release 322 (2020)‏ 401.
6. Winkler, R.: Nanomater. 13 (2023) 2585.

Iavarone, M., Moore, S., Fedor, J., Novosad, V., Pearson, J., and Karapetrov, G.: Influence of domain width on vortex nucleation in superconductor/ferromagnet hybrid structures, J. Supercond. Novel Magn. 28 (2015) 1107-1110.

1. Aristomenopoulou, E.: J. Applied Phys. 118 (2015) 063904.
2. Aristomenopoulou, E.: J. Alloys Compounds 664 (2016) 732.
3. Jafri, H.M.: J. Supercond. Novel Magn. 35 (2022) 409.
4. Franke, K.J.A.: Phys. Rev. B 107 (2023) 140407.
5. Zhong, Y.: Acta Phys. Polonica A 144 (2023) 7.

Moore, S., Fedor, J., and Iavarone, M.: Low-temperature scanning tunneling microscopy and spectroscopy measurements of ultrathin Pb films, Supercond. Sci Technol. 28 (2015) 045003.

 1. Fei, X.: ACS NANO 10 (2016) 4520.
2. Ustavshchikov, S. S.: JETP Lett. 106 (2017) 491.
3. Yang, Z.: J. Supercond. Novel Magn. 31 (2018) 1005.
4. Yang, H.: Phys. Rev. Lett. 125 (2020) 136802.
5. Aladyshkin, A.Y.: J. Phys. Chem. C 125 (2021) 26814.

Precner, M., Fedor, J., Tóbik, J., Šoltýs, J., and Cambel, V.: High resolution tips for switching magnetization MFM, Acta Phys. Polonica A 126 (2014) 386-387.

1. Schoenherr, P.: Materials 10 (2017) 1051.
2. Puttock, R.: IEEE Trans.Magnet. 53 (2017) 6500805.
3. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.

Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., and Kuzmík, J.: Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506.

1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
7. Zhang, K.: IEEE SSLChina – IFWS 2016. P. 64.
8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.
9. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
10. Zhou, X. J.: Superlatt. Microstr. 112 (2017) 1.
#    12. Zhang, K.: Inter. Forum on Wide Bandgap Semiconductors China, IFWS 2016. Conf. Proc. (2017) 7803758, pp. 64-67.
#     13. Singh, P.: Comm. Computer Inf. Sci 892 (2019) 380.
14. Supardan, S. N.: J. Phys. D 53(2020) 075303.
15. Liu, Y.: Sci Rep. 11 (2021) 22431.
16. Liu, S.Y.: IEEE Electron Device Lett. 43 (2022) 1621.

Jančovič, P., Hudec, B., Dobročka, E., Dérer, J., Fedor, J., and Fröhlich, K.: Resistive switching in HfO2-based atomic layer deposition grown metal-insulator-metal structures. Applied Surface Sci 312 (2014) 112-116.

1. Zhang, R.: J. Non-Crystall. Solids 406 (2014) 102.
2. Chen, P.-H.: IEEE Electron Device Lett. 37 (2016) 280.
#     3. Hardtdegen, A.: 8th IEEE IMW 2016. ISBN: 978-146738831-3. Art. no. 7495280.
4. Akbar, S.: Physica B-Cond. Matter 520  (2017) 112.
5. Rosa, R.: Phys. Rev. Mater. 2 (2018) 032401.
6. Sokolov, A.S.: Applied Surface Sci 434 (2018) 822.
7. Jung, Y.C.: Applied Surface Sci 435 (2018) 117.
8. Schie, M.: Phys. Rev. Mater. 2 (2018) 035002.
9. Akbar, S.: Microelectr. Reliab. 102 (2019) UNSP 113409.
10. Kumar, S.: Phys. Status Solidi A 217 (2020) 1900756.

Hudec, B., Paskaleva, A., Jančovič, P., Dérer, J., Fedor, J., Rosová, A., Dobročka, E., and Fröhlich, K.:Resistiveswitching in TiO2-based metal-insulator-metal structures with Al2O3 barrier layer at the metal/dielectric interface, Thin Solid Films 563 (2014) 10-14.

1. Castan, H.: Thin Solid Films 591 (2015) 55.
#       2. Liu, P.: Key Engn. Mater. 645 (2015) 572.
3. Liu, P.: IEEE 10th NEMS 2015. P. 585.
4. Alekseeva, L.: Japan. J. Applied Phys. 55 (2016) 08PB02.
5. Duenas, S.: IEEE 32nd Conf. Design Circuits Integr. Systems -DCIS 2017.
6. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
7. Stathopoulos, S.: Sci Rep. 7 (2017) 17532.
8. Chen, X.: J. Semicond. 38 (2017) 084003.
9. Rylkov, V.V.: J. Experiment. Theoret. Phys. 126 (2018)  353.
10. Duenas, S.: J. Electron. Mater. 47 (2018) 4938.
11. Nikiruy, K.E.: J. Comm. Technol. Electron. 64 (2019) 1135.
12. Park, S.-J.: J. Alloys Comp. 825 (2020) 154086.
13. Nikolaev, S.N.: Techn. Phys. 65 (2020)‏ 243.
14. Siegel, S.: Adv. Electr. Mater. 7 (2021) 2000815.
15. Basnet, P.: ACS Applied Electron. Mater. 5 (2023) 1859.

Iavarone, M., Moore, S., Fedor, J., Ciocys, S., Karapetrov, G., Pearson, J., Novosad, V., and  Bader, S.: Visualizing domain wall and reverse domain superconductivity, Nature Comm. 5 (2014) 4766.

1. Stamopoulos, D.: Sci Rep. 5 (2015) 13420.
2. Hassan, M.U.: Phys. Status Solidi A 212 (2015) 2037.
3. del Valle, J.: Sci Rep. 5 (2015) 15210.
4. Li, Z.: Sci Rep. 5 (2015) 18601.
5. del Valle, J.: Supercond. Sci Technol. 30 (2017) 025014.
6. Zhang, G.: ACS Nano 11 (2017) 5358.
7. Dhiman, I.: Phys. Rev. B 96 (2017) 104517.
8. Shaw, G.: Rev. Sci Instrum. 89 (2018) 023705.
9. Rollano, V.: Sci Rep. 8 (2018) 12374.
10. Jeon, K.-R.: Phys. Rev. B 99 (2019) 144503.
11. Chen, Y.: Sci Rep. 9 (2019) 19052.
12. Dahir, S.M.: Phys. Rev. B 102 (2020) 014503.
13. Zhang, G.: Sci Adv. 6 (2020) eaaz2536.
14. De Long, L. E.: Phil. Magazine 100 (2020)‏ SI1367-1413.
15. Niedzielski, B.: Phys. Status Solidi B 257 (2020) ‏SI1900709.
16. Stellhorn, A.: New J. Phys. 22 (2020) 093001.
17. Yang, S.: J. Magnetism Magnetic Mater. 539 (2021) 168381.
18. Aladyshkin, A.Y.: J. Phys. Chem. C 125 (2021) 26814.
19. Aladyshkin, A.Y.: J. Phys. Chem. C 127 (2023) 13295.
20. Mel’nikov, A.S.: Phys.-Uspekhi 65 (2022) 1248.
21. Yun, J.: Applied Phys. Lett. 124 (2024) 052601.
22. Uspenskaya, L.S.: J. Surface Investig. 17 (2023) S404.

Cambel, V., Precner, M., Fedor, J., Šoltýs, J., Tóbik, J., Ščepka, T., and Karapetrov, G.: High resolution switching magnetization magnetic force microscopy, Applied Phys. Lett. 102 (2013) 062405.

1. Li, Z.: Sci Reports 4 (2014) 5594.
2. Li, Z.: NANOSCALE 6 (2014) 11163.
3. Liu, D.: Applied Phys. Lett. 107 (2014) 103110.
4. Li, Z.: Phys. Chem. Chem. Phys. 18 (2016) 28254.
5. Li, Z.: Mater. Sci-Poland 34 (2016) 924.
6. Kinoshita, Y.: Nanotechnol. 28(2017) 485709.
7. Cao, Y.: Nanotechnol. 29(2018) 305502.
8. Kumar, P.: J. Applied Phys. 123 (2018)214503.
9. Chou, W.Y.: ACS Applied Mater. Interfac. 13 (2021) 34962.
10. Kumar, R.R.: IEEE Sensors J. 23 (2023) 16107.
11. Josten, N.: Phys. Rev. Mater. 7 (2023) 124411.

Šoltýs, J., Gaži, Š., Fedor, J., Tóbik, J., Precner, M., Cambel, V., : Magnetic nanostructures for non-volatile memories. Microelectr. Engn. 110 (2013) 474-478.

        1. Hluchy, L.: Comput. Informat. 35 (2016) 1386.

Barančeková Husaníková, P., Fedor, J., Dérer, J., Šoltýs, J., Cambel, V., Iavarone, M., May, S., and Karapetrov, G.: Magnetization properties and vortex phase diagram of CuxTiSe2 single crystals. Phys. Rev. B 88 (2013) 174501.

1. Kaul, A.B.: J. Mater. Research 29 (2014) 348.
2. Hui, Z.: J. Applied Phys. 115 (2014) 033905.
3. Abdel-Hafiez, M.: Sci Rep. 6 (2016) 31824.
4. Song, Y.J.: Physica Status Solidi B 253 (2016) 1517.
5. Pervin, R.: Mater. Res. Express 5 (2018) 076001.
6. Lian, C.: Phys. Rev. B 100 (2019) 205423.
7. Lian, C.: Nature Comm. 11 (2020) 43.
8. Shokri, A.: Physica B 612 (2021) 412977.
9. Niu, R.: J. American Chem. Soc 146 (2024) 1244.

Blaho, M., Gregušová, D., Jurkovič, M., Haščík, Š., Fedor, J., Kordoš, P., Fröhlich, K., Brunner, F., Cho, E., Hilt, O., Würfl, H., and Kuzmík, J.: Ni/Au-Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOSHEMTs, Microelectr. Engn. 112 (2013) 204-207.

1. Moon, S.-W.: Japan. J. Applied Phys. 53 (2014) 08NH02.
2. Zhang, Z.: Electron. Lett. 51 (2015) 1201.
3. Zhang, Z.: IEEE Trans. Electron Dev. 63 (2016) 731.
4. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
5. Fisichella, G.: Beilstein J. Nanotechnol. 8 (2017) 467.
6. Lin, Y.S.: Micromachines 14 (2023) 1183.

Cambel, V., Tóbik, J., Šoltýs, J., Fedor, J., Precner, M., Gaži, Š., and Karapetrov, G.: The influence of shape anisotropy on vortex nucleation in Pacman-like nanomagnets,. J. Magnetism Magnetic Mater. 336 (2013) 29-36.

1. Galvao, S.B.: Mater. Lett. 115 (2014) 38.
2. Hluchy, L.: Comput. Informat. 35 (2016) 1386.
3. Zheng, Y.: Rep. Progress in Phys. 80 (2017) 086501.
4. Ziegelwanger, H.: J. Comput. Phys. 346 (2017) 152.

Válik, L., Ťapajna, M., Gucmann, F., Fedor, J., Šiffalovič, P., Fröhlich, K., : Distribution of fixed charge in MOS structures with ALD grown Al2O3 studied by capacitance measurements. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 227-230.

 1. Freedsman, J.J.: IEEE Trans. Electron Dev. 60 (2013) 6579632.
2. Samanta, P.: Semicond. Sci Technol. 34 (2019) 115008.
3. Zhao, S.: J. Mater. Sci 56 (2021) 17478.
4. Arroyo, J.M.: J. Mater. Chem. C 11 (2023) 1824.
5. Gao, D.W.: Adv. Mater. 35 (2023) Iss. 15.

Fröhlich, K., Mičušík, M., Dobročka, E., Šiffalovič, P., Gucmann, F., and Fedor, J.: Properties of Al2O3 thin films grown by atomic layer deposition. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 171-174.

1. Naumann, F.: J. Vacuum Sci Technol. B 38 (2020) 014014.
2. Kim, Y.: ACS Applied Mater. Interfac. 12 (2020) 44912.
3. Burwell, G.: Adv. Engn. Mater. 25 (2023) Iss. 12.

Ťapajna, M., Gregušová, D., Čičo, K., Fedor, J., Carlin, J., Grandjean, N., Killat, N., Kuball, M., Kuzmík, J., : Early stage degradation of InAlN/GaN HEMTs during electrical stress. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 7-10.

1. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
2. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.

Karapetrov, G., Belkin, A., Iavarone, M., Fedor, J., Novosad, V., Milošević, M.V., and Peeters, F.M.: Anisotropy superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids, J. Supercond. Novel Magn. 24 (2011) 905-910.

1. Singh, S.: Phys. Rev. B 98 (2018) 060414.

Fröhlich, K., Fedor, J., Kostič, I., Maňka, J., Ballo, P., : Gadolinium scandate: next candidate for alternative gate dielelectric in CMOS technology?, J. Electr. Engn. 62 (2011) 54-56.

1. Angela, P.: J. Vacuum Sci Technol. B 31 (2013) 01A112.
2. Feijoo, P.C.: Semicond. Sci Technol. 28 (2013) 085004.
3. Pampillon, A.M.: Microelectr. Engn. 109 (2013) 236.
4. Pampillon, A.M.: J. Vacuum Sci Technol. B 31 (2013) 01A112.
5. McDaniel, M.D.: Applied Phys. Rev. 2 (2015) 041301.
6. Pampillon, M. A.:Semicond. Sci Technol. 32 (2017) 035016.
7. Arce, M.A.P.: In Growth of High Permittivity Dielectrics by High Pressure Sputtering from Metallic Targets. Springer. 2017, pp. 1+77+109.
8. Kachhap, S.: J. Alloys Compounds 936 (2023) 168192.

Cambel, V., Gregušová, D., Eliáš, P., Fedor, J., Kostič, I., Maňka, J., and Ballo, P.: Switching magnetization magnetic force microscopy – an alternative to conventional lift-mode MFM, J. Electr. Engn. 62 (2011) 37-43.

1. Sandu, S.G.: Mater. Sci Engn. B 181 (2014) 24.
2. Angeloni, L.: Sci Rep. 6 (2016) 26293.
3. Angeloni, L.: Nanoscale 9 (2017) 18000.
#     4. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
5. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.
6. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
7. Stanciu, A.E.: J. Magnetism Magnet. Mater. 498 (2020) 166173.
8. Moldovan, A.: Applied Surface Sci 597 (2022) 53747.
9. Josten, N.: Phys. Rev. Mater. 7 (2023) 124411.

Iavarone, M., Karapetrov, G., Fedor, J., Rosenmann, D., : The spectroscopic signature of the Co magnetic state in CoxNbSe2 superconducting single crystals. Supercond. Sci Technol. 24 (2011) 024010.

     1. Liang, J.: Advan. Mater. Res. 619 (2013) 536.

Martaus, J., Cambel, V., Gregušová, D., Kúdela, R., Fedor, J., : 50-nm local anodic oxidation technology of semiconductor heterostructures. J. Nanosci Nanotechnol. 10 (2010) 4448-4453.

      1. Chu, H.: J. Nanosci Nanotechnol. 13 (2013) 8055.

Cambel, V., Eliáš, P., Gregušová, D., Martaus, J., Fedor, J., Karapetrov, G., and Novosad, V.: Magnetic elements for switching magnetization magnetic force microscopy tips, J. Magnetism Magn. Mater. 322 (2010) 2715-2721.

1. Ishihara, S.: EPJ 40 (2012) UNSP 08003.
2. Kaidatzis, A.: Nanotechnol. 24 (2013) 165704.
3. Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology. Elsevier Sci 2013. ISBN 978-1455730582. P. 207-219.
4. Angeloni, L.: Sci Rep. 6 (2016) 26293.
5. Chen, S.-H.: Microscopy Research Techniq. 79 (2016) 917.
6. Wren, T.: Ultramicroscopy 179 (2017) 41.
7. Datar, A.A.: J. Phys. D 50 (2017) 485004.
8. Liu, J.: J. Magnetism Magn. Mater. 443 (2017) 184.
9. Liu, J.: Micron 102 (2017) 15.|
#   10. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
11.  Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology.  2nd ed. Elsevier 2018. ISBN: 978-012813348-4. P. 245-263.

Cambel, V., Eliáš, P., Gregušová, D., Fedor, J., Martaus, J., Karapetrov, G., Novosad, V., Kostič, I., : Novel magnetic tips developed for the switching magnetization magnetic force microscopy. J. Nanosci Nanotechnol. 10 (2010) 4477-4481.

1. Choi, E.: J. Nanosci Nanotechnol. 14 (2014) 924.
2. Liu, J.: Micron 102 (2017) 15.

Iavarone, M., Karapetrov, G., Fedor, J., Rosenmann, D., Nishizaki, T., Kobayashi, N., : The local effect of magnetic impurities on superconductivity in CoxNbSe2 and MnxNbSe2 single crystals. J. Phys.-Cond. Matter 22 (2010) 015501.

1. Zitko, R.: Phys. Rev. B 83 (2011) 054512.
2. Liang, J.: Advan. Mater. Res. 619 (2013) 536.
3. Shi, Q.: Chalcogenide Lett. 11 (2014) 199.
4. Chen, L.: RSC Adv. 4 (2014) 9573.
5. Yao, N. Y.: Phys. Rev. B 90 (2014) 241108.
6. Yao, N. Y.: Phys. Rev. Lett. 113 (2014) 087202.
7. Houben, K.: J. Alloys Compounds  637 (2015) 509.
8. Zitko, R.: Phys. Rev. B 91 (2015) SICI165116.
9. Xu, J.: Chalcogenide Lett. 12 (2015) 1.
10. Xu, J.: Acta Phys. Sinica 64 (2015) 207101.
11. Pervin, R.: Phys. Chem. Chem. Phys. 19 (2017) 11230.
12. Andrade, J. A.: Phys. Rev. B 99 (2019) 054508.
13. Hamad, I.J.: Phys. Rev. B 100 (2019) 235110.
14. Rodriguez Salmon, O.: Physica C 564 (2019) 75.
15. Sousa, S.D.: Phys. Rev. B 107 (2023) 075140.
16. Feijoo, J.: Phys. Rev. B 107 (2023) 214505.

Karapetrov, G., Belkin, A., Novosad, V., Iavarone, M., Fedor, J., Pearson, J., Petrean-Troncalli, A., : Adjustable superconducting anisotropy in superconductor-ferromagnet bilayers, IEEE Trans. Applied Supercond. 19 (2009) 3471-3474. (not IEE SAS).

1. Suszka A.: Phys. Rev. B 85 (2012) 024529.
2. Zhang, G.: ACS Nano 11 (2017) 5358.
3. Han, X.: Adv. Sci 7 (2020) 1902849.

Gregušová, D., Martaus, J., Fedor, J., Kúdela, R., Kostič, I., and Cambel, V.: On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography. Ultramicroscopy 109 (2009) 1080-1084.

1. Wang, L.: Nanoscale Res. Lett. 11 (2016) 342.
2. Liu, Z.-G.: IEEE Access 7 (2019) 79103.
3. Collomb, D.: J. Phys.-Cond. Matt. 33 (2021) 243002.

Kováč, P., Hušek, I., Melišek, T., Fedor, J., Cambel, V., Morawski, A., and Kario, A.: Properties of hot pressed MgB2/Ti tapes. Physica C 469 (2009) 713-716.

1. Sinha, B.B.: J. Alloys Compounds 486 (2009) 666.
2. Kim, J.H.: Physica C 470 (2010) 1207.
3. Cui, Y.J.: Phys. Status Solidi A 207 (2010) 2532.
4. Wang, D.: Supercond. Sci Technol. 25 (2012) 065013.
5. Sinha, B.B.: J. Supercond. Novel Magnetism 25 (2012) 413.
6. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
7. Cetner, T.: High Pressure Res. 32 (2012) 419.
8. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
9. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
10. Wang, D.: Physica C 508 (2015) 49.
11. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
12. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
13. Wang, D .: Supercond. Sci Technol. 29 (2016) 065003.
14. Wang, D.: Supercond. Sci Technol. 30 (2017) Iss. 6.
15. Mikhailov, B.P.: Phys. Atomic Nuclei 81 (2018) 1573.
16. Wang, D.: IEEE Trans. Applied Supercond. 29 (2019) 6200405.
17. Alimenti, A.: J. Phys.: Conf. Ser. 1559 (2020) 012039.
18. Ozge, E.: Cryogenics 112 (2020) 103205.

Karapetrov, G., Milošević, M., Iavarone, M., Fedor, J., Belkin, A., Novosad, V., and Peeters, F.: Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers. Phys. Rev. B 80 (2009) 180506.

1. Grimaldi, G.: Phys. Rev. B 82 (2010) 024512.
2. Zhu, L.Y.: Phys. Rev. B 82 (2010) 060503.
3. Cieplak, M. Z.: Phys. Rev. B 84 (2011) 020514.
4. He, L.: Nanotechnol. 22 (2011) 445704.
5. Aladyshkin, A.Yu.: Phys. Rev. B 84 (2011) 094523.
6. Visani, C. : Phys. Rev. B 84 (2011) 054539.
7. Cieplak, M.: Phys. Rev. B 87 (2013) 014519.
8. Barba-Ortega, J.: Modern Phys. Lett. B 27 (2013) 1350115.
9. Stamopoulos, D.: J. Supercond. Novel Magnet. 26 (2013) SI 1931.
10. Suderow, H.: Supercond. Sci Technol. 27 (2014) 063001.
11. Zorro, M.A.: Supercond. Sci Technol. 27 (2014) 055002.
12. Jing, Z.: Supercond. Sci Technol. 27 (2014) 105005.
13. Aristomenopoulou, E.: J. Applied Phys. 118 (2015) 063904.
14. Le Thien, Q.: Phys. Rev. B 93 (2016) 014504.
15. Adamus, Z.: Phys. Rev. B 93 (2016) 054509.
16. Reichhardt, C.: Phys. Rev. B 94 (2016) 094413.
17. Kato, M.: Physica C 533 (2017) 137.
18. Gonzalez, J. D.: Physics Lett. A 382 (2018) 3103.
19. Fukui, S.: AIP Adv. 8 (2018) 101314.
20. Jeon, K.-R.: Phys. Rev. B 99 (2019) 144503.
21. Chen, Y.: Sci Rep. 9 (2019) 19052.
22. Mehrnejat, A.: 2D Mater. 11 (2024) 021002.

Malliakas, C., Iavarone, M., Fedor, J., and Kanatzidis, M.: Coexistence and Coupling of Two Distinct Charge Density Waves in Sm2Te5, J. Am. Chem. Soc. 130 (2008) 3310–3312. (Not IEE SAS).

1. Shin, K.Y.: Phys. Rev. B 77 (2008) 165101.
2. Shin, K.Y.: J. Alloys Compounds 489 (2010) 332.
3. Sheldrick, W.S.: Zeitschrift Anorg. Allgemeine Chemie 638 (2012) 2401.
4. Yajima, T.: J. Phys. Soc Japan 83 (2014) 073705.
5. He, J. B.: Supercond. Sci. Technol. 29 (2016) 065018.
6. Muravieva, V. K..: J. Struct. Chem. 58 (2017) 1676.
7. Fries, K.S.: Chem. Mater. 30 (2018) 2251.
8. Gladisch, F.C.: Crystals 8 (2018) 80.
9. Goebgen, K.C.: INORG. CHEM. 57 (2018) 412.
10. Wu, D.: Phys. Rev. Mater. 3 (2019) 024002.
11. Celania, C.: J. Solid State Chem. 274 (2019) 243.
12. Serezhkin, V.N.: Russian J. Phys. Chem. A 93 (2019) 288.
13. Serezhkin, V.N.: Russian J. Inorg. Chem. 64 (2019) 984.
14. May, A.F.: J. Applied Phys. 128 (2020) 051101.
15. Piva, M.M.: Chem. Mater. 33 (2021) 4122.
16. Serezhkin, V.N.: Russian J. Phys. Chem. A 95 (2021) 2096.
17. Cai, X.Q.: J. Phys. Chem. C 127 (2023) 10730.
18. Pouget, J.P.: Reports on Progress in Phys. 87 (2024) 026501.

Belkin, A., Novosad, V., Iavarone, M., Fedor, J., Pearson, J., Petrean-Troncalli, A., and Karapetrov, G.: Tunable transport in magnetically coupled MoGe/Permalloy hybrids. Applied Physics Lett. 93 (2008) 072510.

1. Carapella, G.: Applied Phys. Lett. 94 (2009) 242504.
2. Aladyshkin, A.Y.: Applied Phys. Lett. 94 (2009) 222503.
3. Aladyshkin, A.Y.: Supercond. Sci. Technol. 22 (2009) 053001.
4. Fritzsche J.: Phys. Rev. B 80 (2009) 094514.
5. Carapella, G.: Phys. Rev. B 81 (2010) 054503.
6. Aladyshkin, A.Y.: Applied Phys. Lett. 97 (2010) 052501.
7. Aladyshkin, A.Y.: J. Applied Phys. 108 (2010) 033911.
8. Aladyshkin, A.Y.: Physica C 470 (2010) 883.
9. Silhanek, A.: Nanosci and Engn. in Superconductivity. Springer 2010. ISBN 9783642151361. P. 1-24.
10. Tamegai, T.: Supercond. Sci. Technol. 24 (2011) 024015.
11. Aladyshkin, A.Yu.: Phys. Rev. B 84 (2011) 094523.
12. Ataklti, G. W.: Supercond. Sci. Technol. 25 (2012) 065015.
13. Szmaja, W.: J. Alloys Compounds  521 (2012) 174.
14. Ilyina, E.A.: Physica C 479 (2012) 170.
15. Ruiz-Valdepenas, L.: New J. Phys. 15 (2013) 103025.
16. Stamopoulos, D.: J. Supercond. Novel Magnet. 26 (2013) SI1931.
17. Brisbois, J.: Sci Rep. 6 (2016) 27159.
18. Frota, D. A.: J. Applied Phys. 119 (2016) 093912.
19. Voltan, S.: Phys. Rev. B 94 (2016) 094406.
20. Cirillo, C.: New J. Phys. 19 (2017) 023037.
21. Caputo, M.: Phys. Rev. B 96 (2017) 174519.
22. Jafri, H.M.: Supercond. Sci. Technol. 32 (2019) 095002.
23. Chen, Y.: Sci Rep. 9 (2019) 19052.
24. Zhao, Y.F.: J. Low Temp. Phys. 214 (2024) 40.

Cambel, V., Karapetrov, G., Novosad, V., Bartolome, E., Gregušová, D., Fedor, J., Kúdela, R., Šoltýs, J., :Novel Hall sensors developed for magnetic field imaging systems. J. Magnetism Magn. Mater. 316 (2007) 232-235.

1. Cheng, Y.H.: Physical Rev. B 80 (2009) 174412.
2. Tian, W.: Rev. Sci Instrum. 84 (2013) 035004.

Karapetrov, G., Fedor, J., Iavarone, M., Rosenmann, D., and Kwok, W.K.: Direct observation of vortex lattice transitions in mesoscopic superconducting single crystals using STM, Physica C 437-438 (2006) 127-131.

1. Papari, G.P.: Physica Status Solidi RRL 17 (2023) SI Iss. 11.

Gregušová, D., Eliáš, P., Öszi, Z., Kúdela, R., Šoltýs, J., Fedor, J., Cambel, V., Kostič, I., : Technology and properties of a vector hall sensor. Microelectronics J. 37 (2006) 1543-1546.

#     1.Rybak, M.: Przeglad Wlokienniczy 61 (2007) 39.
2. Dai, C.-L.: Microelectronics J. 39 (2008) 744.
3. Peters, V.: IEEE Trans. Magn. 49 (2013) 109.
4. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Bartolome, E., Granados, X., Cambel, V., Fedor, J., Kováč, P., Hušek, I., : Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging. Supercond. Sci Technol. 18 (2005) 1135-1140.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Higashikawa, K.: Physica C 504 (2014) 62.

Karapetrov, G., Fedor, J., Iavarone, M., Rosenmann, D., Kwok, W., : Direct observation of geometrical phase transitions in mesoscopic superconductors by scanning tunneling microscopy. Phys. Rev. Lett. 95 (2005) 167002.

1. Reichhardt, C.J.O.: Phys. Rev. B 73 (2006) 184519.
2. Kokubo, N.: Phys. Rev. B 73 (2006) 224514.
3. Erdin, S.: Phys. Rev. B 73 (2006) 224506.
4. Cardoso, M.: J. Phys.-Cond. Matter 18 (2006) 8623.
5. Berdiyorov, G.R.: Phys. Rev. B 74 (2006)  174512.
6. Moshchalkov, V.V.: J. Supercond. Novel Magnetism 19 (2006) 409.
7. Goto, H.: Physica E 40 (2007) 339.
8. Reichhardt, C.J.O.: Phys. Rev. B 76 (2007) Art. No. 094512
9. Reichhardt, C.J.O.: Phys. Rev. B 76 (2007) Art. No. 064523
10. Coupier, G. : Phys. Rev. B 75 (2007) Art. No. 224103.
11. Fasano, Y.: Supercond. Sci Technol. 21 (2008) Art. No. 023001.
12. Berdiyorov, G.R.: Phys. Rev. B 77 (2008) Art. No. 024526
13. Reichhardt, C.J.O.: Phys. Rev. B 78 (2008) 224511.
14. Reichhardt, C.J.O.: Phys. Rev. B 78 (2008) 180507.
15. Kanda, A.: Inter. Symp. Adv. Nanodev. Nanotechnol. 109 (2008) 12016.
16. Kung, W.: J. Statistical Phys. 132 (2008) 945.
17. Velez, M.: J. Magnetism Magnetic Mater. 320 (2008) 2547.
18. Reichhardt, C.J.O.: Phys. Rev. Lett. 100 (2008) 167002.
19. Cren, T.: Phys. Rev. Lett. 102 (2009) 127005.
20. Lima, C.L.S.: Phys. Rev. B 80   (2009)  054514.
21. Libal, A.: Phys. Rev. Lett. 102 (2009) 237004.
22. Reichhardt, C.: Phys. Rev. B 79  (2009) 134501.
23. Mel’nikov, A.S.: Phys. Rev. B 79  (2009) 134529.
24. Reichhardt, C.J.O.: EPL 88 (2009) 47004.
25. Reichhardt, C.J.O.: Phys. Rev. B 81 (2010) 224516.
26. Kramer, R.B.G.: Phys. Rev. B 81 (2010) 144508.
27. Reichhardt, C.: Phys. Rev. B 81 (2010) 100506.
28. Piacente, G.: Phys. Rev. B 81 (2010) 024108.
29. Reichhardt, C.: Phys. Rev. B 81 (2010) 024510.
30. Shaw, G.: Supercond. Sci. Technol. 23 (2010) 075002.
31. Pina, J.C.: Physica C 470 (2010) 762.
32. Suematsu, H.: J. Phys. Soc Japan 79 (2010) 124704.
33. Reichhardt, C.: Phys. Rev. Lett. 106 (2011) 060603.
34. Luzhbin, D. A.: JETP Lett. 93 (2011) 508.
35. Pereira, P.J.: Phys. Rev. B 84 (2011) 144504.
36. Adam, S.: Phys. Rev. B 84 (2011) 104512.
37. Yetis, H.: European Phys. J. B 83 (2011) 93.
38. Lee, J.: Phys. Rev. B 84 (2011) 060515.
39. Gutierrez, J.: Phys. Rev. B 85 (2012) 094511.
40. He, S. K.: J. Phys.-Cond. Matter 24 (2012) 155702.
41. Zhang, X.-M.: J. Phys. Chem. C 116 (2012) 8950.
42. Reichhardt, C.: J. Phys.-Cond. Matter 24 (2012) 225702.
43. Tominaga, T.: J. Supercond. Novel Magnet. 25 (2012) 1375.
44. Zhang, W.J.: EPL 99 (2012) 37006.
45. He, S.-K.: Chinese Phys. B 21 (2012) 087401.
46. He, S. K.: J. Phys. Conf. Ser. 400 (2012) 042018.
47. Cieplak, M.: Phys. Rev. B 87 (2013) 014519.
48. Bespalov, A. A.: Supercond. Sci Technol. 26 (2013) 085014.
49. Ray, D.: Phys. Rev. Lett. 110 (2013) UNSP 267001.
50. Lee, M. K.: J. Applied Phys. 113 (2013) 113903.
51. Lin, Shi-Z.: Phys. Rev. B 87 (2013) 100508.
52. Asai, H.: Physica C 485 (2013) 125.
53. Reichhardt, C.: J. Supercond. Novel Magnet. 26 (2013) SI 2041.
54. Reichhardt, C. J.: J. Supercond. Novel Magnet. 26 (2013) SI 2005.
55. Drocco, J.A.: J. Phys. Cond. Matt. 25 (2013) 345703.
56. Suderow, H.: Supercond. Sci Technol. 27 (2014) 063001.
57. Stolyarov, V. S.: Applied Phys. Lett. 104 (2014) 172604.
58. Ray, D.: Supercond. Sci Technol. 27 (2014) 075006.
59. Ray, D.: Phys. Rev. B 90 (2014) 094502.
60. Reichhardt, C.J.: Physica C 503 (2014) 52.
61. Ray, D.: Physica C 503 (2014) 123.
62. Kumar, S.: J. Phys.-Cond. Matt. 27 (2015) 295701.
63. Mel’nikov, A.S.: JETP Lett. 102 (2015) 775.
64. del Valle, J.: Phys. Rev. B 95 (2017) 224510.
65. He, S.K.: Supercond. Sci Technol. 30 (2017) 115016.
66. Ge, J.-Y.: Phys. Rev. B 96 (2017) 134515.
67. Stolyarov, V.S.: Nature Comm. 9 (2018) 2277.
68. Lu, D.-C.: NPJ Quantum Mater. 3 (2018) 12.
69. Samokhvalov, A. V.: J. Experiment. Theoret. Phys. 126 (2018) 224.
70. Panghotra, R.: Phys. Rev. B 100 (2019) 054519.
71. Chen, X.-H.: Phys. Rev. B 102 (2020) 054516.
72. Li, M.: Chinese Phys. B 29 (2020) 037401.
73. Aragon Sanchez, J.: Sci Rep. 10 (2020) 19452.
74. Samokhvalov, A.: Phys. Rev. B 102 (2020) 174501.
75. Li, W.: Phys. Rev. B 104 (2021) 024504.
76. Stolyarov, V.S.: J. Phys. Chem. Lett. 12 (2021) 9068.
77. Melkani, A.: Phys. Rev. E 107 (2023) 014501.
78. Zhu, W.Q.: Phys. Plasmas 30 (2023) 043702.
79. Kopasov, A.A.: Phys. Rev. B 107 (2023) 174505.
80. González, J.: Cond. Matt. 8 (2023) 77.

Karapetrov, G., Fedor, J., Iavarone, M., Marshall, M., Divan, R., : Imaging of vortex states in mesoscopic superconductors. Applied Phys. Lett. 87 (2005) 162515.

1. Reichhardt, C.J.O.: Phys. Rev. B 73 (2006) 184519.
2. Libal, A.: Phys. Rev. Lett. 102 (2009) 237004.
3. Golod, T.: Physica C 470 (2010) 890.
4. Asai, H.: Physica C 485 (2013) 125.
5. Suderow, H.: Supercond. Sci Technol. 27 (2014) 063001.
6. Stolyarov, V.S.: Applied Phys. Lett. 104 (2014) 172604.
7. del Valle, J.: Applied Phys. Lett. 109 (2016) 172601.
8. Stolyarov, V.S.: Nature Comm. 9 (2018) 2277.

Cambel, V., Fedor, J., Gregušová, D., Kováč, P., and Hušek, I.: Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization. Supercond. Sci Technol. 18 (2005) 417-421.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Ma, Z. Q.: Inter. Materials Rev. 56  (2011) 267.
3. Higashikawa, K.: Physica C 504 (2014) 62.
4. Rostami, Kh.R.: Instrum. Experimen. Techn. 59 (2016) 273.
5. Shaw, G.: Rev. Sci Instrum. 87 (2016) 113702.
6. Rostami, Kh. R.: Measurement Techn. 59 (2017) 1297.
7. Rostami, Kh.R.: Instrum. Experimen. Techn. 62 (2019) 450.
8. Zhang, W.: Ceramics Inter. 45 (2019) 6413.
9. Shaw, G.: AIP Conf. Proc. 2115 (2019) UNSP 030210.
10. Rostami, Kh.R.: Techn. Phys.‏ 65 (2020) 1975.
11. Huang, Z.: Supercond. Sci Technol. 34 (2021) 075007.

Cambel, V., Gregušová, D., Fedor, J., Kúdela, R., Bending, S., : Scanning vector Hall probe microscopy. J. Magnetism Magnetic Mater. 272-276 (2004) 2141-2143.

1. Candini, A.: Nanotechnol. 17 (2006) 2105.
2. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
3. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Hasenöhrl, S., Novák, J., Kúdela, R., Betko, J., Morvic, M., Fedor, J., : Anisotropy in transport properties of ordered strained InGaP. J. Crystal Growth 248 (2003) 369.

1. Sigman, M.B.: J. American Chemical Soc. 127 (2005) 10089.
2. Huang R.-R.: Chinese J. Struct. Chem. 34 (2015) 594.
3. Martin, G.: ACS Applied Electron. Mater. 4 (2022) 3478.

Gregušová, D., Cambel, V., Fedor, J., Kúdela, R., Šoltýs, J., Lalinský, T., Kostič, I., Bending, S., : Fabrication of a vector Hall sensor for magnetic microscopy. Applied Phys. Lett. 82 (2003) 3704-3706.

1. De Leo, C.: Advances Cryogenic Engn. 50 A,B  711 (2004) 709.
2. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.
3. Jordan, A.N.: Phys. Rev. B 77 (2008) art. no. 075334.
4. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) art. no. 142502.
5. Kweon, S.: J. Applied Phys. 105 (2009) 093906.
6. Vorobev, A.: Applied Phys. Lett. 103 (2013) 173513.
7. Chang, J.-H.: J. Phys. D 48 (2015) 405004.
8. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Fedor, J., Cambel, V., Gregušová, D., Hanzelka, P., Dérer, J., Volko, J., : Scanning vector Hall probe microscope. Rev. Sci Instruments 74 (2003) 5105-5110.

1. Tang, C.-C.: Rev. Sci Instrum. 85 (2014) 083707.
2. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Šoltýs, J., Cambel, V., Fedor, J., : Study of tip-induced Ti-film oxidation in atomic force microscopy contact and non-contact mode Acta Physica Polonica A 103 (2003) 553-558.

 1. Tian, W.C.: Functional Thin Films and Nanostructures for Sensors: Synthesis, Physics, and Applications. Springer 2009. ISBN 978-0387362298. P. 65-84.
2. Batko, I.: Europ. Phys. J.-Applied Phys. 58 (2012) 20102.
3. Huang, J.-C.: Scanning 34 (2012) 347.
4. Batkova, M.: Europ. Phys. J.-Applied Phys. 73 (2016) 30301.
5. Batko, I.: Mater. Today-Proc. 3 (2016) 803.

Eliáš, P., Hasenöhrl, S., Fedor, J., Cambel, V., : Hall bar device processing on patterned substrates using optical lithography. Sensors Actuators A 101 (2002) 150-155.

1. Deen, M.J.: J. Mater. Sci 17 (2006) 549¬57.
2. Sakamoto, N.: JSME Inter. J. Ser. C 49 (2006) 361.
*    3. Deen, J.: Springer Handbook Electr. Photonic Materials. Eds. S. Kasap and P. Capper. Springer 2007. ISBN-13: 978-0-387-26059-4. P. 419.
4. Deen, J.: Springer Handbook of Electronic and Photonic Materials. 2nd ed. Eds. S. Kasap and P. Capper. Springer 2017. ISBN-13: 978-3319489315. P. 453.
5. Wang, Y.: J. Phys.-Energy 3 (2021) 012004.

Fröhlich, K., Machajdík, D., Cambel, V., Fedor, J., Pisch, A., Lindner, J., : Growth of Ru and Ru2 films by metal-organic chemical vapour deposition J. de Physique 11 (2001) Pr3-325-332.

1. Aaltonen, T.: Chemical Vapor Deposition 10 (2004) 215.
2. Steeves, M.M.: Applied Phys. Lett. 96 (2010) 142103.
3. Guo, L.: Electroch. for Environment. Springer 2010. ISBN 978-0-387-36922-8. P. 55-98.
4. Gregorczyk, K.: Mater. Lett. 73 (2012) 43.