Ing. Fröhlich Karol, DrSc.

Egyenes-Pörsök, F., Gucmann, F., Hušeková, K., Dobročka, E., Sobota, M., Mikolášek, M., Fröhlich, K., and Ťapajna, M.: Growth of α- and β-Ga2O3 epitaxial layers on sapphire substrates using liquid-injection MOCVD, Semicond. Sci Technol. 35 (2020) 115002.

1. Tak, B.R.: J. Phys. D 54 (2021) 453002.

Chymo, F., Fröhlich, K., Kundrata, I., Hušeková, K., Harmatha, L., Racko, J., Breza, J., and Mikolášek, M.: Characterization of MIS photoanode with a thin SiO2 layer for photoelectrochemical water splitting, AIP Conf. Proc. 2131 (2019) 020020.

1. Pastukhova, N.: Adv. Mater. Interfac. 8 (2021) 2002100.

Kundrata, I., Fröhlich, K., Vančo, L., Mičušík, M., and Bachmann, J.: Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films, Beilstein J. Nanotechnol. 10 (2019) 1443-1451.

1. Yuan, G.: Chem. Phys. Lett. 773 (2021) 138602.

Hudec, B., Chang, C.-C., Wang, I-T., Fröhlich, K., and Hou, T.-H.: Three-dimensional integration of ReRAMs. In Proc. IEEE Conf. Nanotechnol. (2019) 8626351.

1. Xu, W.: Inter. Conf. ASIC 2019.

Miranda, E., Munoz-Gorriz, J., Suñé, J., and Fröhlich, K.: SPICE model for the current-voltage characteristic of resistive switching devices including the snapback effect, Microelectron. Engn. 215 (2019) 110998.

1. Gonzalez, M. B.: Applied Phys. Lett. 117 (2020) 262902.
2. Gonzalez, M. B.: Inter. Reliab. Phys. Symp. 2020.

Brndiarová, J., Šiffalovič, P., Hulman, M., Kalosi, A., Bodik, M., Skákalová, V., Micusik, M., Markovič, Z., Majková, E., and Fröhlich, K.:  Functionalized graphene transistor for ultrasensitive detection of carbon quantum dots, J. Applied Phys. 126 (2019) 214303.

1. Huang, C.-H.: Biosensors & Bioelectron.‏ 164 (2020) 112320.

Niu, G., Calka, P., Huang, P., Sharath, S.U., Petzold, S., Gloskovskii, A., Fröhlich, K., Zhao, Y., Kang, J., Schubert, M.A., Bärwolf, F., Ren, W., Ye, Z.-G., Perez, E., Wenger, C., Alff, L., and Schroeder, T.: Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy, Mater. Res. Lett. 7 (2019) 117-123.

1. Shen, Z.: Micromachines 10 (2019) 446.
2. Gaddam, V.: IEEE Trans. Electron Dev. 67 (2020) 745.

Fröhlich, K., Kundrata, I., Blaho, M., Precner, M., Ťapajna, M., Klimo, M., Šuch, O., and Škvarek, O.: Hafnium oxide and tantalum oxide based resistive switching structures for realization of minimum and maximum functions, J. Applied Phys. 124 (2018) 152109.

1. Aguirre, F.L.: IEEE Access 8 (2020)‏ 202174.

Mikolášek, M., Fröhlich, K., Hušeková, K., Racko, J., Rehacek, V., Chymo, F., Ťapajna, M., and Harmatha, L.: Silicon based MIS photoanode for water oxidation: a comparison of RuO2 and Ni Schottky contacts, Applied Surface Sci 461 (2018) 48-53.

1. Quinn, J.: ACS Energy Lett. 4 (2019) 2632.
2. Silva, R.C.: Electron. Mater. Lett. 15 (2019) 645.
3. Hemmerling, J.: Adv. Energy Mater. 10 (2020) 1903354.
4. Li, O.L.: Applied Surface Sci 528 (2020) 146979.
5. Zhao, C.: ACS Applied Energy Mater. 3 (2020)‏ 8216.
6. Hemmerling, J.R.: Accounts Chem. Res. 54 (2021) 1992.
7. Boddula, R.: Chinese J. Catal. 42 (2021) 1387.

Fröhlich, K., Kundrata, I., Blaho, M., Precner, M., Ťapajna, M., Klimo, M., Šuch, O., and Škvarek, O.: Performance of HfOx– and TaOx-based resistive switching structures in circuits for min and max functions implementation, MRS Adv. 3 (2018) Iss. 59, 3427-3432.

1. Garcia, H.: Microelectron. Engn. 216 (2019) 111083.

Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.

1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 (‏ 127101(2020.
4. Akkaya, A.: Mater. Today-Proc. 46 (2021) 6939.
5. Mohanty, S.: Applied Phys. Lett. 119 (2021) 042901.

Spassov, D., Paskaleva, A., Fröhlich, K., and Ivanov, Tz.: Effect of oxygen concentration and metal electrode on the resistive switching in MIM capacitors with transition metal oxides, IOP Conf. Ser.: J. Phys. 794 (2017) 012016.

1. Yang, W.: Mater. Res. Express 6 (2019) 085072.

Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.

1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) ‏ 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.
9. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.
10. Vauche, L.: ACS Applied Electron. Mater. 3 (2021) 1170.

Ťapajna, M., Válik, L., Gucmann, F., Gregušová, D., Fröhlich, K., Haščík, Š., Dobročka, E., Tóth, L., Pécz, B., and Kuzmík, J.: Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density, J. Vacuum Sci Technol. B 35 (2017) 01A107.

1. Meer, M.: Semicond. Sci Technol. 32 (2017) 04LT02.
2. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
3. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Takhar, K.: Applied Surface Sci 481 (2019) 219.
6. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
7. Schiliro, E.: AIP Adv. 10 (2020) 125017.
8. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.

Blaho, M., Gregušová, D.,  Haščík, Š., Ťapajna, M., Fröhlich, K., Šatka, A., and Kuzmík, J.: Annealing, temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs, Applied Phys. Lett. 111 (2017) 033506.

1. Lee, C.-T.: AIP Adv. 4(2018) 045014.
2. Cui, P.: Sci Rep. 8 (2018) 9036.
3. Yahyazadeh, R.: J. Non-Oxide Glass. 11 (2019) 19.
4. Zhu, Q.: Chinese Phys. B 29 (2020) 047304.

Stoklas, R., Gregušová, D., Blaho, M., Fröhlich, K., Novák, J., Matys, M., Yatabe, Z.,  Kordoš, P., and Hashizume, T.: Influence of oxygen-plasma treatment on AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 by atomic layer deposition: leakage current and density of states reduction, Semicond. Sci Technol. 32 (2017) 045018.

1. Liang, X.: Semicond. Sci Technol. 32 (2017) 095010.
2. Yoon, S.-J.: J. Alloys Compounds 741 (2018) 999.
3. Bazaka, K.: Nanoscale 10 (2018) 17494.
4. Wang, C.: Phys. Status Solidi a 215 (2018) 1800092.
5. Gulseren, M.E.: Mater. Research Express 6 (2019) 095052.
6. Gokhan, K.: Solid-State Electron. 158 (2019) 22.
7. Xu, K.: Chemistry-Europ. J. 25 (2019) 5014.
8. Cai, Y.: ICICDT 2019.
9. Biswas, M.: J. Lumines. 222 (2020) 117123.
10. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
11. Cai, Y.: IEEE Access 8 (2020) 95642.
12. Abo-Kahla, D.A.M.: J. Optical Soc America B 37 (2020) A96.
#   13. Abo-Kahla, D.A.M.: Pramana – J. Phys. 94 (2020) 65.
14. Choi, S.: J. Alloys Compounds 854 (2021) 157186.
15. Akazawa, M.: Japan. J. Applied Phys. 60 (2021) 036503.

Kukli, K., Kemeli, M., Vehkamäki, M., Heikkilä, M., Mizohata, K., Kalam, K., Ritala, M., Leskelä, M., Kundrata, I., and Fröhlich, K.Atomic layer deposition and properties of mixed Ta2O5 ZrO2 films, AIP Adv. 7 (2017) 025001.

 1. Lehninger, D.: Applied Phys. Lett. 110 (2017) 262903.
2. Jiang, H.: ACS Applied Mater. Interf. 9 (2017) 16296.
3. Alkhayatt, A.H.O.: Optik 159 (2018) 305.
4. Jiang, S.: AIP Adv. 8 (2018) 085109.
5. Li, J.: Nanoscale Res. Lett. 14 (2019) 75.
6. Mackus, A.J.M.: Chem. Mater. 31 (2019) 1142.
7. Qin, G.: RSC Adv. 9 (2019) 35289.
8. Baek, G.: Microelectron. Engn. 215 (2019) 110987.
9. Anderson, E.C.: ACS Applied Electron. Mater. 1 (2019) 692.
10. Bhanu, J.U.: Mater. Sci Semicond. Process. 119 (2020) 105171.
11. Vitale, S.A.: ACS Applied Mater. Interfac. 12 (2020) 43250.
12. Muneshwar, T.: J. Vacuum Sci Technol. A 39 (2021)030401.
13. Cai, C.: Applied Surface Sci 560 (2021) 149960.

Ťapajna, M., Válik, L., Gregušová, D., Fröhlich, K., Gucmann, F., Hashizume, T., and Kuzmík, J.: Treshold voltage instabilities in AlGaN/GaN MOS-HEMTs with ALD-grown Al2O3 gate dielectrics: relation to distribution of oxide/semiconductor interface state density. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 1-4.

1. Ding, L.: IEEE Conf. Computer Vision Pattern Recogn. 2018, pp. 6508-6516.
2. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.

Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.

1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.

Hudec, B., Hsu, C.-W., Wang, I-T., Lai, W.L., Chang, C.-C., Wang, T., Fröhlich, K., Ho, C.-H., Lin, C.-H., and Hou, T.-H.: 3D resistive RAM cell design for high-density storage class memory – a review, Sci China Infor. Sci  59 (2016) 061403.

1. Zhu, D.: J. Semicond. 38 (2017) 071002.
2. Aussen, S.: ECS Trans. 80 (2017) 87.
3. Parveen, F.: Asia South Pacific Design Automat. Conf. Proc. 2018, pp. 361-366.
4. Zhang, J.: Sci China-Inf. Sci 61 (2018) 012105.
5. Ting, Y.-H.: SMALL 14 (2018) UNSP 1703153.
6. Panda, D.: Nanoscale Res. Lett. 13 (2018) 8.
7. Chen, Q.: Sci China-Inf. Sci 61 (2018) 060411.
8. Zhao, X.: Sci China-Inf. Sci 61 (2018) 060413.
9. Han, R.: Science China-Inf. Sci 62 (2019) 022401.
10. Chen, Q.: Physica Scripta 94 (2019) 045001.
11. Cremers, V.: Applied Phys. Rev. 6 (2019) 021302.
12. Wang, C.: ACM Trans. Design Automat. Electron. Systems 24 (2019) 46.
13. Belay, Y. A.: PRIME 2019, pp. 29-32.
14. Zhou, F.: Parallel Comput. 87 (2019) 70.
15. Kim, M.: IEEE Electron Dev. Lett. 40 (2019) 1622.
16. Fang, Y.: Sci China-Inf. Sci 62 (2019) 229401.
17. Takeuchi, K.: IEEE J. Electron Dev. Soci 7 (2019) 1284.
18. Li, W.: Nano Energy 67 (2020) 104213.
19. Jin, H.: IEEE Trans. Parallel Distrib. Systems 31 (2020) 779.
20. Zhang, Z.: INFOMAT 2 (2020) 261.
21. Liu, Z.-C.: IEEE Access 8 (2020) 76471.
22. Shi, L.: Nanoscale Adv. 2 (2020) 1811.
23. Wang, Da-W.: Sci China-Inf. Sci 63 (2020) 189401.
24. Cambou, B.: ACM J. Emerg. Technol. in Comput. Systems 16 (2020)‏ SI40.
25. Chen, Q.: Adv. Electr. Mater. 7 (2021) 2000864.
26. Fahmy, G.A.: Electronics 10 (2021) 622.
27. Cambou, B.: Cryptography 5 (2021) 8.
28. An, H.Y.: IEEE Trans. Emerg. Topics Comput. Intellig. 5 (2021) 668.

Hudec, B., Wang, I., Lai, W., Chang, C., Jančovič, P., Fröhlich, K., Mičušík, M., Omastová, M.,  and Hou, T.: Interface engineering HfO2-based 3D vertical ReRAM, J. Phys. D 49 (2016) 215102.

1. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
2. Yan, X.: J. Mater. Chem. C 5 (2017) 2259.
3. Banerjee, W.: ISED 2017.
4. Munjal, S.: Sci Rep. 7 (2017) 12427.
5. Banerjee, W.: IEEE Trans. Electron Dev. 65 (2018) 957.
6. Kuzmichev, D.S.: Phys. Status Solidi RRL 12 (2018) 1800429.
7. Zhang, H.: ACS Applied Mater. Interfaces 10 (2018) 29766.
8. Shima, H.: IEEE J. Electron Devices Soc 6 (2018) 8495005, pp. 1225.
#  9. Azuma, A.: ECS Trans. 86 (2018) 13.
10. Chen, Q.: Physica Scripta 94 (2019) 045001.
11. Lin, C.-Y.: J. Phys. D 52 (2019) 095108.
12. Niu, G.: Mater. Res. Lett. 7 (2019) 117.
13. Wang, Q.: J. Mater. Chem. C 7 (2019) 12682.
14. Munjal, S.: J. Phys. D 52 (2019) 433002.
15. Ou, Q.-F.: Materials 13 (2020) 3532.
16. Sun, B.: Mater. Today Adv. 9 (2021) 100125.
17. Bilder, CR.: Statist. Medicine 40 (2021) 3021.

Gucmann, F., Gregušová, D., Válik, L., Ťapajna, M., Haščík, Š., Hušeková, K., Fröhlich, K., Pohorelec, O., and Kuzmík, J.: DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric prepared by various techniques. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 9-12.

1. Hasan, Md. R.: J. Vacuum Sci Technol. B 35 (2017) 052202.
2. Pan, T.: Materiali in Tehnologije 52 (2018) 795.

Blasco, J., Jančovič, P., Fröhlich, K., Suñé, J., and Miranda, E.: Modeling of the switching I-V characteristics in ultrathin (5nm) atomic layer deposited HfO2 films using the logistic hysteron, J. Vacuum Sci Technol. B 33 (2015) 01A102.

1. Kim, M.-H.: J. Comput. Electron. 17 (2018) 273.
2. Lin, A.S.: IEEE Access 9 (2021)‏ 3126.

Čičo, K., Jančovič, P., Dérer, J., Šmatko, V., Rosová, A., Blaho, M., Hudec, B., Gregušová, D., and Fröhlich, K.:Resistive switching in nonplanar HfO2-based structures with variable series resistance. J. Vacuum Sci Technol. B 33 (2015) 01A108.

1. Hardtdegen, A.: IEEE Inter. Memory Workshop 2016.
2. Hardtdegen, A.: IEEE Trans. Electron Dev. 65 (2018) 3229.
3. Lin, Chih-Y.: J. Phys. D 52 (2019) 095108.
4. Cueppers, F.: APL Mater. 7 (2019) 091105.

Miranda, E., Hudec, B., Suñé, J., and Fröhlich, K.: Model for the current–voltage characteristic of resistive switches based on recursive hysteretic operators, IEEE Electron Dev. Lett. 36 (2015) 944-946.

1. Cisternas Ferri, A.: Argentine Conf. Electron. (CAE) 2019, p. 58.
2. Abraham, I.: IEEE Access 7 (2019) 166451.
3. Cisternas Ferri, A.: Materials 12 (2019) 2260.

Blaho, M., Gregušová, D., Haščík, Š., Jurkovič, M., Ťapajna, M., Fröhlich, K., Dérer, J., Carlin, J., Grandjean, N., Kuzmík, J., : Self-aligned normally-off metal-oxide-semiconductor n+++GaN/InAlN/GaN high-electron mobility transistors. Phys. Status Solidi A 112 (2015) 1086-1090.

1. Yeh, P.-C.: Applied Phys. Express 8 (2015) 084101.
2. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
3. Freedsman, J.: IEEE Electron Device Lett. 38 (2017) 497.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
6. Meneghini, M.: Mater. Sci Semicond. Process. 78 (2018) 118.
7. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
8. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
9. Zhang, W.H.: Results in Phys. 24 (2021) 104209.

Paskaleva, A., Hudec, B., Jančovič, P., Frohlich, K., and Spassov, D.: The influence of technology and switching parameters on resistive switching behavious of Pt/HfO2/TiN MIM structures, Facta Universitas 27 (2014) 621.

1. Attarimashalkoubeh, H.: IEEE Inter. Conf. Microelectron. – MIEL 2019, p. 79.

Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., Kuzmík, J., : Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506.

1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
7. Zhang, K.: IEEE SSLChina – IFWS 2016. P. 64.
8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.
9. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
10. Zhou, X. J.: Superlatt. Microstr. 112 (2017) 1.
#    12. Zhang, K.: Inter. Forum on Wide Bandgap Semiconductors China, IFWS 2016. Conf. Proc. (2017) 7803758, pp. 64-67.
#     13. Singh, P.: Comm. Computer Inf. Sci 892 (2019) 380.
14. Supardan, S. N.: J. Phys. D 53(2020) 075303.

Aarik, L., Arroval, T., Rammula, R., Mändar, H., Sammelselg, V., Hudec, B., Hušeková, K., Fröhlich, K., and Aarik, J.: Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors, Thin Solid Films 565 (2014) 19-24.

1. Winzer, A.: J. Vacuum Sci Technol. B 33 (2015) 01A106.
2. Kukli, K.: Thin Solid Films 589 (2015) 597.
3. Simon, D.K.: IEEE Photovoltaic Specialists Conf. 2015.
4. Dirnstorfer, I.: IEEE J. Photovolt. 6 (2016) 86.
5. Aich, S.: Materials Lett. 178 (2016) 135.
6. Dirnstorfer, I.: Nanosci Technol.  (2016) 41.
7. Testoni, G. E.: J. Phys. D 49 (2016) 375301.
8. Lee, G.-H.: ECS Trans. 75 (2016) 53.
9. Yurkevich, O.: J. Synchrotron Radiat. 24 (2017) 775.
10. Bao, Y.: Adv. Electronic Mater. 3 (2017) SI1600491.
11. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
12. Guerra-Nunez, C.: Chem. Mater. 29 (2017) 8690.
13. Atay, F.: J. Electronic Mater. 47  (2018) 1601.
14. Digdaya, I.A.: J. Phys. Chem. C 122  (2018) 5462.
15. Lale, A.: Thin Solid Films 666 (2018) 20.
16. Cergel, M.S.: Ionics 25 (2019) 3823.
17. Berghuis, W.J.H.: J. Vacuum Sci Technol. A 38 (2020) Iss. 2.
18. Atay, F.: J. Electronic Mater.‏ 49 (2020) SI5542.
19. Ghazaryan, L.: Nanotechnol. 32 (2021) 095709.
20. Kwon, D.S.: ACS Applied Mater. Interfac. 13 (2021) 23915.
21. Chiappim, W.: Micromachin. 12 (2021) 588.
22. Kim, B.: ECS J. Solid State Sci Technol. 10 (2021) 083006.
23. Lale, A.: Thin Solid Films 732 (2021) 138761.

Arroval, T., Aarik, L., Rammula, R., Mändar, H., Aarik, J., Hudec, B., Hušeková, K., and Fröhlich, K.: Influence of growth temperature on the structure and electrical properties of high-permittivity TiO2 films in TiCl4-H2O and TiCl4-O3 atomic-layer-deposition processes, Phys. Status Solidi a 211 (2014) 425-432.

1. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
2. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
3. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kim, S.H.: ACS Applied Mater. Interfac. 10 (2018) 41544.

Gucmann, F., Gregušová, D., Stoklas, R., Dérer, J., Kúdela, R., Fröhlich, K., and Kordoš, P.: InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors with oxygen-plasma oxide and Al2O3 double-layer insulator, Applied Phys. Lett. 105 (2014) 183504.

1. Kim, S.-H.: IEEE Electron Device Lett. 36 (2015) 884.
2. Kim, S.-H.: J. Nanosci Nanotechnol. 16 (2016) 10389.
3. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
4. Bazaka, K.: Nanoscale 10 (2018) 17494.
5. Kim, S.-H.: ACS Applied Mater. Interfaces 10 (2018) 26378.

Murakami, K., Rommel, M., Hudec, B., Rosová, A., Hušeková, K., Dobročka, E., Rammula, R., Kasikov, A., Han, J., Lee, W., Song, S., Paskaleva, A., Bauer, A., Frey, L., Fröhlich, K., Aarik, J., Hwang, C., : Nanoscale characterization of TiO2 films grown by atomic layer deposition on RuO2 electrodes. ACS Applied Mater. Interfaces 6 (2014) 2486-2492.

1. Azevedo, J.: Energy & Environmen. Sci 7 (2014) 4044.
2. Jeon, W.: ACS Applied Mater. Interfaces 6 (2014) 21632.
3. Azevedo, J.: Nano Energy 24 (2016) 10.
4. Chirakkara, S .: Mater. Res. Express 3 (2016) 045023.
5. Head, A.R .: J. Phys. Chem. C 120 (2016) 243.
6. Porti, M.: IEEE Trans. Nanotechnol. 15 (2016) 986.
7. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
8. Nafria, M.: ECS Trans. 79 (2017) 139.
9. Croizier, G.: TRANSDUCERS 2017. P. 1237.
10. Ruiz, A.: Applied Phys. Lett. 114 (2019) 093502.
11. Ros, C.: ACS Applied Mater. Interfaces 11 (2019) 29725.
12. Ruiz, A.: Microelectron. Engn. 216 (2019) 111048.
13. Mitronika, M.: Applied Surface Sci 541 (2021) 148510.
14. Ruiz, A.: IEEE Access 9 (2021) 90568.
15. Miquelot, A.: J. Mater. Sci 56 (2021) 10458.

Jančovič, P., Hudec, B., Dobročka, E., Dérer, J., Fedor, J., and Fröhlich, K.Resistive switching in HfO2-based atomic layer deposition grown metal-insulator-metal structures. Applied Surface Sci 312 (2014) 112-116.

1. Zhang, R.: J. Non-Crystall. Solids 406 (2014) 102.
2. Chen, P.-H.: IEEE Electron Device Lett. 37 (2016) 280.
#     3. Hardtdegen, A.: 8th IEEE IMW 2016. ISBN: 978-146738831-3. Art. no. 7495280.
4. Akbar, S.: Physica B-Cond. Matter 520  (2017) 112.
5. Rosa, R.: Phys. Rev. Mater. 2 (2018) 032401.
6. Sokolov, A.S.: Applied Surface Sci 434 (2018) 822.
7. Jung, Y.C.: Applied Surface Sci 435 (2018) 117.
8. Schie, M.: Phys. Rev. Mater. 2 (2018) 035002.
9. Akbar, S.: Microelectr. Reliab. 102 (2019) UNSP 113409.
10. Kumar, S.: Phys. Status Solidi A 217 (2020) 1900756.

Hudec, B., Paskaleva, A., Jančovič, P., Dérer, J., Fedor, J., Rosová, A., Dobročka, E., Fröhlich, K., :Resistiveswitching in TiO2-based metal-insulator-metal structures with Al2O3 barrier layer at the metal/dielectric interface. Thin Solid Films 563 (2014) 10-14.

1. Castan, H.: Thin Solid Films 591 (2015) 55.
#       2. Liu, P.: Key Engn. Mater. 645 (2015) 572.
3. Liu, P.: IEEE 10th NEMS 2015. P. 585.
4. Alekseeva, L.: Japan. J. Applied Phys. 55 (2016) 08PB02.
5. Duenas, S.: IEEE 32nd Conf. Design Circuits Integr. Systems -DCIS 2017.
6. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
7. Stathopoulos, S.: Sci Rep. 7 (2017) 17532.
8. Chen, X.: J. Semicond. 38 (2017) 084003.
9. Rylkov, V.V.: J. Experiment. Theoret. Phys. 126 (2018)  353.
10. Duenas, S.: J. Electron. Mater. 47 (2018) 4938.
11. Nikiruy, K.E.: J. Comm. Technol. Electron. 64 (2019) 1135.
12. Park, S.-J.: J. Alloys Comp. 825 (2020) 154086.
13. Nikolaev, S.N.: Techn. Phys. 65 (2020)‏ 243.
14. Siegel, S.: Adv. Electr. Mater. 7 (2021) 2000815.

Aarik, J., Arroval, T., Aarik, L., Rammula, R., Kasikov, A., Mändar, H., Hudec, B., Hušeková, K., Fröhlich, K., :Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: Growth of high-permittivity dielectrics with low leakage current. J. Crystal Growth 382 (2013) 61-66.

1. Lecoq, E.: J. Phys. D 47 (2014) 195201.
2. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
3. Pessoa, R.S.: Applied Surface Sci 422 (2017) 73.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Biyikli, N.: Semicond. Sci Technol. 32 (2017) 093002.
6. Gonullu, M.P.: Superlatt. Microstruct. 147 (2020) 106699.

Hudec, B., Hušeková, K., Rosová, A., Šoltýs, J., Rammula, R., Kasikov, A., Uustare, T., Mičušík, M., Omastová, M., Aarik, J., and Fröhlich, K.: Impact of plasma treatment on electrical properties of TiO2/RuO2 based DRAM capacitor, J. Phys. D 46 (2013) 385304.

1. Pointet, J.: J. Vacuum Sci Technol. A 32 (2014) 01A120.
2. Wang, W.: Sci Reports 4 (2014) 4452.
3. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
4. Jeon, W.: J. Mater. Chem. C 2 (2014) 9993.
5. Seok, J.: Phys. Chem. Chem. Phys. 17 (2015) 3004.
6. Luo, W.-B.: Chemical Comm. 51 (2015) 8269.
7. Liu, C.: Adv. Mater. Interfac. 3 (2016) 1500503.
8. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
9. Kim, H.: J. Nanosci Nanotechnol. 17 (2017) 2906.
10. Nabatame, T.: ECS Trans. 80 (2017) 365.
11. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
12. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
13. Nong, S.: J. American Chem. Soc 140 (22018) 5719.
14. Li, M.: Applied Surface Sci 439 (2018) 612.
15. Li, X.: Applied Surface Sci 470 (2019) 306.
16. Bi, L.: J. Alloys Comp. 845 (2020) 156271.
17. Tsuji, R.: ACS Omega 5 (2020) 6090.
18. Zhang, J.: Catal. Sci Technol. 10 (2020) 1518.
19. Park, H.: Chemosphere ‏265 (2021) 129166.
20. Jung, E.Y.: Nanotechnol. 32 (2021) 045201.
21. dos Reis, M.N.G.: J. Electroanalyt. Chem. 895 (2021) 115461.

Blaho, M., Gregušová, D., Jurkovič, M., Haščík, Š., Fedor, J., Kordoš, P., Fröhlich, K., Brunner, F., Cho, E., Hilt, O., Würfl, H., Kuzmík, J., : Ni/Au-Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOSHEMTs. Microelectr. Engn. 112 (2013) 204-207.

1. Moon, S.-W.: Japan. J. Applied Phys. 53 (2014) 08NH02.
2. Zhang, Z.: Electron. Lett. 51 (2015) 1201.
3. Zhang, Z.: IEEE Trans. Electron Dev. 63 (2016) 731.
4. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
5. Fisichella, G.: Beilstein J. Nanotechnol. 8 (2017) 467.

Jurkovič, M., Gregušová, D., Palankovski, V., Haščík, Š., Blaho, M., Čičo, K., Fröhlich, K., Carlin, J., Grandjean, N., and Kuzmík, J.: Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region,. IEEE Electron Dev. Lett. 34 (2013) 432-434.

1. Ahmadi, E.: Applied Phys. Lett. 104 (2014) 072107.
#       2. Marek, J.: ASDAM 2014. P. 153.
3. Dimitrijev, S.: MRS Bull. 40 (2015) 399.
4. Lee, K.B.: Applied Phys. Express 8 (2015) 036502.
5. Jebalin, B.K.: Superlatt. Microstr. 78 (2015) 210.
6. Chiu, H.-C.: Microelectron. Reliab. 55 (2015) 48.
7. Huang, H.: Solid-State Electr. 114 (2015) 148.
8. Zaidi, Z. H.: Semicond. Sci Technol. 30 (2015) 105007.
9. Nagy, L.: Inter. Conf. Applied Electron. 2015. 7011707, p. 225.
10. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
#      11. Nagy, L.: IEEE 18th DDECS 2015. 7195673, p. 83.
12. Smith, M. D.: Semicond. Sci Technol. 31 (2016) 025008.
13. Chen, P.-G.: Solid-State Electr. 129 (2017) 206.
14. Jena, K.: Region 10 Annual Inter. Conf. TENCON. IEEE 2017. Art.no. 7848652, p. 3253.
15. Freedsman, J.J.: IEEE Electron Device Lett. 38 (2017) 497.
16. Chander, S.: IEEE ICIEEIMT 2017. P.293.
17. Tiwari, N.: IEMENTECH 2017.
#      18. Gupta, S.: SCOPES 2016. Proc. 2017. Art.no. 7955748, pp. 1777.
19. Wei, L.-C.: J. Nanosci Nanotechnol. 18 (2018) 7400.
20. Chen, P.-G.: Sensors 18 (2018) 2795.
21. Smith, M.D.: Applied Surface Sci 521 (2020) 146297.

Fröhlich, K.TiO2-based structures for nanoscale memory applications. Invited Review. Materials Sci Semicond Process. 16 (2013) 1186-1195.

1. Wu, D.: Mater. Sci Semicond. Process. 23 (2014) 72.
2. Zhang, G.Z.: Applied Phys. Lett. 104 (2014) 163503.
3. Acharyya, D.: Microelectr. Reliab. 54 (2014) 541.
4. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
5. Knebel, S.: J. Applied Phys. 117 (2015) 224102.
6. Patil, M.K.: Current Nanosci 11 (2015) 271.
7. Rogala, M.: Adv. Functional Mater. 25 (2015) SI6382.
8. Gazal, Y.: Thin Solid Films 600 (2016) 43.
9. Sarkar, M.B.: J. Alloys Compounds 654 (2016) 529.
10. Lu, W.: J. Electrochem. Soc 163 (2016) E147.
11. Comert, B.: IEEE Sensors J. 16 (2016) 8890.
12. Wu, Z.: J. Mater. Sci-Mater. Electron. 28 (2017) 10625.
13. Moon, H.: Sci Rep. 7 (2017) 1264.
14. Lu, W.: J. Materiomics 4 (2018) 228.
15. Gerullis, S.: 9th Inter. Conf. Nanomater. – Research & Application (NANOCON 2017) 2018. P. 302.
16. Aymen, S.: Ceram. Inter. 45 (2019) 23084.
17. Bamola, P.: ACS Applied Nano Mater. 3 (2020) 10591.

Fröhlich, K., Mičušík, M., Dobročka, E., Šiffalovič, P., Gucmann, F., Fedor, J., and: Properties of Al2O3 thin films grown by atomic layer deposition. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 171-174.

1. Naumann, F.: J. Vacuum Sci Technol. B 38 (2020) 014014.
2. Kim, Y.: ACS Applied Mater. Interfac. 12 (2020) 44912.

Aarik, J., Hudec, B., Hušeková, K., Rammula, R., Kasikov, A., Arroval, T., Uustare, T., Fröhlich, K., : Atomic layer deposition of high-permittivity TiO2 dielectrics with low leakage current on RuO2 in TiCl4-based processes. Semicond. Sci Technol. 27 (2012) 074007.

1. Swerts, J.: IEEE Electron Dev. Lett. 35 (2014) 753.
2. Baryshnikova, M.: Phys. Status Solidi A 212 (2015) 1533.
3. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Dollt, M.: Front. in Neurosci 14 (2020) 552876.

Válik, L., Ťapajna, M., Gucmann, F., Fedor, J., Šiffalovič, P., Fröhlich, K., : Distribution of fixed charge in MOS structures with ALD grown Al2O3 studied by capacitance measurements. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 227-230.

1. Freedsman, J.J.: IEEE Trans. Electron Dev. 60 (2013) 6579632.
2. Samanta, P.: Semicond. Sci Technol. 34 (2019) 115008.

Čičo, K., Gregušová, D., Kuzmík, J., Jurkovič, M., Alexewicz, A., di Forte Poisson, M., Pogany, D., Strasser, G., Delage, S., and Fröhlich, K.Influence of processing and annealing steps on electrical properties of InAlN/GaN high electron mobility transistor with Al2O3 gate insulation and passivation, Solid-State Electr. 67 (2012) 74-78.

1. Liu, X.: J. Electron. Mater. 42 (2013) 33.
2. Singh, S.P.: J. Phys. D 48 (2015) 365104.
3. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
4. Lin, C.-C.: Thin Solid Films 618 (2016) SI118.
5. Xiao, L.: CSTIC 2016.
6. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
7. Wang, H.: Japan. J. Applied Phys. 57 (2018) 04FG05.
8. Murugapandiyan, P.: J. Nanoelectron. Optoel. 13 (2018) 183.
9. Kanaga, S.: IEEE Inter.Conf. on Electronics Comput.Comm. Technol. 2018.
10. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020) 13.
11. Ozaki, S.: Semicond. Sci Technol.35 (2020) 035027.
12. Supardan, S. N.: J. Phys. D 53(2020) 075303.
13. Bordoloi, S.: IEEE Access 9 ((2021) 99828.

Fröhlich, K., Hudec, B., Ťapajna, M., Hušeková, K., Rosová, A., Eliáš, P., Aarik, J., Rammula, R., Kasikov, A., Arroval, T., Aarik, L., Murakami, K., Rommel, M., and Bauer, A.: TiO2-based metal-insulator-metal structures for future DRAM storage capacitors ECS Transactions 50 (2012) 79-87.

#     1. Schroeder, U.: In Thin Films on Silicon: Electronic and Photonic Appl. 8 (2016) 369.
#     2. Pešić, M.: J. Applied Phys. 119 (2016)  064101.
3. Austin, D.Z.: Chem. Mater.29 (2017)  1107.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kozodaev, M.G.: J. Chem. Phys. 151 (2019) 204701.
6. Khalili, S.: Applied Phys. A 125 (2019) 661.
7. Maier, F.J.: J. Phys. Conf. Ser. 1837 (2021) 012009.
8. Hayes, M.: J. Vacuum Sci Technol. A 39 (2020) 052402.

Racko, J., Mikolášek, M., Harmatha, L., Breza, J., Hudec, B., Fröhlich, K., Aarik, J., Tarre, A., Granzner, R., Schwierz, F., : Analysis of leakage current mechanisms in RuO2–TiO2–RuO2 MIM structures. J. Vacuum Sci Technol. B 29 (2011) 01AC08.

1. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
2. Scheuermann, A.G.: Energy & Environmen. Sci 9 (2016) 504.
3. Perla, V.K.: J. Mater. Sci-Mater. Electron. 30 (2019) 22652.
4. Maier, F.J.: J. Phys. Conf. Ser. (2021) 012009.

Hudec, B., Hušeková, K., Dobročka, E., Aarik, J., Rammula, R., Kasikov, A., Tarre, A., Vincze, A., Fröhlich, K., : Atomic layer deposition grown metal-insulator-metal capacitors with RuO2 electrodes and Al-doped rutile TiO2 dielectric layer. J. Vacuum Sci Technol. B 29 (2011) 01AC09.

1. Kaynak, C. B.: Thin Solid Films 520 (2012) 4518.
2. Yota, J.: J. Vacuum Sci Technol. A 31 (2013) 01A134.
3. Yota, J.: J. ECS Trans. 53 (2013) 281.
4. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
5. Dong, W.: ACS Applied Mater. Interf. 7 (2015) 25321.
6. Enriquez, E.: Sci Reports 7 (2017) 46184.
7. Austin, D.Z.: Chem. Mater. 29 (2017) 1107.
8. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
9. Kwon, D.S.: ACS Applied Mater. Interf. 13 (2021) 23915.

Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vacuum Sci Technol. B 29 (2011) 01A808.

1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
4. Bera, M.K.: ECS Trans. 53 (2013) 65.
5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
10. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
#   15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280.
#   16. Schäfer, A.:  J. Alloys Comp. 651 (2015) 514.
17. Tromm, T. C. U.: ECS Trans. 72 (2016) 307.
18. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
19. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 1-20.
20. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.
21. Terkhi, S.: Indian J. Phys. 92 (2018) 847.
22. Adak, S.: Nano 14 (2019) 1950060.
23. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
24. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
25. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020)‏ 613.
26. Cui, X.: Nano Energy 68 (2020) 104361.
27. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Hudec, B., Hušeková, K., Tarre, A., Han, J., Han, S., Rosová, A., Lee, W., Kasikov, A., Song, S., Aarik, J., Hwang, C., and Fröhlich, K.Electrical properties of TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes. Microelectr. Engn. 88 (2011) 1514-1516.

1. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
2. Bayati, M.: J. Mater. Res. 28 (2013) SI1669.
3. Avril, L.: Applied Surface Sci 288 (2014) 201.
4. Wang, W.: Sci Reports 4 (2014) 4452.
5. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
6. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
7. Shkondin, E.: J. Vacuum Sci Technol. A 34 (2016) 031605.
8. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
*    9. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
*   10. Amiaud A.-Ch.: PhD thesis. Univ. Sorbonne 2018.
11. Yildirim, M.: J. Alloys Comp. 773 (2019) 890.
12. Jenkins, M.: ECS J. Solid State Sci Technol. 8(2019) N159.
13. Dollt, M.: Front. in Neurosci 14 (2020) 552876.
14. Qaid, M.M.: Mater. Chem. Phys. 259 (2021) 124054.
15. Lei, J.: J. Alloys Comp. 870 (2021) 159391.

Fröhlich, K., Fedor, J., Kostič, I., Maňka, J., Ballo, P., : Gadolinium scandate: next candidate for alternative gate dielelectric in CMOS technology?, J. Electr. Engn. 62 (2011) 54-56.

1. Angela, P.: J. Vacuum Sci Technol. B 31 (2013) 01A112.
2. Feijoo, P.C.: Semicond. Sci Technol. 28 (2013) 085004.
3. Pampillon, A.M.: Microelectr. Engn. 109 (2013) 236.
4. Pampillon, A.M.: J. Vacuum Sci Technol. B 31 (2013) 01A112.
5. McDaniel, M.D.: Applied Phys. Rev. 2 (2015) 041301.
6. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
7. Arce, M.A.P.: In Growth of High Permittivity Dielectrics by High Pressure Sputtering from Metallic Targets. Springer. 2017, pp. 1+77+109.

Fröhlich, K., Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., Rammula, R., Vincze, A., : Low equivalent oxide thickness TiO2 based capacitors for DRAM applications, ECS Trans. 41 no. 2 (2011) 73.

1. Yoo, W.S.: ECS J. Solid State Sci Technol. 4 (2015) N76.
2. Das, D.: IEEE Trans. Electron Dev. 67 (2020) 2489.

Fröhlich, K., Hudec, B., Aarik, J., Tarre, A., Machajdík, D., Kasikov, A., Hušeková, K., Gaži, Š., : Post-deposition processing and oxygen content of TiO2-based capacitors. Microelectr. Engn. 88 (2011) 1525-1528.

1. Bayati, M.: J. Mater. Res. 28 (2013) SI1669.
2. Verstraete, R.: Chem. Mater. 31 (2019) 7192.
3. Dollt, M.: Front. in Neurosci 14 (2020) 552876.

Paskaleva, A., Ťapajna, M., Dobročka, E., Hušeková, K., Atanassova, E., and Fröhlich, K.: Structural and dielectric properties of Ru-based gate/Hf-doped Ta2O5 stacks,  Applied Surface Sci 257 (2011) 7876-7880.

1. Liu, S.-S.: J. Theoret. Comput. Chem. 11 (2012) 895.
2. Lorenzi, P.: Microelectr. Reliab. 53 (2013) 1203.
3. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
4. Carretero, E.: Applied Surface Sci 359 (2015) 669.
5. Mahata, C.: J. Mater. Chem. C 3 (2015) 10293.
6. Peralta, J.: Thin Solid Films 693 (2020) 137676.
7. Lim, W.F.: Applied Surface Sci 526 (2020) 146722.
8. Cai, C.X.: Applied Surface Sci 560 (2021) 149960.

Racko, J., Mikolášek, M., Granzner, R., Breza, J., Donoval, D., Grmanová, A., Harmatha, L., Schwierz, F.,Fröhlich, K., : Trap-assisted tunnelling current in MIM structures. Central Europ. J. Phys. 9 (2011) 230-241.

1. Yesilkoy, F: Microelectr. Engn. 98 (2012) 329.
2. Scheuermann, A.G.: Energy & Environmen. Sci 9 (2016) 504.
3. Cui, Q.: ACS Applied Mater. & Interfaces 8 (2016) 34552.
4. Ghosh, S.K.: Phys. Chem. Chem. Phys.‏ 22 (2020) 3345.
5. Perla, V.K.: J. Mater. Sci-Mater. Electron. 31 (2020) ‏ 22652.

Ťapajna, M., Paskaleva, A., Atanassova, E., Dobročka, E., Hušeková, K., and Fröhlich, K.: Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures, Semicond. Sci Technol. 25 (2010) 075007.

1. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
2. Vijayakumar, V.: Mater. Res. Express 2 (2015) 046302.
3. Lei, Z.C.: J. Mater Sci-Mater. Electron. 29 (2018) 12888.

Hušeková, K., Dobročka, E., Rosová, A., Šoltýs, J., Šatka, A., Fillot, F., Fröhlich, K., : Growth of RuO2 thin films by liquid injection atomic layer deposition. Thin Solid Films 518 (2010) 4701-4704.

1. Over, H.: Chemical Rev. 112 (2012) 3356.
2. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
3. Hamalainen, J.: Chem. Mater. 26 (2014) SI786.
4. Park, J.-Y.:  J. Alloys Comp. 610 (2014) 529.
5. Gregorczyk, K.E.: ACS NANO 9 (2015) 464.
6. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
7. Nabatame, T.: ECS Trans. 80 (2017) 365.
8. Lin, C.: J. Electrochem. Soc 166 (2019) D476.
9. Lee, J.H.: Thin Solid Films 701 (2020) 137950.

Hudec, B., Hušeková, K., Dobročka, E., Lalinský, T., Aarik, J., Aidla, A., Fröhlich, K., : High-permittivity metal-insulator-metak capacitors with TiO2 rutile dielectric and RuO2 bottom electrode IOP Conf. Series: Mater. Sci Engn. 8 (2010) 012024.

1. Yildiz A.: J. Applied Phys. 108 (2010) 083701.
2. Wu, Y.-H.: IEEE Electron Device Lett. 32 (2011) 1107.
3. Shen, Y.D.: J. Phys. Chem. C 116 (2012) 3449.
4. AlHoshan, M.S.: Electrochim. Acta 62 (2012) 390.
5. Mathew, S.: J. Fluoresc. 22  (2012) 1563.
6. Yen, C.-F.: Solid-State Electron. 73 (2012) 56.
7. Bhattacharya, P.: Express Polymer Lett. 7 (2013) 212.
8. Mamalchel, A.: Crystal Growth & Design 13 (2013) 4730.
9. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
10. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
11. Choi, S.-J.: J. Microelectromech. Systems 24 (2015) 1006.
12. Yu, L.: Inter. J. Smart Nano Mater. 6 (2015) 268.
13. Gielis, S.: J. European Ceramic Soc 37 (2017) 611.
14. Becherescu, N.: Univ. Politehnica Bucharest Sci Bull.-Ser. A 79 (2017) 203.
15. Cui, Y.: J. Photochem. Photobiol. A 353 (2018) 625.
16. Li, T.: Electrochim. Acta 306 (2019) 71.
17. Kang, W.S.: Ceramics Inter. 47 (2021) 25826.

Čičo, K., Gregušová, D., Gaži, Š., Šoltýs, J., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Optimization of the ohmic contact processing in InAlN/GaN high electron mobility transistors for lower temprerature of annealing, Phys. Status Solidi c 7 (2010) 108-111.

1. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
2. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
3. Bergsten, J.: Semicond. Sci Technol. 30 (2015) 105034.
4. Li, Q.: AIP Adv. 7 (2017) 125103.
5. Li, Q.: Acta Phys. Sinica 67 (2018) 027303.
6. Yoshida, T.: Japan. J. Applied Phys. 57 (2018) 110302.
7. Lin, Y.-K.: Semicond. Sci Technol.33 (2018) 095019.

Kuzmík, J., Ostermaier, C., Pozzovivo, G., Basnar, B., Schrenk, W., Carlin, J., Gonschorek, M., Feltin, E., Grandjean, N., Douvry, Y., Gaquiere, C., DeJaeger, J., Čičo, K., Fröhlich, K., Škriniarová, J., Kováč, J., Strasser, G., Pogany, D., and Gornik, E.: Proposal and performance analysis of normally off GaN/InAlN/AlN/GaN HEMTs with 1-nm-thick InAlN barrier, IEEE Trans. Electron Dev. 57 (2010) 2144-2154.

1. Chen, P.-G.: IEEE Electron Device Lett. 36 (2015) 259.
2. Yan, J.-D.: Chinese Phys. Lett. 32 (2015) 127301.
*     3. Marek, J.: ADEPT 2015. P. 45.
4. Goyal, N.: IEEE Trans. Electron Dev. 63 (2016) 881.
5. Xue, J.S.: Applied Phys. Lett. 108 (2016) 013508.
6. Adak, S.: IEEE Proc. Inter. Conf. on Devices, Circuits and Systems 2016. P.  89.
7. Adak, S.: Superlatt. Microstr. 100 (2016) 306.
8. Wang, Y.-G.: Chinese Phys. B 25 (2016) 107106.
9. Murugapandiyan, P.: Superlatt. Microstr. 109 (2017) 725.
10. Ahmeda, K.: EUMIC Proc. 2017. P. 37.
11. Ahmeda, K.: IEEE ACCESS 5 (2017) 20946.
12. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
#   13. Adak, S.: In Nanotechnology: Synthesis to Applications. CRC Press 2017, ISBN 978-113803274-3, pp. 285-295.
#    14. Nasser, C.: MIKON 2018, pp. 271-273.
15. Thi Huong, N.: Semicond. Sci Technol. 36 (2020) 024001.
#   16. Murugapandiyan, P.: Inter. J. Electron. Lett. 8 (2020) 472.
17. Cozette, F.: Semicond. Sci Technol. 36 (2021) 034002.

Hudec, B., Hranai, M., Hušeková, K., Aarik, J., Tarre, A., Fröhlich, K., : Resistive switching in RuO2/TiO2/RuO2 MIM structures for non-volatile memory application. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 255-258.

1. Ho, P.W.C.: ICED 2014 7015808, pp. 249.
2. Castan, H.: Thin Solid Films 591 (2015) 55.
3. Ho, P.W.C.: J. Semicond. 37 (2016) 064001.

Kordoš, P., Mikulics, M., Fox, A., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Novák, J., and Fröhlich, K.:RF performance of InAlN/GaN HFETs and MOSHFETs with up to 21, IEEE Electron Dev. Lett. 31 (2010) 180-182.

1. Lo C. -F.: J. Vacuum Sci Technol. B 29 (2011) 021002.
2. Lee, J.: Phys. Status Solidi A 208 (2011) 1538.
3. Corrion, A.L.: IEEE Electron Device Lett. 32 (2011) 1062.
4. Lo, C.F.: J. Vacuum Sci Technol. B 29 (2011) 061201.
#   5. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 31 (2011) 421.
6. Tartarin, J.G.: IEEE ICNF 2011 (2011), art. no. 5994367, p. 452.
7. Huang, T.: IEEE Electron Device Lett. 33 (2012) 212.
8. Ketteniss, N.: Semicond. Sci Technol. 27 (2012) 035009.
9. Lo, C.-F.: J. Vacuum Sci Technol. B 30 (2012) 041206.
10. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
11. Lee, K.-W.: ECS Solid State Lett. 2 (2013) Q9.
12. Liu, L.:Proc. SPIE 8625 (2013) 86250W.
13. Rennesson, S.: IEEE Trans. Electron Dev. 60 (2013) 3105.
14. Choi, S.: J.Crystal Growth 388 (2014) 137.
15. Du, J.: J. Applied Phys. 115 (2014) 164510.
16. Lee, C.-S.: ECS J. Solid State Sci Technol. 3 (2014) Q227.
17. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
18. Lee, C.-S.: Japan. J. Applied Phys. 55 (2016) 044102.
19. Du, J.: Micro & Nano Lett. 11 (2016) 503.
20. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2016) Q284.
21. Lee, C.-S.: Semicond. Sci Technol. 32 (2017) 055012.
22. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 68.
23. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
24. Amarnath, G.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 32 (2019) e2456.
25. Revathy, A.: Inter J. RF Microwave Comp.-Aided Engn. (2021) e22775.

Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., and Fröhlich, K.: RuO2/TiO2 based MIM capacitors for DRAM application. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 341-344.

1. Siddiqi, M.A.: In Dynamic RAM: Technol. Advancements. CRC 2013, p. 155-188.
2. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
3. Chiappim, W.: Nanomater.‏ 10 (2020) 338.

Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A., Dobročka, E., and Hušeková, K.: Epitaxial growth of high-κ TiO2 rutile films on RuO2 electrodes, J. Vacuum Sci Technol. B 27 (2009) 266-270.

 1. Kim, S.K.: Adv. Functional Mater. 20 (2010) 2989.
2. Lee, S.W.: Chem. Mater. 23 (2011) 976.
3. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
4. Kim, S.K.: J. Mater. Res. 28 (2013) 313.
5. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
6. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
7. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
8. Clima, S.: IEEE Electron Device Lett. 34 (2013) 6425405.
#      9. Jithin, M.A.: Mater. Research Soc Symp. Proc. 1561 (2013) 13.
10. Popovici, M.: Applied Phys. Lett. 104 (2014) 082908.
11. Wang, C.: ACS Nano 8 (2014) 2658.
12. Jeon, W.: J. Mater. Chemistry C 2 (2014) 9993.
13. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
14. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
15. Xie, Y.: J. Alloys Compounds 683 (2016) 439.
16. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
17. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
18. Agashe, K.: Nuclear Instrum. Methods in Phys. Res. B 403 (2017) 38.
19. Cho, C.J.: J. Mater. Chem. C 5 (2017) 9405.
20. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
21. Kim, S.K.: MRS Bull. 43 (2018) 334.
22. Lee, W.: J. Mater. Chem. C 6 (2018) 13250.
23. Pessoa, R.S.: IEEE 33rd Symp. Microelectron. Technol. Devices 2017 (SBMICRO) 2018.
*      24. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
25. Khan, M.S.: SMALL 16 (2020) 2003485.

Čičo, K., Kuzmík, J., Liday, J., Hušeková, K., Pozzovivo, G., Carlin, J., Grandjean, N., Pogany, D., Vogrinčič, P., and Fröhlich, K.InAlN/GaN metal-oxide-semiconductor high electron mobility transistor with Al2O3 insulating films grown by metal organic chemical vapor deposition using Ar and NH3 carrier gases, J. Vacuum Sci Technol. B 27 (2009) 218-222.

1. Pang, L.: J. Phys. D 45 (2012) 045105.
2. Bera, M.K.: ECS Trans. 53 (2013) 65.
3. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
4. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
5. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
6. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
7. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.

Ťapajna, M., Kuzmík, J., Čičo, K., Pogany, D., Pozzovivo, G., Strasser, G., Abermann, S., Bertagnolli, E., Carlin, J., Grandjean, N., and Fröhlich, K.Interface states and trapping effects in Al2O3- and ZrO2/InAlN/AlN/GaN metal-oxide-semiconductor heterostructures, Japan. J. Applied Phys. 48 (2009) 090201.

1. Simoen, E.: J. Phys. D 44 (2011) 475104.
2. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
3. Wang, C.: Semicond. Sci Technol. 32 (2017) 105002.
4. Kumar, S.: Solid-State Electr. 137 (2017) 117.
#    5. Akram, M.: Applied Phys. A 124 (2018) 180.
6. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
7. Chen, F.: J. Electron. Mater. 48 (2019) Iss.SI 11.
8. Huang, S.: J. Applied Phys. 126 (2019) 164505.
9. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Hušeková, K., Jurkovič, M., Čičo, K., Machajdík, D., Dobročka, E., Lupták, R., and Fröhlich, K.: Preparation of high permitivity GdScO3 films by liquid injection MOCVD, ECS Trans. 25 (2009) 1061.

1. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
2. Schaefer, A.: J. Alloys Compounds 651 (2015) 514.
3. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
4. Pampillon, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 109-124.

Vincze, A., Lupták, R., Hušeková, K., Dobročka, E., and Fröhlich, K., : Thermal stability of GdScO3 and LaLuO3 films prepared by liquid injection MOCVD. Vacuum 84 (2009) 170.

1. Mitrovic, I. Z.: Microelectronic Engn. 88 (2011) 1495.
2. Mitrovic, I. Z.: J. Applied Phys. 112 (2012) 044102.
3. Wang, Y.: J. Alloys Compounds 571 (2013) 103.
4. Feijoo, P.C.: Semicond. Sci Technol. 28 (2013) 085004.
5. Han, J.H.: Chem. Mater. 26 (2014) 1404.
6. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
7. Artini, C.: J. European Ceramic Soc 37 (2017) 427.
8. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
9. Agrawal, K.S.: Applied Phys. A‏ 126 (2020) 650.
10. Zhang, L.: Separat. Purif. Technol. 262 (2021) 118314.

Ťapajna, M., Čičo, K., Kuzmík, J., Pogany, D., Pozzovivo, G., Strasser, G., Carlin, J., Grandjean, N., and Fröhlich, K.: Thermally induced voltage shift in capacitance–voltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al2O3/InAlN/GaN heterostructures, Semicond. Sci Technol. 24 (2009) 035008.

1. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
2. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
3. Pandey, S.: J. Applied Phys. 112 (2012) 123721.
4. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
6. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
7. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
8. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
9. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
10. Charfeddine, M.: J. Optoelectron. Adv. Mater. 16 (2014) 820.
11. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
12. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
13. Jena, K.: J. Electron. Mater. 45 (2016) 2172.
14. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
15. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
16. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
17. Panda, J.: J. Semicond. 37 (2016) 044003.
18. Mleczko, M.: Sci Adv. 3 (2017) e1700481.
19. Kumar, S.: IEEE Trans. Electron Dev. 64 (2017) 4868.
20. Kumar, S.: Solid-State Electr. 137 (2017) 117.
21. Dutta, G.: IEEE Trans. Electron Dev. 64 (2017) 3602.
22. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
#   23. Chen, K.J.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 347-366.
24. Kim, H.: J. Mater Sci-Mater. Electron. 29 (2018) 17508.
25. Kim, H.: Nanoscale Res. Lett. 13 (2018) 232.
26. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
27. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
28. Kumar, S.: ACS Applied Electron. Mater. 1 (2019) 340.
29. Kanaga, S.: IEEE Trans. Dev. Mater. Reliab.‏ 20 (2020) 613.

Ostermaier, C., Pozzovivo, G., Carlin, J., Basnar, B., Schrenk, W., Douvry, Y., Gaquiere, C., DeJaeger, J., Čičo, K., Fröhlich, K., Gonschorek, M., Grandjean, N., Strasser, G., Pogany, D., and Kuzmík, J.: Ultrathin InAlN/AlN barrier HEMT with high performance in normally off operation, IEEE Electron Dev. Lett. 30 (2009) 1030-1032.

1. Lim, T.: IEEE Electron. Dev. Lett. 31 (2010) 671.
2. Tasli P.; Physica B 405 (2010) 4020.
3. Wang, H.: Phys. Status Solidi c 7 (2010) 2440.
4. Akazawa, M.: J. Applied Phys. 109 (2011) 013703.
5. Wang, R.: IEEE Electron Dev. Lett. 32 (2011) 309.
6. Akazawa, M.: Applied Phys. Lett. 98 (2011) 142117.
7. Cheng, Z.: Microw. Optical Technol. Lett. 53 (2011) 1206.
8. Cheng, Z.: 2011 Inter. Conf. Electr., Comm. Control (ICECC)  (2011) 1979.
9. Cheng, Z.: 2011 Inter. Conf. Electr., Comm. Control (ICECC)  (2011) 2306.
10. Wang, L.: J. Electronic Mater. 41 (2012) 2130.
11. Akazawa, M.: Phys. Status Solidi C 9 (2012) 592.
12. Lenka, T. R.: Phys. Procedia 25 (2012) 36.
13. Sarikavak-Lisesivdin, B.: Current Applied Phys. 13 (2013) 224.
14. Pang, L.: 2013 IEEE PECI, Art. no. 6506026.
15. Rossetto, I.:.Microelectr. Reliab. 53 (2013) 1476.
16. Kim, S.: Japan. J. Applied Phys. 52 (2013) 10MA05.
17. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI UNSP 10MA07.
18. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
19. Adak, S.: Superlatt. Microstruct. 75 (2014) 347.
20. Freedsman, J.J.: Applied Phys. Express 7 (2014) 104101.
21. Anderson, T.: J.Vacuum Sci Technol. B 32 (2014) 051203.
22. Pandey, D.: Environment. Sci Engn. 2014. P. 67.
23. Freedsman, J.J.: IEEE Device Research Conf. Proc. 2014. P. 49.
#   24. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
25. Chiu, H.-C.: Microelectr. Reliab. 55 (2015) 48.
26. Geum, D.-M.: IEEE Electron Device Lett. 36 (2015) 306.
27. Zhang, P.: Chinese Phys. B 24 (2015) 037304.
28. Medjdoub, F.: Applied Phys. Express 8 (2015) 101001.
29. Medjdoub, F.: IEEE IEDM 2015.
30. Aubry, R.: IEEE Electron Device Lett. 37 (2016) 629.
31. Zuniga-Perez, J.: Applied Phys. Rev. 3 (2016) 041303.
32. Li, X.: Microelectr. Reliab. 65 (2016) 35.
33. Swain, S.K.: Superlatt. Microstr. 97 (2016) 258.
34. Mei, H.: J. Instrument. 11 (2016) P12021.
#   35. Medjdoub, F.: Technical Digest – IEDM 2016. Art. No. 7409660, p. 9.2.1.
36. Haq, M.R.: In 2016 3rd Inter. Conf. Electr. Engn. Information Comm. Technol. (ICEEICT), Dhaka 2016, pp. 1-5.
37. Wang, Z.: In Gallium Nitride Power Devices. Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 111-143.
38. Murugapandiyan, P.: In AEU Inter. J. Electron. Comm. 77 (2017)  163.
39. Dong, Y.: Inter. J. Numerical Modell.-Electron. Networks Dev. Fields 31 (2018) e2299.
40. Dong, Y.: Sensors 18 (2018) 1314.
41. Chugh, N.: 5TH IEEE Uttar Pradesh Sect. Inter. Conf. Electr., Electron. Computer Engn. (UPCON) 2018, pp. 809-813.
42. Ma, J.: Applied Phys. Lett. 113 (2018) 242102.
43. Narin, P.: Applied Phys. A 125 (2019) 278.
44. Dong, Y.: Inter. J. Numer. Modell. 32 (2019) e2482.
45. Gulseren, M.E.: Proc. SPIE 10918 (2019) 109181A.
46. Kotani, J.: J. Applied Phys. 127 (2020) Iss.‏ 23.
47. Fukuda, K.: Japan. J. Applied Phys. 60 (2021) SBBD04.
48. Oda, O.: Phys. Status Solidi A 218 (2021) ‏ SI2000462.
49. Mazumder, S.: Semicond. Sci Technol. 36 (2021) 095003.

Paskaleva, A., Ťapajna, M., Atanassova, E., Fröhlich, K., Vincze, A., Dobročka, E., : Effect of Ti doping on Ta2O5 stacks with Ru and Al gates. Applied Surface Sci 254 (2008) 5879-5885.

1. Thangadurai, P.: Thin Solid Films 518 (2010) 4467.
2. Huang, J.H.: Chem. Mater. 22 (2010) 2582.
3. Mahata, C.: Electrochem. Solid State Lett. 14 (2011) H80.
4. Lu, L.: Applied Phys. A 112 (2013) 425.
5. Sekhar, M.C.: Materials Sci Semicond. Process. 76 (2018) 80.
6. Cai, C.X.: Applied Surface Sci 560 (2021) 149960.

Ťapajna, M., Dobročka, E., Paskaleva, A., Hušeková, K., Atanassova, E., Fröhlich, K., : Electrical characterization of Ru- and RuO2/Ta2O5 gate stacks for nanoscale DRAM technology. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 267-270.

       1. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 189.

Fröhlich, K., Ťapajna, M., Rosová, A., Dobročka, E., Hušeková, K., Aarik, J., and Aidla, A.: Growth of high-dielectric-constant TiO2 films in capacitors with RuO2 electrodes, Electrochem. Solid-State Lett. 11 (2008) G19-G21.

1. Niinisto, J.: Advanced Engn. Mater. 11 (2009) 223.
2. Han, J.H.: ECS Trans. 19 (2009) 717.
3. Kim, K.M.: Electrochem. Solid State Lett. 13 (2010) G1.
4. Wang, H.T.: Electrocem. Solid-State Lett. 13 (2010) G75.
5. Lee, W.J.: J. Phys. Chem. C 114 (2010) 6917.
6. Han, J.H.: Chem. Mater. 22 (2010) 5700.
7. Popovici, M.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 19.
8. Han, J.H.: Applied Phys. Lett. 99 (2011) 022901.
9. Leskela, M.: MRS Bull. 36 (2011) 877.
10. Kim, S.K.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 262.
11. Popovici, M.: Microelectr. Engn. 88 (2011) 1517.
#   12. Kim, M.-S.: IMW 2011. IEEE 2011, art. no. 5873203. ISBN 978-145770-2259.
13. Over, H.: Chem. Rev. 112 (2012) 3356.
14. Han, J. H.: Chem. Mater. 24 (2012) 1407.
15. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
16. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
17. Zhu, L.: Solar Energy Mater. Solar Cells  111 (2013) 141.
18. Wang, X.: Crystal Growth & Design  13 (2013) 1316.
19. Popovici, M.: ECS J. Solid State Sci Technol. 2 (2013) N23.
20. Ko, C.-T.: J. Phys. Chem. C 117 (2013) 26204.
21. Van Den Berg, J.A.: Applied Surface Sci 281 (2013) 8.
22. Pu, H.: ECS Solid State Lett. 2 (2013) N35.
#   23. Hwang, C.S.: In Atomic Layer Deposition for Semiconductors. Springer 2013. ISBN: 978-1-4614-8053-22013. P. 73.
24. Yang, Z.: IEEE Electron Device Lett. 35 (2014) 557.
25. Park, J.-Y.: J. Alloys Comp.610 (2014) 529.
26. Hernandez-Torres, E.M.: Chem. Pap. 68 (2014) 1257.
27. Ko, C.-T.: ACS Applied Mater. Interfac. 6 (2014) 4179.
28. Jeon, W.: ACS Applied Mater. Interf. 6 (2014) 21632.
29. Peng, J.: J. Sol-Gel Sci Technol. 71 (2014) 458.
30. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
31. Cho, K.: J. Semicond. Technol. Sci 16 (2016) 346.
32. Mondal, J.: Corrosion Sci 105 (2016) 161.
33. Head, A.R.: J. Phys. Chem. C 120 (2016) 243.
34. Wang, M.: RSC Adv. 6 (2016) 4867.
35. Saric, I.: Thin Solid Films  628 (2017) 142.
36. Nabatame, T.: ECS Trans. 80 (2017) 365.
37. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
38. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
39. Moehl, T.: ACS Applied Mater. Interf. 9 (2017) 43614.
40. Ben Elbahri, M.: J. Phys. D 51 (2018) 065101.
41. Wang, W.: Mater. Chem. Phys. 211 (2018) 172.
42. Song. H.: J. Wuhan Univ. Technol.-Mater. Sci Ed. 33 (2018) 1070.
#   43. Lau, W.S.: China Semicond. Technol. Inter. Conf. 2018 – CSTIC 2018, pp. 1-3.
*      44. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
45. Kim, A.: ACS Applied Nano Mater. 2 (2019) 3220.
46. Choi, W.-H.: J. Vacuum Sci Technol. A 37 (2019) 020924.
47. Son, K.-H.: Coatings 10 (2020) 752.
48. Gants, O.Y.: Izv. Vyss. Ucheb. Zav. Khimiya Khim. Tekhnol. 63 (2020)‏ 26.

Pozzovivo, G., Kuzmík, J., Golka, K., Čičo, K., Fröhlich, K., Carlin, J., Gonschorek, M., Grandjean, N., Schrenk, W., Strasser, G., and Pogany, D.: Influence of GaN capping on performance of InAlN/AlN/GaN MOS-HEMT with Al2O3 gate insulation grown by CVD, Physica Status Solidi c 5 (2008) 1956-1958.

1. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
2. Watanabe, A.: Applied Phys. Express 7 (2014) 041002.
3. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
4. Kumar, S.: Solid-State Electr. 137 (2017) 117.
5. Kanaga, S.: IEEE Inter. Conf. Electron. Comp. Comm. Technol. 2018.
6. Kanaga, S.: IEEE Trans. Dev. Mater. Reliab.‏ 20 (2020) 613.

Hudec, B., Ťapajna, M., Hušeková, K., Aarik, J., Aidla, A., Fröhlich, K., : Low equivalent oxide thickness metal/insulator/metal structures for DRAM applications. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 123-126.

1. Paskaleva, A.: J. Applied Phys. 106 (2009) 054107.
2. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 155.

Ťapajna, M., Rosová, A., Dobročka, E., Štrbik, V., Gaži, Š., Fröhlich, K., Benko, P., Harmatha, L., Manke, C., Baumann, P., : Work function thermal stability of RuO2-rich Ru–Si–O p-channel metal-oxide-semiconductor field-effect transistor gate electrodes. J. Applied Phys. 103 (2008) 073702.

1. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
2. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
3. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.
4. Kaczmarski, J.: J. Display Technol. 11 (2015) 528.
5. Popovici, M.: Chem. Mater. 29 (2017) 4654.
#    6. Jung, W.: New Phys.: Sae Mulli 67 (2017) 696.

Ťapajna, M., Rosová, A., Hušeková, K., Roozeboom, F., Dobročka, E., Fröhlich, K., : Evidence of hafnia oxygen vacancy defects in MOCVD grown HfxSi1-xOy ultrathin gate dielectrics gated with Ru electrode. Microelectr. Engn. 84 (2007) 2366-2369.

1. Das, N.C.: J. Applied Phys. 110 (2011) 063527.
2. Zhang, H.Y.: Applied Surface Sci 311 (2014) 117.

Pozzovivo, G., Kuzmík, J., Golka, K., Schrenk, W., Strasser, G., Pogany, D., Čičo, K., Ťapajna, M., Fröhlich, K., Carlin, J., Gonschorek, M., Feltin, E., and Grandjean, N.: Gate insulation and drain current saturation mechanism in InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors, Applied Phys. Lett. 91 (2007) 043509.

1. Iliopoulos, E.: Applied Phys. Lett. 92 (2008) 191907.
2. Huang, L.H.: J. Electronic Materi. 38 (2009) 529.
3. Shiozaki, N.: J. Applied Phys. 105 (2009) 064912.
4. Arslan, E.: Applied Phys. Lett. 94 (2009) 142106.
5. Selvaraj, J.: Japan. J. Applied Phys. 48 (2009) 04C102.
6. Rigutti, L.: Semicond. Sci Technol. 24 (2009) 055015.
7. Chen, Z.T.: Applied Phys. Lett. 94 (2009) 213504.
8. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
*      9. Chabak, K.: Proc. CS Mantech Conf. 2009. Tampa, Florida.
10. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
11. Wu, M.: J. Vacuum Sci Technol. B 94 (2010) 908.
12. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
13. Lee, C.S.: J. Electrochem. Soc 158 (2011) H452.
14. Arslan, E.: Microelectr. Reliab. 51 (2011) 370.
15. Chiou, Y.L.: J. Electrochem. Soc 158 (2011) H477.
16. Corrion, A. L.: IEEE Electron Devices Lett. 32  (2011) 1062.
17. Son, J.: Applied Phys. Lett. 101 (2012) 102905.
18. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
#    19. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
#    20. Pardeshi, H.: Proc. CODIS 2012 (2012) art. no. 6422233, pp. 441.
#     21. Ahmed, I.:  2012 IEEE Inter. Conf. Electronic Dev., Systems, and Appl. 6507820, pp. 75.
22. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
23. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
24. Hiroki, M.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF02.
25. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI10MA05.
26. Pardeshi, H.: Superlatt. Microstr. 60 (2013) 47.
27. Bera, M. K.: ECS Trans. 53 (2013) 65.
28. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs (2013) 207.
29. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
30. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
31. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
32. Karaoglan-Bebek, G.: J. Vacuum Sci Technol. B 32 (2014) 011213.
33. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2013. P.
07.
34. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
#     35. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
36. Son, J.: J. Vacuum Sci Technol. A 33 (2015) 020602.
37. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
38. Freedsman, J.J.: IEEE DRC 2015. P. 55.
39. Neufeld, O.: J. Chem. Theory Comput. 12 (2016) 1572.
40. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
41. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
#     42. Hao, Y.: In Nitride Wide Bandgap Semicond. Material and Electronic Devices. CRC Press 2016, ISBN: 978-149874513-0, pp. 1-368.
43. Jena, K.: Inter. J. Numerical Modell.-Electron. Networks Dev. Fields 30 (2017) e2117.
44. Adak, S.: NANO 12 (2017) 1750009.
45. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.|
46. Ozaki, S.: Applied Phys. Express 10 (2017) 061001.
47. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
48. Kanaga, S.: IEEE Inter. Conf. Electron. Comp. Comm. Technol. 2018.
49. Mohanty, S.S.: J. Nanoelectr. Optoelectr. 14 (2019) 923.
50. Adak, S.: Nano 14 (2019) 1950060.
51. Chavan, N.: J. Active Passive Electron. Dev. 14 (2019) 201.
52. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
53. Mohanty, S.S.: J. Micromech. Microengn. 29 (2019) 084001.
54. Partida-Manzanera, T.: J. Applied Phys. 126 (2019) 034102.
55. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
#     56. Kushwah, B.: ICEE 2018, pp.8937856.
57. Kanaga, S.: IEEE Trans.Dev. Mater. Reliab.‏ 20 (2020) 613.
58. Ozaki, S.: Semicond. Sci Technol. 35 (2020) 035027.
59. Chatterjee, U.: IEEE Calcutta Conf. – CALCON 2020, p.‏ 426.
60. Oda, O.: Phys. Status Solidi A‏ 218 (2021) ‏ SI2000462.

Čičo, K., Kuzmík, J., Gregušová, D., Stoklas, R., Lalinský, T., Georgakilas, A., Pogany, D., Fröhlich, K., :Optimization and performance of Al2O3/GaN metal-oxide-semiconductor structures. Microelectr. Reliability 47 (2007) 790-793.

1. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
2. Quah, H.J.: IEEE Trans. Electron Devices 59 (2012) 3009.
3. Quah, H.J.: Sci. Advanced Mater. 5 (2013) 1816.
4. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
5. Quah, H.J.: ACS Applied Mater. Interfaces 5 (2013) 6860.
6. Yang, M.: J. Rare Earths 31 (2013) 395.
#    7. Quah, H.J.: Current Applied Phys. 13 (2013) 1433.
      8. Quah, H.J.: Mater. Chem. Phys. 148 (2014) 592.
9. Prasad, C.V.: Applied Phys. A 123 (2017) 279.
10. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
11. Nguyen, H.T.: Materials 13 (2020) 899.
12. Yang, C.: Applied Phys. Lett. 117 (2020) 052105.

Machajdík, D., Kobzev, A., Hušeková, K., Ťapajna, M., Fröhlich, K., Schram, T., : Thermal stability of advanced gate stacks consisting of a Ru electrode and Hf-based gate dielectrics for CMOS technology. Vacuum 81 (2007) 1379-1384.

1. Kwon, J.: Applied Phys. Lett. 96 (2010) 151907.
2. Kwon, J.: J. Applied Phys. 107 (2010) 123505.

Ťapajna, M., Hušeková, K., Machajdík, D., Kobzev, A., Schram, T., Lupták, R., Harmatha, L., Fröhlich, K., :Electrical properties and thermal stability of MOCVD grown Ru gate electrodes for advanced CMOS technology. Microelectr. Engn. 83 (2006) 2412.

1. Ozben, E.D.: Applied Phys. Lett. 93 (2008) 052902.
2. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.
3. Lakshminarayana, G.: J. Mater. Sci: Mater. Electron. 27 (2016) 10791.
4. Wasielewski, R.: Acta Phys. Polonica A 132 (2017) 354.

Čičo, K., Kuzmik, J., Gregušová, D., Lalinský, T., Georgakilas, A., Pogany, D., and Fröhlich, K.: Rapid thermal annealing and performance of Al2O3/GaN metal-oxide-semiconductor structures. In: ASDAM 2006. Proc. 6th Int. Conf. on Advanced Semiconductor Devices and Microsystems. Eds. J. Breza et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 197-200.

1. Kim, H.-D.: J. Alloys Compounds 742 (2018) 822.

Balog, M., Šajgalík, P., Hofer, F., Warbichler, P., Fröhlich, K., Vávra, O., Janega, J., and Huang, J.: Electrically conductive SiC–(Nb,Ti)ss–(Nb,Ti)Css cermet. J. Europ. Ceramic Soc. 26 (2006) 1259-1266.

1. Kim, Y.-W.: J. American Ceramic Soc 94 (2011) 991.
2. Kim, K.J.: J. European Ceramic Soc 32 (2012) 1149.
3. Kim, K.J.: J. Europ. Ceramic Soc 32 (2012) 4401.
4. Kim, K.J.: J. American Ceramic Soc 96 (2013) 3463.
5. Kim, K.J.: J. American Ceramic Soc 96 (2013) 2525.
6. Kim, K.J.: J. Europ. Ceramic Soc 34 (2014) 1149.
7. Seifert, M.: J. Europ. Ceramic Soc 35 (2015) SI3319.
8. Kim, K.J.: J. American Ceramic Soc 98 (2015) 3663.
#   9. Fides, M.: Defect and Diffusion Forum (2016) 368 158.
10. Jang, S.H.: J. Europ. Ceramic Soc 37 (2017) 477.
11. Fides, M.:J. Europ. Ceramic Soc 37 (2017) SI 4315.
12. Fides, M.: Inter. J. Refract. Metals Hard Mater. 65 (2017) SI76.
13. Malik, R.: Inter. J. Applied Ceramic Technol. 16 (2019) 1304.
14. Remyamol, T.:J. Europ. Ceramic Soc 14 (2021) ‏1828.

Manke, C., Boissiere, O., Weber, U., Barbar, G., Baumann, P., Lindner, J., Ťapajna, M., Fröhlich, K., : Growth of Ru/RuO2 layers with atomic vapor deposition on plain wafers and into trench structures. Microelectr. Engn. 83 (2006) 2277.

1. Li, Z.: J. Applied Phys. 101 (2007) Art. No. 034503.
2. Vasilyev, V.: Solid State Technol. 50 (2007) 53.
3. Lukosius, M.: Chemical Vapor Depos. 14 (2008) 123.
4. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
5. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
7. Salauen, A.: Chemical Vapor Depos. 17 (2011) 114.
8. Hong, T.E.: ECS J. Solid State Sci Technol. 2 (2013) P47.
9. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.

Fröhlich, K., Lupták, R., Dobročka, E., Hušeková, K., Čičo, K., Rosová, A., Lukosius, M., Abrutis, A., Písečný, P., and Espinos, J.: Characterization of rare earth oxides based MOSFET gate stacks prepared by metal-organic chemical vapour deposition, Materials Sci Semicond Process. 9 (2006) 1065-1072.

1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
2. Dabrowski, J.: J. Electrochem. Soc. 155 (2008) G97
3. Losurdo, M.: J. Electrochem. Soc. 155 (2008) G44.
4. Milanov, A.P.: Chem. Mater. 21 (2009) 5443.
5. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
6. Ferreira, A.C.: J.Alloys Compounds 489 (2010) 316.
7. Geppert, I.: J. Applied Phys. 108 (2010) 024105.
8. Geppert, I.: ESC Trans. 28 (2010) 191.
9. Daly, S. R.: Inorganic Chem. 51 (2012) 7050.
10. Huang, L.-Y.: Microelectr. Engn. 94 (2012) 38.
11. Ahren, M.: J. Nanopart. Res. 14(2012) 1006.
#   12. Barquinha, P.: In Transparent Oxide Electronics: From Materials to Devices. Chichester: John Wiley  2012 ISBN 978-0-470-68373-6.
13. Fan, X.: Mater. Res. Express 1 (2014) 045005.
14. Zhuang, J.: ACS Applied Mater. & Interfaces 8 (2016) 31128.
15. Watkinson, E. J.: J. Nuclear Mater. 486 (2017) 308.
16. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
17. Hetherin, K.: J. Mater. Sci-Mater. Electron. 28 (2017) 11994.
18. Hetherin, K.: Applied Phys. A 123 (2017) 510.
19. Morkoc, B.: J. Mater. Sci-Mater. Electron. 32 (2021) 9231.

Franta, M., Rosová, A., Ťapajna, M., Dobročka, E., Fröhlich, K., : Microstructure of HfO2 and HfxSi1-xOy dielectric films prepared on Si for advanced CMOS application. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 47-50.

1. Chang, Y.-H.: Microelectr. Engn. 96 (2012) 61.
2. Correa-Mena, A. G.: ICCDCS 2017. P. 77.

Rossel, C., Rosová, A., Hušeková, K., Machajdík, D., Fröhlich, K., : Phase stability of La0.5Sr0.5CoO3−y films upon annealing in hydrogen atmosphere. J. Applied Phys. 100 (2006) 044501.

1. Li, G.: Applied Phys. Lett. 91 (2007) art. no. 163114.
2. Li, G.: J. Phys. D 42 (2009) 065006.
3. Li, Y.W.: Applied Phys. A 95 (2009) 721.
4. Hu, Z.G.: Applied Phys. Lett. 94 (2009) 221104.
5. Li, W.W.: ACS Applied Mater. Interfaces 2 (2010) 896.
6. Li, J.: Nanoscale 9 (2017) 13214.

Ťapajna, M., Hušeková, K., Espinos, J., Harmatha, L., Fröhlich, K., : Precise determination of metal effective work function and fixed oxide charge in MOS capacitors with high-κ dielectric. Materials Sci Semicond Process. 9 (2006) 969-974.

1. Rhee, S.W.: J. Materials Chem. 18 (2008) 5437.
2. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
3. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
4. Chandra, S.V.J.: J. Electrochem. Soc. 157 (2010) H546.
5. Chandra, S.V.J.: Microelectr. Engn. 89 (2012) 76.
6. Jelenkovic, E.V.: ECS Solid State Lett. 2 (2013) P42.
7. Ahmad, S.: J. Polymer Engn. 34 (2014) 279.
8. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
9. Kaczmarski, J.: Semicond. Sci Technol. 33 (2018) 015010.
10. Yuan, G.: ECS J. Solid State Sci Technol. 9(2020) 024010.
11. Sharma, N.: Current Applied Phys. 21 (2021) 58.

Fröhlich, K., Lupták, R., Hušeková, K., Čičo, K., Ťapajna, M., Weber, U., Baumann, P., Lindner, J., Espinos, J., : Properties of Ru/HfxSi1-xOy/Si metal oxide semiconductor gate stack structures grown by atomic vapor deposition. J. Electrochem. Soc. 153 (2006) F176-F179.

1. Son, J.Y.: Thin Solid Films 517 (2009) 3892.
2. Kawano, K.: Electrochem. Solid State Lett. 12 (2009) D80.
3. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.

Machajdík, D., Kobzev, A., Fröhlich, K., : Complementarity of X-ray diffraction and RBS in thin film characterization. Vacuum 78 (2005) 455-461.

        1. Ghobadi, N.: J. Crystal Growth 418 (2015) 111.

Lupták, R., Fröhlich, K., Rosová, A., Hušeková, K., Ťapajna, M., Machajdík, D., Jergel, M., Espinos, J., and Mansilla, C.: Growth of gadolinium oxide films for advanced MOS structure. Microelectr. Engn. 80 (2005) 154-157.

1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
2. Barreca1, D.: Surf. Sci. Spectra 14 (2007) 60.
3. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
4. Kao, C.H.: J. Electrochem. Soc 157 (2010) H915.
5. Laha, A.: Applied Phys. Lett. 99 (2011) 152902.
6. Yang, S.: Mater. Res. Bull. 48 (2013) 37.
7. Tien, C.-Y.: J. Electr. Engn. Technol. 10 (2015) 1720.
8. Mishra, M.: Surface Coat. Technol. 262 (2015) 56.
9. Goh, K.H.:Mater. Sci Semicond. Process. 68 (2017) 302.
10. Pattabi, M.: AIP Conf. Proc. 1832 (2017) 080020.
11. Stadler, D.: J. Nanostr.Chem. 8 (2018) 33.
12. Prasad, C.V.: Applied Surface Sci 427 (2018) 670.
13. Kahraman, A.: J. Mater. Sci-Mater. Electr. 29 (2018) 17473.
14. Accardo, G.: Inter. J. Hydrogen Energy 44 (2019) 12138.
15. Thilipan, G.A.K.: AIP Conf. Proc. 2265 (2020) 030334.
16. Thilipan, G.A.K.:Mater. Sci Semicond. Process. 121 (2021) 105408.

Ťapajna, M., Harmatha, L., Hušeková, K., Fröhlich, K., : Measurement of generation parameters on Ru/HfO2/Si MOS capacitor, Measurement Sci Rev. 5 (2005) 42.

1. Hur’yeva, T.: Chemical Vapour Deposition 12 (2006) 429.
2. Mukhopadhyay, A.B.: J. Phys. Chemistry C 111 (2007) 9203.

Kallel, N., Fröhlich, K., Pignard, S., Oumezzine, M., and Vincent, H.: Structure, magnetic and magnetoresistive properties of La0.7Sr0.3Mn1−xSnxO3 samples (0 ≤ x ≤ 0.20). J. Alloys Compounds 399 (2005) 20-26.

1. Kolat, V.S.: Materials Sci. Engn. B 140 (2007) 212.
2. Jang, Y.H.: J. Chemical Phys. 131 (2009) 094503.
3. Zalita, Z.: Sains Malaysiana 38  (2009) 673.
4. Liu, S.P.: Physica B 406 (2011) 869.
5. Tovstolytkin, A. I.: Low Temp. Phys. 37 (2011) 107.
6. Zainuddin, Z.: Advan. Mater. Res. 501 (2012) 86.
7. Abdullah, H.: J. Nanomater. (2013) 412741.
8. Cherif, R.: Europ. Phys. J. +129 (2014) 83.
9. Abdullah, H.: J. Nanomater. (2014) 703072.
10. Tka, E.: Applied Phys. A 116 (2014) 1181.
11. Arayedh, B.: J. Magnet. Magnet. Mater. 361 (2014) 68.
12. Kumar, V. P.: J. Mater. Sci 50 (2015) 3562.
13. Dhahri, Ah.: Dalton Trans. 44 (2015) 5620.
14. Dhahri, A.: J. Alloys Compounds 700 (2017) 169.
15. Amara, G.M.: RSC Adv. 7 (2017) 10928.
16. Mirzadeh Vaghefi, P.: J. Phys. D 50 (2017) 395301.
17. Chen, Q.: J. Non-Crystall. Solids 493 (2018) 20.
18. Belkahla, A.: Solid State Comm. 294 (2019) 16.
19. Bouzidi, S.: J. Mater. Sci-Mater. Electron. 31 (2020) 11548.
20. Mnefgui, S.: J. Low Temp. Phys. 201 (2020) 500.

Ťapajna, M., Písečný, P., Lupták, R., Hušeková, K., Fröhlich, K., Harmatha, L., Hooker, J., Roozeboom, F., Jergel, M., : Application of Ru-based gate materials for CMOS technology. Materials Sci Semicond. Process. 7 (2004) 271-276.

1. Manke, C.: Microelectr. Engn. 82 (2005) 242.
#   2. Manke C.: Electrochemical Society Proc. 5 (2005) 207.
#   3. Weber U.: Electrochemical Society Proc. 5 (2005) 293.
4. Lu, Y.K.: Microelectr. Engn. 83 (2006) 371.
5. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
6. Yim, S.-S.: Applied Phys. Lett. 89 (2006) Art. No. 093115.
7. Zhang, M.: J. Vacuum Sci Technol. A 25 (2007) 775.
8. Li, H.: J. Electrochem. Soc. 154 (2007) D642.
9. Park, S.J.: Microelectr. Engn. 85 (2008) 39.
10. Park, S.J.: Thin Solid Films 513 (2008) 7345.
11. Yim, S.S.: J. Applied Phys. 103 (2008) 113509.
12. Lee, D.J.: Electrochem. Solid State Lett. 11 (2008) K61.
13. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
14. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
15. Lee, W.K.: Applied Phys. A 100 (2010) 561.
*  16. Kumar, B.R.: Inter. J. Pure Appl. Sci Technol. 4 (2011) 105.
17. Park, T.: J. Vacuum Sci Technol. A 30 (2012) 01A139.
18. Noh, Y.: Korean J. Metals Mater. 50 (2012) 243.
19. Park, T.: Phys. Status Solidi A 209 (2012) 302.
20. Park, J.: Korean J. Metals Mater. 50 (2012) 557.
21. Scheuermann, A.G.: Energy & Environmen. Sci 6 (2013) 2487.
22. Park, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 05FB05.
23. Noh, Y.: Korean J. Metals Mater. 51 (2013) 239.
24. Kim, J.W.: Nanotechnol. 25 (2014) 435404.
25. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.
26. Nomura, K.: ECS Solid State Lett. 4 (2015) N1.
27. Zhang, H.-X.: China Semicond. Technol. Inter. Conf. – CSTIC 2015. Art. no. 7153392.
28. Hwang, S.M.: Thin Solid Films 615 (2016) 311.
29. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.

De Santis, A., Barucca, G., Bobba, F., Caciuffo, R., Fröhlich, K., Pripko, M., Cucolo, A., : Effect of oxygen post-annealing on the magnetoresistance of highly epitaxial La0.7Ca0.3MnO3 thin films. J. Magnetism Magn. Mater. 272-276 (2004) e1501-1502.

    1. Canulescu, S.: Progress Solid State Chem. 35 (2007) 241.

Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., : Growth and properties of ruthenium based metal gates for pMOS devices. In: ASDAM 2004. Eds. J.Osvald and Š.Haščík. Piscataway: IEEE 2004. ISBN 0-7803-8535-7. P. 163-166.

1. Zhang, H.-X.: China Semicond. Technol. Inter. Conf.  2015.
2. Hayes, M.: J. Vacuum Sci Technol. A 39 (2021) 052402.

Písečný, P., Hušeková, K., Fröhlich, K., Harmatha, L., Šoltýs, J., Machajdík, D., Espinos, J., Jergel, M., and Jakabovič, J.: Growth of lanthanum oxide films for application as a gate dielectric in CMOS technology, Materials Sci Semicond. Process. 7 (2004) 231-236.

1. Bedoya, C.: Chemical Vapor Deposition 12 (2006) 46.
2. Leskela, M.: J. Alloys Compounds 418 (2006) 27.
3. Wang, X.G.: Materials Lett. 60 (2006) 2261.
4. Dakhel, A.A.: Proc. Inter. Conf. Microelectr. – ICM (2006) 115.
5. Dakhel, A.A.: J. Alloys Compounds 433 (2007) 6.
6. Dakhel, A.A.: Materials Chemistry Phys. 102 (2007) 266.
7. Dakhel, A.A.: Microelectr. Reliability 48 (2008) 395.
8. Tsai, W.C.: EDSSC 2008. IEEE Inter. Conf. P. 61.
9. Zhao, Y.: J. Applied Phys. 105 (2009) 034103.
10. Khanjani, S.: J. Coordination Chem. 62 (2009) 3343.
11. Khanjani, S.: J. Molecular Struct. 935 (2009) 27.
12. Kim, H.J.: J. Electroceram. 23 (2009) 258.
13. Ciontea, L.: Materials Res. Bull. 45 (2010) 1203.
14. Salavati-Niasari, M.: J. Alloys Compounds 509 (2011) 134.
15. Long Y.: J. Rare Earths 30 (2012) 48.
16. Zhao, Y.: Materials 5 (2012) 1413.
#    17. Zhao, Y.:  In High-k Gate Dielectrics for CMOS Technology. Weinheim: Wiley-VCH 2012. ISBN 978-3-527-33032-4. P. 185.
18. Mangla, O.: J.Mater. Sci 49 (2014) 1594.
19. Kharlamova, T.S.: Kinetics  Catal. 55 (2014) 361.
20. Mousavi-Kani, S.N.: Bulgarian Chem. Comm. 47 (2015) 80.
21. Yilmaz, E.: IEEE Trans. Nuclear Sci 63 (2016) 1301.
22. Al Akhrass, G.A.: RSC Adv. 6 (2016) 3433.
23. Pandey, A.: J. Phys. Chem. C 121 (2017) 481.
24. Goh, K.H.: Materials Sci Semicond. Process. 68 (2017) 302.
25. Brachetti-Sibaja, S.B.: Thin Solid Films 636 (2017) 615.
26. Adole, V.A.: J. Nanostruct. Chem. 9 (2019) 61.
27. Hare, B.J.: Industr. Engn. Chem. Res. 58 (2019) 12551.
28. Gangwar, B.P.: CHEMISTRYSELECT 5 (2020) 7548.
29. Morandi, S.: Sustain. Energy Fuels 4 (2020) 1469.

Kallel, N., Fröhlich, K., Oumezzine, M., Ghedira, M., Vincent, H., and Pignard, S.: Magnetism and giant magnetoresistance in La0.7Sr0.3Mn1−xMxO3 (M = Cr, Ti) systems, Phys. Stat. Solidi (c) 1 (2004) 1649–1654.

1. Kim, M.S.: J. Applied Phys. 102 (2007) 013531.
2. Yahyaoui, S.: J. Magnet. Magnetic Mater. 416 (2016) 441.
3. Creel, T.F.: Phys. Rev. B 93 (2016) 085116.
4. Pashchenko, A.V.: J. Alloys Comp. 767 (2018) 1117.
5. Hreb, V.: IEEE Proc. Inter. Conf. Nanomater. – NAP 2020, art. no. 01NSSA10.

Fröhlich, K., Hušeková, K., Öszi, Z., Hooker, J., Fanciulli, M., Wiemer, C., Dimoulas, A., Vellianitis, G., Roozeboom, F., : Metal oxide gate electrodes for advanced CMOS technology. Annalen der Physik 13 (2004) 31.

1. Li, Q.: Applied Phys. Lett. 85 (2004) 6155.
2. Li, Z.: J. Applied Phys. 101 (2007) art. no. 034503.
3. Kim, H.M.: J. Alloys Comp. 857 (2021) 157627.

Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., Roozeboom, F., Kobzev, A., Wiemer, C., Ferrari, C., Fanciulli, M., Rossel, C., Cabral, C., : Preparation of SrRuO3 films for advanced CMOS metal gates. Materials Sci Semicond. Process. 7 (2004) 265-269.

1. Ito, A.: J. European Ceramic Soc. 30 (2010) 435.
2. Imangholi, B.: IEEE Trans. Electron Dev. 57 (2010) 877.
3. van Zalk, M.: Phys. Rev. B 82 (2010) 134513.
#     4. Khan, M.K.R.: Frontiers Mater. Sci China 4 (2010) 387.
5. Choi, C.: Applied Physics Lett. 98 (2011) 083506.
6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
7. Choi, C.: Japan. J. Applied Phys. 51 (2012) 02BA05.
8. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
9. Kumar, V. S.: J. Phys. D 49 (2016) 255302.
10. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.

Fröhlich, K., Hušeková, K., Machajdík, D., Hooker, J., Perez, N., Fanciulli, M., Ferrari, C., Wiemer, C., Dimoulas, A., and Roozeboom, F.: Ru and RuO2 gate electrodes for advanced CMOS technology, Materials Sci Engn. B 109 (2004) 117–121.

1. Kukli, K.: Mater. Sci Engn. B 118 (2005) 112.
2. Kukli, K.: J. Electrochem. Soc. 152 (2005) F75.
3. Fillot, F.: Microelectr. Engn. 82 (2005) 248.
#   4. Deweerd, W.E.: Electrochem. Soc. Proc. 5 (2005) 62.
#   5. Hoover C. A.: Electrochem. Soc. Proc. 5 (2005) 389.
6. Lu, Y.K.: Microelectr. Engn. 83 (2006) 371.
7. Noh, S.J.: Current Applied Phys. 6 (2006) 171.
8. Hur’yeva, T.: Chemical Vapor Deposition 12 (2006) 429.
9. Nabatame, T.: Materials Sci Semicond. Process. 9 (2006) 975.
10. Chen, W.: Applied Surface Sci 253 (2007) 4045.
11. Park, I.S.: Electrochem. Solid State Lett. 10 (2007) H63.
12. Gatineau, J.: Surface & Coatings Technol. 201 (2007) 9146.
13. Zhang, M.: J. Vacuum Sci Technol. A 25 (2007) 775.
14. Zhang, M.: J. Physics D 41 (2008) 032007.
15. Chatterjee, S.: Microelectr. Engn. 85 (2008) 202.
16. Nowakowski, P.: Applied Surface Sci 254 (2008) 5675.
17. Nowakowski, P.: J. Solid State Chem. 181 (2008) 1005.
18. Nowakowski, P.: Thin Solid Films 518 (2010) 2801.
19. Nowakowski, P.: J. Microscopy 237 (2010) 246.
20. Chambers, S.A.: Advanced Mater. 22 (2010) 219.
21. Lee, D.J.: J. Applied Phys. 107 (2010) 013707.
22. Das, A.: Microelectr. Engn. 87 (2010) 1821.
23. Lee, J.H.: Japan. J. Applied Phys. 49 (2010) 091503.
24. Lee, J.H.: IEEE Trans. Electron Dev. 58 (2011) 672.
25. Kukli, K.: J. Electrochem. Soc 158 (2011) D158.
26. Salauen, A.: Chemical Vapor Deposition 17 (2011) 114.
27. Lee, J.H.: IEEE Trans. Electron Dev. 58 (2011) 3920.
28. Kim, H.K.: Applied Phys. Lett. 101 (2012) 172910.
29. Tuchscherer, A.: Europ. J. Inorganic Chem. 2012 (2012) 4867.
30. Kim, J.-H.: Current Applied Phys. 12 (2012) S160.
31. Chen, J.-Y.: Thin Solid Films 529 (2013) 426.
32. Gu, Q.: J. Catalysis 303 (2013) 141.
33. Wang, X.: Crystal Growth & Design 13 (2013) 1316.
34. Meng, Y.: RSC Adv. 6 (2016) 33666.
35. Hayes, M.H.: ECS Trans. 85 (2018) 743.
36. Hayes, M.H.: ECS Trans. 85 (2018) 1359.
37. Hayes, M.: J. Vacuum Sci Technol. A 39 (2021) 052402.
38. Zhang, F.: Chem. Engn. J. 423 (2021) 30231.

Rosina, M., Audier, M., Dubourdieu, C., Fröhlich, K., Weiss, F., : Defects in (La0.7Sr0.3Mno3/SrTiO3)15 superlattices grown by pulsed injection MOCVD. J. Crystal Growth 259 (2003) 358-366.

1. Dorr, K.: J. Phys. D 39 (2006) R125.
2. Solopan, S.A.: Inorganic Mater. 43 (2007) 1252.
3. Premkumar, P.A.: Chem. Vapor Depos. 13 (2007) 219.
4. Maria, M.: Surface Coatings Technol. 204 (2009) 222.
5. Dekker, M.C.: Phys. Rev. B 84 (2011) 054463.
6. Xie, Q.: Thin Solid Films 519 (2011) SI8338.
7. Liang, Y.-C.: Applied Surface Sci 283 (2013) 490.

Fröhlich, K., Cambel, V., Machajdík, D., Baumann, P., Lindner, J., Schumacher, M., and  Jurgensen, H.: Low-temperature growth of RuO2 films for conductive electrode applications. Materials Sci in Semicond. Processing 5 (2003) 173-177.

1. Morales-Ortiz, U.: Solar Energy Mater. Solar Cells 90 (2006) 832.
2. Wang, X.: Thin Solid Films 510 (2006) 82.
3. Kawano, K.: Electrochem. Solid State Lett. 9 (2006) C175.
*    4. Schneider, A.W.: Doktor-Ingenieur Arbeit. Erlangen: Technischen Fakultät der Univ.  Erlangen-Nürnberg 2006.
5. Schneider, A.: Chemical Vapor Deposition 13 (2007) 389.
6. Kondo, T.: Thin Solid Films 516 (2008) 5864.
7. Nowakowski, P.: Applied Surface Sci 254 (2008) 5675.
8. Kondo, T.: J. Crystal Growth 311 (2009) 642.
9. Nowakowski, P.: J. Microscopy 237 (2010) 246.
10. Methaapanon, R.: Chem. Mater. 25 (2013) 3458.
11. Mousli, F.: Catalysts 9 (2019) 578.

Machajdík, D., Kobzev, A., Fröhlich, K., and Cambel, V.: RBS and ERD study of epitaxial RuO2 films deposited on different single crystal substrates. Vacuum 70 (2003) 313-317.

1. Li, X.W.: Rare Metals 25 (2006) 36.
2. Li, L.: Vacuum 109 (2014) SI21.
3. Kutsuzawa, D.: Phys. Status Solidi B 257 (2020) 2000188.

De Santis, A., Bobba, F., Cristiani, G., Cucolo, A., Fröhlich, K., Habermeier, H., Salvato, M., Vecchione, A., :Structural and electrical characterization of magnetoresistive La0.7Ca0.3MnO3 thin films. J. Magnetism Magnetic Mater. 262 (2003) 150-153.

#     1. Shi, C.: Chinese J. Nonferrous Metals 18 (2008) 1893.
2. Ren, W.J.: J. Applied Phys. 105 (2009) 07D701.
3. Restrepo-Parra, E.: IEEE Trans. Magnetics 47 (2011) 4686.

Plecenik, A., Fröhlich, K., Espinos, J., Holdago, J., Halabica, A., Pripko, M., Gilabert, A., : Degradation of LaMnO3−y surface layer in LaMnO3−y/metal interface. Applied Phys. Lett. 81 (2002) 859.

1. Kim CJ.: Japan. J. Applied Phys. 44 (2005) L525.
2. Ruotolo, A.: Applied Phys. Lett. 88 (2006) 252504.
3. Shang, D.S.: Phys. Rev. B 73 (2006) 245427.
4. Kim, C.J.: Thin Solid Films 515 (2006) 2726.
5. Dowben, P.A.: Materials Research Soc. Symp. Proc. 887 (2006) 209.
6. Sun, Y.H.: Applied Phys. Lett. 90 (2007) Art. No. 122117.
7. Bertacco, R.: Applied Phys. Lett. 91 (2007) 102506.
8. Granja, L.: Physica B 398 (2007) 235.
9. Petti, D.: J. Applied Phys. 103 (2008) 044903.
10. Yu, W.D. : J. Phys. D 41 (2008) 215409.
11. Harada, T.: Applied Phys. Lett. 92 (2008) 222113.
12. Li, S.L.: J. Phys. D 42 (2009) 045411.
13. Shang, D.S.: J. Applied Phys. 105 (2009) 063511.
14. Belogolovskii, M.A.: Central European J. Phys. 7 (2009) 304.
15. Yang, R.: Electrochem. Solid State Lett. 12 (2009) H281.
16. Yang, R.: Applied Phys. A 97 (2009) 85.
17. Yang, R.: J. Phys. D 42 (2009) 175408.
18. Cui, Y.M.: Phys. Lett. A  374 (2010) 625.
19. Yasuhara, R.: Applied Phys. Lett. 97 (2010) 132111.
20. Barrionuevo, D.: J. Applied Phys. 114 (2013) 234103.
21. Cerniuke, I.: Lithuanian J. Phys. 55 (2015) 17.
22. Shankar, U.: J. Phys. Chem. C 119 (2015) 28620.
23. Shapovalov, A.: Proc. Inter. Conf. Nanomater.-Appl.Propert. 2017, Art. No. UNSP 04NESP05.
24. Shang, C.: J. Alloys Comp. 810 (2019) UNSP 151863.

Fröhlich, K., Machajdík, D., Cambel, V., Kostič, I.,  and Pignard, S.: Epitaxial growth of low-resistivity RuO2 films on View the MathML source-oriented Al2O3 substrate. J. Crystal Growth 235 (2002) 377-383.

 1. Lai, Y.H.: J. Materials Chemistry 13 (2003) 1999.
2. Lai, Y.H.: Chemistry Materials 15 (2003) 2454.
3. Norton, D.P.: Mat. Sci Engn. R 43 (2004) 139.
4. Chou, T.Y.: Chemical Vapor Depos. 10 (2004) 149.
5. Stringfellow, G.B.: J. Crystal Growth 264 (2004) 620.
6. Miao, G.X.: Thin Solid Films 478 (2005) 159.
*   7. Schneider, A.W.: Doktor-Ingenieur Arbeit. Erlangen: Technischen Fakultät der Univ.  Erlangen-Nürnberg 2006.
8. Schneider, A.: Chemical Vapor Deposition 13 (2007) 389.
9. Nowakowski, P.: Thin Solid Films 518 (2010) 2801.
10. Jipa, I.: J. Materials Chem. 21 (2011) 3014.
11. Jipa, I.: Chemical Vapor Deposition 17 (2011) 15.
12. Tuchscherer, A.: Europ. J. Inorganic Chem. 30 (2012) 4867.
#  13. Jung, W.: New Phys.: Sae Mulli 67 (2017) 696.
14. Herdiech, M.W.: Surface Sci 688 (2019) 51.

Plecenik, A., Gilabert, A., Fröhlich, K., Halabica, A., Pripko, M., Medici, M., Espinos, J., Holdago, J., : Oxygen loss of the manganite surface layer in La1-δ MnO3/metal interface. Transport, XPS, and photoconductivity measurements J. Supercond. 15 (2002) 579-582.

1. Fors, R.: Phys. Rev. B 71 (2005) 045305.
2. Kim, D.S.: J. Applied Phys. 100 (2006) 093901.
3. Stefanovich, G.B.: J. Non-Crystalline Solids 353 (2007) 956.
4. Yin, Z.Z.: J. Phys. D 42 (2009) 125002.

Baumann, P., Doppelt, P., Fröhlich, K., Gueroudji, L., Cambel, V., Machajdík, D., Schumacher, M., Lindner, J., Schienle, F., Burgess, D., Strauch, G., Jurgensen, H., Guillon, H., Jimenez, C., : Platinum, ruthenium and ruthenium dioxide electrodes deposited by metal organic chemical vapor deposition for oxide applications Integrated Ferroelectrics 44 (2002) 135.

1. Dey, S.K.: Applied Physics Lett. 84 (2004) 1606.
2. Wouters, D.J.: J. Applied Phys. 100 (2006) 051603.
3. Thurier, C.: Coordination Chemistry Rev. 252 (2008) 155.
4. Patake, V.D.: Applied Surface Sci 254 (2008) 2820.
5. Premkumar, P.A.: Materials Chem. Phys. 125 (2011) 757.
6. Patil, U. M.: J. Alloys And Compounds 509 (2011) 1677.
7. Narayanan, J.S.: J. Solid State Electrochem. 17 (2013) 937.
8. Masruroh: Applied Mechanics Mater. 467  (2014) 155.
#    9.  Prakash, J.: In Intelligent Coatings for Corrosion Control. Elsevier 2015 ISBN: 978-012411534-7.  P. 93.

Kováč, P., Hušek, I., Pachla, W., Melišek, T., Diduszko, R., Fröhlich, K., Morawski, A., Presz, A., Machajdík, D., : Structure, grain connectivity and pinning of as-deformed commercial MgB2 powder in Cu and Fe/Cu sheaths. Supercond. Sci Technol. 15 (2002) 1127-1132.

1. Feng, Y.: Supercond.  Sci Techn. 16 (2003) 682.
2. Feng, Y.: Physica C 386 (2003) 598.
3. Yamamoto, K.: Supercond.  Sci Techn. 16 (2003) 1052.
4. Feng, Y.: J. Physics-Cond. Matt. 15 (2003) 6395.
#    5. Feng, Y.: Tsinghua Sci Technol. 8 (2003) 316.
#    6. Nesterenko, V.F.: Process. Fabrication Advanced Mater. XII (2003) 40.
*    7. Horvath, J.: Horizonts in Supercond. Res. Nova Sci Publ. 2003.
*    8. Goodsir, L.: PhD Thesis. Oxford: Oxford Materials 2003.
9. Feng, Y.: J. Physics-Cond. Matt. 16 (2004) 1803.
*    10. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
11. Feng, Y.: Physica C 426 (2005) 1216.
*    12. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
*    13. Goldacker, W.: Fronties in Supercond. Matreials. Berlin: Springer 2005.
14. Liang, G.: Physica C 442 (2006) 113.
15. Liang, G.: J. Alloys Compounds 422 (2006) 73.
*    16. Goldacker, W.: Adv. Sci Technol. 47 (2006) 143.
17. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
18. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
19. Wang, Q.Y.: Rare Metal Mater. Engn. 36 (2007) 977.
20. Yan, G.: Beijing Inter. Materials Week 2006. 546-549 (2007) 1913.
21. Aldica, G.: J. Phys.: Conf. Series 150 (2009) 052006.
22. Yang, H.: Applied Surface Sci 261 (2012) 364.
23. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
24. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
#    25. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.

Bydžovský, J., Vávra, I., Fröhlich, K., Polák, M., Šmatko, V., Kováčová, E., Paškevic, P., : Application of La1−xMnO3 giant magnetoresistance sensors for testing of high-TC superconducting tapes. Sensors & Actuators A 91 (2001) 21-25.

     1. Zou, G.: Materials Lett. 62 (2008) 1785.

Fröhlich, K., Machajdík, D., Cambel, V., Fedor, J., Pisch, A., Lindner, J., : Growth of Ru and Ru2 films by metal-organic chemical vapour deposition J. de Physique 11 (2001) Pr3-325-332.

1. Aaltonen, T.: Chemical Vapor Deposition 10 (2004) 215.
2. Steeves, M.M.: Applied Phys. Lett. 96 (2010) 142103.
3. Guo, L.: Electroch. for Environment. Springer 2010. ISBN 978-0-387-36922-8. P. 55-98.
4. Gregorczyk, K.: Mater. Lett. 73 (2012) 43.

Kováč, P., Hušek, I., Pachla, W., Diantoro, M., Bonfait, G., Maria, J., Fröhlich, K., Kopera, Ľ., Diduszko, R., and Presz, A.: Material for resistive barriers in Bi-2223/Ag tapes, Supercond. Sci Technol. 14 (2001) 966-972.

1. Nakamura, Y.: Physica C 445 (2006) 726.
2. Machida, T.: Physica C 468 (2008) 1764
3. Nakamura, Y.: Physica C 469 (2009) 1496.
4. Nakamura, Y.: Physica C 470 (2010) 1369.
5. Paramarta, I. B.A.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012022.
6. Suardana, P.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012066.
7. Suharta, W.G.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012037.
8. Awad, M.A.: Mater. Lett.‏ 268 (2020) 127626.

Gilabert, A., Plecenik, A., Fröhlich, K., Gaži, Š., Pripko, M., Mozolová, Ž., Machajdík, D., Beňačka, Š., Medici, M., Grajcar, M., Kúš, P., : Photoinduced insulator–metal transition in La0.81MnO3/Al2O3/Nb tunnel junctions. Applied Phys. Lett. 78 (2001) 1712-1714.

1. Tulina, N.  A.: Europhysics Letters 56 (2001) 836.
2. Ziese, M.: Report on Progress in Phys. 65 (2002) 143.
3. Li, H.Q.: Materials Research Bulletin 37 (2002) 859.
#    4. Singh, M.P.: Bulletin Materials Sci 25 (2002) 163.
5. Li, H.Q. Materials Research Bull. 37 (2002)  859.
6. Roy, S.: Solid State Commun. 128 (2003) 91.
7. Dorr, K.: J. Phys. D 39 (2006) R125.
8. Repsas, K.: Acta Physica Polonica A 110 (2006) 537.
9. Yan,  Z.J.: J. Phys. D 40 (2007) 2797.
10. Yan,  Z.J.: Applied Phys. Lett. 91 (2007) 104101.
11. Yuan, X. .: Applied Phys. Lett. 90 (2007) 224105.
12. Yan,  Z.J.: Chinese Phys. Lett. 24 (2007) 1397.
13. Ni, H.: J. Applied Phys. 110 (2011) 033112.
#  14. Yu, D.: Proc. 2011 Inter. Conf. on Electr. Mechanical Engn. Inf. Technol. –  EMEIT 2011. Vol. 2 (2011) 6023151, p. 725. ISBN 978-161284085-7.
#   15. Hu, L.: In Manganite-Based Thin Films and Heterojunctions. Nova Sci Publ. 2015. ISBN: 978-163482475-0. P. 105.

Fröhlich, K., Machajdík, D., Cambel, V., Lupták, R., Pignard, S., Weiss, F., Baumann, P., Lindner, J., : Substrate dependent growth of highly conductive RuO2 films J. de Physique 11 (2001) Pr11-77-81.

       1. Halley, D.: Materials Sci Engn. B 109 (2004) 113.

Španková, M., Vávra, I., Gaži, Š., Machajdík, D., Chromik, Š., Fröhlich, K., Hellemans, L., Beňačka, Š., :Growth and recrystallization of CeO2 thin films deposited on R-plane sapphire by off-axis RF sputtering. J. Crystal Growth 218 (2000) 287-293.

1. Sayle, D.C.: J. Amer. Chem. Soc. 124 (2002) 11429.
2. Kim, C.J.: Physica C 386 (2003) 327.
3. Kim, H.-J.: IEEE Trans. Applied Supercond. 13 (2003) 2555.
4. Okuyucu, H.: IEEE Trans. Applied Supercond. 13 (2003) 2680.
5. Sun, J.W.: IEEE Trans. Applied Supercond. 13 (2003) 2539.
6. Penneman, G.: Key Engn. Materials 264-268 (2004) 501.
*        7. Gàzquez, J.: IoP Conf. Ser. No 181 (2004) 1613.
8. Mozhaev, P.B.: Crystallography Reports 49 (2004) S129.
9. Sohma, M.: IEEE Trans. Applied Supercond. 15 (2005) 2699.
10. Sandiumenge, F.: Nanotechnology 16 (2005) 1809.
11. Huang, H.H.: J. Crystal Growth 287 (2006) 458.
12. Wesolowski, D.E.: J. Materials Research 21 (2006) 1.
13. Cavallaro, A.: Advanced Functional Mater. 16 (2006) 1363.
14. Develos-Bagarinao, K.: Nanotechnology 18 (2007) 165605.
15. Guo, H.: Applied Surface Sci 254 (2008) 1961.
16. Wu, F.: Thin Solid Films 516 (2008) 4908.
17. Masek, K.: Applied Surface Sci 255 (2009) 6656.
18. Matolin, V.: J. Phys. D 42 (2009) 115301.
19. Vaclavu, M.: J. Electrochem. Soc. 156 (2009) B938.
20. Sunder, M.: J. Electr. Mater. 38 (2009) 1931.
21. Solovyov, V.F.: Physical Rev. B 80 (2009) 104102.
22. You, F.: Supercond. Sci Technol. 23 (2010) 065002.
23. Smatko, V.: J. Mater. Sci 21 (2010) 360.
24. Matolin, V.: Fuel Cells 10 (2010) 139.
25. Liu, H.: Proc. SPIE 7995 (2011) 799521.
26. Abal’osheva, I.: Acta Phys. Polonica A 121 (2012) 805.
27. Matolin, V.: Inter. J. Nanotechnol. 9 (2012) 680.
#     28. Wang, G.: Zhenkong Kexue yu Jishu Xuebao/ Vacuum Sci Technol. 34 (2014) 549.
29. Develos-Bagarinao, K.: Nanotechnol. 26 (2015) 215401.
#      30. Develos-Bagarinao, K.: In Oxide Thin Films, Multilayers, and Nanocomp. Springer 2015 ISBN: 978-3-319-14477-1. P. 213.
31. Hattori, T.: J. Crystal Growth 463 (2017) 90.
32. Yamamoto, S.: J. Crystal Growth 468 (2017) 262.

Weiss, F., Lindner, J., Senateur, J., Dubourdieu, C., Galindo, V., Audier, M., Abrutis, A., Rosina, M., Fröhlich, K., Haessler, W., Oswald, S., Figueras, A., and Santiso, J.: Injection MOCVD: ferroelectric thin films and functional oxide superlattices, Surface Coatings Technol. 133-134 (2000) 191-197.

1. Jayadevan, K.P.: J. Materials Sci 13 (2002) 439.
2. Condorelli, G.G.: Materials Sci in Semicond. Process. 5 (2002) 135.
3. Condorelli, G.G.: Materials Sci in Semicond. Process. 5 (2002) 167.
4. Ostapchuk T.: Phys. Rev. B 66 (2002) 235406.
5. Zhu Y.Y.: Surface Coatings Technol. 160 (2002) 277.
*   6. Wei, Z.: Mater. Research Soc. Symp. Proc. 2002.
7. Hamelmann, F.: Thin Solid Films 446 (2004) 167.
8. Hubicka, Z.: Ferroelectrics 317 (2005) 193.
9. Ostapchuk, T.: J. Europ. Ceramic Soc. 25 (2005) 3063.
10. Zhu, TJ.: Applied Phys. A 81 (2005) 701.
11. Bedoya, C.: Chemical Vapour Depos. 11 (2005) 269.
12. Bedoya, C.: Materials Sci Engn. B 118 (2005) 264.
13. El-Kaderi, H.M.: Polyhedron 24 (2005) 645.
#  14. Gasquères, C.: Proc. – Electrochem. Soc. PV (2005-09) 897.
15. Condorelli, G.G.: Chemistry Mater. 18 (2006) 1016.
16. Deyneka, A.: Mater. Sci Forum 514-516 (2006) 165.
17. Douard A.: Surface Coatings Technol. 200 (2006) 6267.
18. Chaussende, D.: Chem. Vapor Depos. 12 (2006) 541.
19. Olejnicek, J.: Integrated Ferroelectr. 81 (2006) 227.
20. Schwarzkopf, J.: Progress Crystal Growth Character. Mater. 52 (2006) 159.
21. Condorelli, G.G.: Coordination Chem. Rev. 251 (2007) 1931.
22. Petford-Long, A.K.: Annual Rev. Materials Res. 38 (2008) 559.
# 23. Gensbittel, A.: J. Phys.: Conf. Series 97 (2008) 012083.
24. Reynolds, G.J.: Materials 5 (2012) 575.
25. Manole, C.C.: Phys. Procedia 46 (2013) 46.
26. Lo Nigro, R.: Mater. Chem. Phys. 162 (2015) 461.
27. Billard, A.: Comptes Rendus Physique 19 (2018) 755.

Fröhlich, K., Vávra, I., Gömöry, F., Šouc, J., Bydžovský, J., Kováč, P., Dobrovodský, J., Marysko, M., :Microstructure-dependent magnetoresistance in La1−xMnO3 thin films. J. Magnetism Magnetic Mater. 211 (2000) 67-72.

1. Alonso, J.: Phys. Rev. B  62 (2000) 11328.
2. Ma, X.L.: J. Mater. Res. 17 (2002) 600.
3. Ma X.L.: Philos. Magazine A 82 (2002) 1331.
4. Zhang, M.: Physica Status Solidi A 196 (2003) 365.
5. Zhu, Y.L.: Materials Lett. 58 (2004) 1485.
#    6. Yu, J.-Y.: Gongneng Cailiao/J. Functional Mater. 35 (2004) 283.
7. Bosak, A.: Applied Phys. A 79 (2004) 1979.
8. Zhang, M.: Philos. Magazine 85 (2005) 1625.
9. Chen, J.: Philos. Magazine A 86 (2006) 4341.
10. Wu, J.: Acta Physica Sinica 56 (2007) 1127.
11. Yu, J.Y.: Solid State Comm. 142 (2007) 333.
12. Vradman, L.: Phys. Chemistry Chem. Phys. 15 (2013) 10914.
13. Vradman, L.: J. American Ceramic Soc 96 (2013) 3202.

Fröhlich, K., Machajdík, D., Hellemans, L., Snauwaert, J., : Growth of high crystalline quality thin epitaxial CeO2 films on (1102) saphire J. de Physique IV 9 (1999) Pr8-341-347.

1. Chromik, Š.: Physica C 371 (2002) 301.
2. Zhao, P.: Applied Surface Sci 256 (2010) 6395.
3. Zhao, P.: Surface & Coatings Technol. 204 (2010) 3619.
4. Zhao, P.: Surface & Coatings Technol. 205 (2011) 4079.
5. Rangel, R.: Phys. Status Solidi B 249 (2012) 1199.
6. Goebel, M.C.: J. Phys. Chem. C 117 (2013) 22560.

Machajdík, D., Pevala, A., Rosová, A., Fröhlich, K., Šouc, J., Weiss, F., Figueras, A., : On the problem of overlopping ? scans measured on thin films deposited on monocrystal substrates J. Applied Crystall. 32 (1999) 736-743.

      1. Boulle, A.: Thin Solid Films 434 (2003) 1.

Pignard, S., Vincent, H., Senateur, J., Fröhlich, K., and Šouc, J.: Effect of crystallinity on the magnetoresistive properties of 0,8MnO3-δ thin films grown by chemical vapor deposition Applied Phys. Lett. 73 (1998) 999.

1. Deandres, A.: Applied Phys. Lett. 74 (1999) 3884.
2. Gupta, A.: J. Magnetism Magnetic Mater. 200 (1999) 24.
3. Mercey, B.: Current Opinion In Solid State & Materials Sci 4 (1999) 24.
4. de Andres, A: Thin Solid Films 373 (2000) 98.
5. de Andres, A: Phys. Rev. B 60 (2000) 7328.
6. Shengming, Z.: Physica B 279 (2000) 257.
7. Singh, H.K.: J. Phys. D33 (2000) 921.
8. Zhou, S.M.: Physica B 279 (2000) 257.
9. Wu, W.B.: J. Applied Phys. 87 (2000) 3006.
10. Pradhan, A.K.: Applied Phys. Lett. 76 (2000) 763.
11. Roul, K.: Mat. Chem. Phys. 67 (2001) 267.
12. Prellier, W.: J. Phys. – Condens. Matt. 13 (2001) R915.
13. Zheng, L,Q.: Physica Status Solidi A 185 (2001) 267.
14. Zhu, J.L.: J. Materials Research 16 (2001) 2027.
15. Zheng, L.Q.: J. Phys. – Condens. Matt. 13 (2001) 3411.
16. Tanaka, K.: Japan. J. Applied Phys. 40 (2001) 6821.
17. Xia, Z.C.: Materials Research Bulletin 37 (2002) 2205.
18. Vlasko-Vlasov, V.K: J. Applied Phys. 91 (2002) 7721.
19. Lin J.Y.: J. Magnetism Magnetic Mater. 239 (2002) 48.
20.  Zhang Y.B.: Mater. Chem. Phys. 75 (2002) 136.
21. Huang Y.H.: Applied Phys. Lett. 81 (2002) 76.
22. Singh A.: J. Cryst. Growth 244 (2002) 313.
23. Park S.I.: J. Magnetism Magnetic Mater. 242 – 245 (2002) 692.
24. Wang Z.M.: J. Magnetism Magnetic Mater. 246 (2002) 254.
25. Joseph Joly V.L.: J. Magnetism Magnetic Mater. 247 (2002) 316.
26. Huang, Y.H.: J. Solid State Chemistry 174 (2003) 257.
27. Zheng, X.: J. Magnetism Magnetic Mater. 267 (2003) 168.
28. Khare, N.: Nat. Academy Sci Lett.-India 26 (2003) 214.
29. Khare, N.: Indian J. Pure & Applied Phys. 42 (2004) 62.
30. Zhu, X.B.: J. Physics D 37 (2004) 2347.
31. Chang, W.J.: J. Applied Phys. 96 (2004) 4357.
32. Ju, S.: Phys. Rev. B 71 (2005) Art. No. 224401.
33. Huang, Y.H.: J. Applied Phys. 98 (2005) 033911.
34. Zhou, Q.L.: Phys. Rev. B 72 (2005) 224439.
#    35. Wang, J.-H.: J. Shanghai Jiaotong University (Sci) 10 E (2005) 91.
36. Singh, A.: Solid State Comm. 137 (2006) 456.
37. Wang, Z.J.: J. Crystal Growth 293 (2006) 68.
38. Basith, M.A.: ICECE 2006. P. 386.
39. Basith, M.A.: Modern Phys. Lett. B. 21 (2007) 1569.
40. Singh, A.: J. Applied Phys. 102 (2007) art.  no. 043907.
41. Siwach, P.K.: J. Phys.-Condensed Matt. 20 (2008) 273201.
42. Wang, T.: J. Crystal Growth 310 (2008) 3029.
43. Wang. Z.: Physica B 406 (2011) 1436.
44. Rao, Ch.N.: J. Magn. Magn. Mater. 324 (2012) 3766.
45. Restrepo-Parra, E.: J. Supercond. Novel Magnetism 28 (2015) 151.
46. Kanjariya, P. V.: J. Mater. Sci-Mater. Electron. 29 (2018) 8107.
#   47. Sahu, D.R.: Inter. J. Nano Biomater. 7 (2018) 201.

Fröhlich, K., Šouc, J., Machajdík, D., Jergel, M., Snauwaert, J., Hellemans, L., : Surface quality of epitaxial CeO2 thin films grown on sapphire by aerosol metal organic chemical vapour deposition Chemical Vapor Deposition 4 (1998) 216.

1. Malandrino, G.: Chemical Vapour Depos. 6 (2000) 233.
2. Lo Nigro, R.: Chem. Mater. 13 (2001) 4402.
3. Paivasaari J.: J. Mater. Chem. 12 (2002) 1828.
4. Lo Nigro, R.: Materials Sci Engn. B 102 (2003) 323.
5. Lo Nigro, R.: Chemistry Materials 15 (2003) 1434.
*    6. Malandrino G.: Electrochem. Soc Proc. 8 (2003) 1112.
7. Lo Nigro, R.: J. Mater. Chem. 15 (2005) 2328.
8. Develos-Bagarinao, K.: Nanotechnology 18 (2007) 165605.
9. Mansilla, C.: Surface & Coatings Technol. 202 (2007) 1256.
10. Mansilla, C.: Solid State Sci 11 (2009) 1456.
11. Zhao, P.: Surface & Coatings Technol. 204 (2010) 3619.
12. Zhao, P.: Surface & Coatings Technol. 205 (2011) 4079.
13. Vargas-Garcia, J. R.: Thin Solid Films 520 (2012) 1851.
14. Goebel, M.C.: J. Phys. Chem. C 117 (2013) 22560.
#   15. Develos-Bagarinao, K.: In Oxide Thin Films, Multilayers, and Nanocomp. Springer 2015 ISBN: 978-3-319-14477-1. P. 213.

Kováč, P., Cesnak, L., Melišek, T., Hušek, I., Fröhlich, K., : Critical current to n-exponent relation in Bi(2223)/Ag tapes Supercond. Sci Technol. 10 (1997) 605.

1. Ramsbottom, H.D.: Applied Supercond. 5 (1997) 162.
2. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 843
3. Marti, F.: Supercond. Sci Technol. 11 (1998) 485
4. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 392
5. Prester, M.: Supercond. Sci Technol. 11 (1998) 333
*     6. Eastell, C.J: PhD Thesis. Univ. Oxford (1998) 8-26
7. Ciszek, M.: IEEE Trans. Applied Supercond. 9 (1999) 817.
8. Paasi, J.: IEEE Trans. on Applied Supercond. 9 (1999) 2215.
9. Marti, F.: IEEE Trans. Applied Supercond. 9 (1999) 2766.
10. Paasi, J.: IEEE Trans. Applied Supercond. 10 (2000) 1212.
*    11. Lehtonen, J.: Doctor Thesis. Tampere Univ. Technol. (2000).
12. Shaked, N.: Physica C 354 (2001) 237.
13.  Lau, K.T.: Supercond. Sci Technol. 15 (2002) 351.
14. Spal, R.D.: Applied Phys. Lett. 80 (2002) 1412.
15. Richens, P.E.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
16. Aloysius, R.P.: Physica C 384 (2003) 369.
17. Shin, HS.: Supercond. Sci Technol. 16 (2003) 1012.
18. Kim, K.T.: IEEE Trans. Applied Supercond. 13 (2003) 2996.
19. Yakinci, Z.D.: Physica C 408-410 (2004) 900.
20. Lau, K.T.: J. Materials Sci 16 (2005) 17.
21. Qu, T.M.: Physica C 426 (2005) 1159.
22. Lau, K.T.: J. Applied Phys. 99 (2006) Art. No. 123904.
23. Qu, T.M.: Physica C 444 (2006) 71.
24. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
25. Kang, M.: IEEE Trans. Applied Supercond. 19 (2009) 1257.
#  26. Ku, M.: J. Korea Inst. Applied Supercond. Cryogenics 12 (2010) 12.
27. Yoo, B.: IEEE Trans. Applied Supercond. 28 (2018) 8400806.

Fröhlich, K., Machajdík, D., Vávra, I., Šouc, J., Rosová, A., Figueras, A., Weiss, F., Dahmen, K., : Growth of YBa2Cu3O7/CeO2/Al2O3 heteroepitaxial films by aerosol MOCVD J. Alloys Compounds 251 (1997) 284.

1. Becht, M.: Applied Supercond. 4 (1997) 475.
2. Zhao, P.: Surface Coatings Technol. 204 (2010) 3619.
3. Zhao, P.: J. American Ceramic Soc 99 (2016) 3104.

Weiss, F., Schmatz, U., Pisch, A., Felten, F., Pignard, S., Senateur, J., Abrutis, A., Fröhlich, K., Selbmann, D., Klippe, J., : HTS thin films by innovative MOCVD processes J. Alloys Compounds 251 (1997) 264.

1. Tavares, P.B.: J. Applied Phys. 85 (1999) 5411.
2. Chuprakov, I.S.: J. de Physique IV 9 (1999) P8, pp 901.
3. Yamamoto, S.: J. de Physique IV 9 (1999) P8, pp 1013.
4. Alariofranco, M.A.: High-Temp. Supercond. Novel Inorganic Mater. Dordrecht: Kluwer Academic Publ (1999) 51.
5. Yamamoto, S.: Chem. Vapor Dep. 7 (2001) 7.
6. Tavares, P.B.: Advanced Mater. Forum I 230-232 (2002) 173.
7.  Hou, X.H.: Chemical Vapor Dep. 12 (2006) 583.

Fröhlich, K., Šouc, J., Rosová, A., Machajdík, D., Graboy, I., Svetchnikov, V., Figueras, A., and Weiss, F.: Superconducting YBa2Cu3O7 films prepared by aerosol metal organic chemical vapour deposition on Al2O3 substrate with CeO2 buffer layer, Supercond. Sci Technol. 10 (1997) 657.

1. Selbmann, D.: J. de Physique IV 10 (2000) 27.
2. Jung, K.R.: IEEE Trans. Applied Supercond. 13 (2003) 291.
*    3. Van Driessche, I.: IoP Conf. Ser. No 181 (2004) 1462.
4. Kaul, A.R.: Uspekhi Khimii 73 (2004) 932.
#    5. Xiong, J.: J. Chinese Ceramic Soc. 33 (2005) 149.
#    6. Xiong, J.: J. Chinese Ceramic Soc. 33 (2005) 159.
7. Wei, M.: J. Crystal Growth 284 (2005) 464.
8. Wei, M.: Materials Lett. 60 (2006) 1519.
9. Petrova, N.L.: Solid State Ionics 177 (2006) 613.
10. Tang, M.H.: Trans. Nonferrous Metals Soc. China 17 (2007) S741.
*   11. Hung, V.V.: Mater. Sci Appl. 9 (2018) 949.

Cesnak, L., Gömöry, F., Kováč, P., Šouc, J., Fröhlich, K., Melišek, T., Hilscher, G., Puttner, M., Holubar, T., : Treating the I-V characteristics of low as well high Tc superconductors in context with the pinning potential Applied Supercond. 4 (1996) 277.

1. Meerovich, V.: Supercond. Sci Technol. 20 (2007) 457.
2. Sokolovsky, V.: Supercond. Sci Technol. 20 (2007) 189.
3. Meerovich, V.: Supercond. Sci Technol. 20 (2007) 1046.
4. Fagnard, J.F.: Supercond. Sci Technol. 22 (2009) 105002.
5. Chandra, J.: J. Low Temp. Phys. 186 (2017) 21.

Fröhlich, K., Machajdík, D., Rosová, A., Vávra, I., Weiss, F., Bochu, B., Senateur, J., : Growth of SrTiO3 thin epitaxial films by aerosol MOCVD Thin Solid Films 260 (1995) 187-191.

1. Pena, J.: Solid State Ionics 101 (1997) 183.
2. Kruis, F.E.: J. Aerosol Sci 29 (1998) 511.
3. Wang, X.: J. Vacuum Sci Technol. A 17 (1999) 564.
4. Gibbons, B.J.: Materials Research Soc Symp. Proc. 603 (2000) 57.
5. Gibbons, B.J.: J. Vacuum Sci Technol. A 19 (2001) 56.
6. He, J.Q.: J. Applied Phys. 92 (2002) 7200.
7. Borra, J.P.: J. Phys. D 39 (2006) R19.
8. Hou, X.H.: Chemical Vapor Deposition 12 (2006) 583.
9. Weiss, C.V.: J. Applied Phys. 111 (2012) 054108.
10. Parkhomenko, R.: J. Coord. Chem. 65 (2012) 3227.
11. Sun, F.: J. Mater. Sci 49 (2014) 5978.
12. Chen, J.: Ceramics Inter. 42 (2016) 9981.
13. Chen, J.: Mater. Today-Proc. 4 (2017) 11461.

Fröhlich, K., Šouc, J., Machajdík, D., Kobzev, A., Weiss, F., Senateur, J., Dahmen, K., : Propeties of thin epitaxial aerosol MOCVD CeO2 films grown on (1102) sapphire J. de Physique IV Coll. 5 Suppl. II (1995) C5-533.

*    1. Castel, X.: PhD Thesis. Univ. de Rennes I. 1997.
*    2. Nichiporuk, R.V.: Electrochem. Soc. Proc. 25 (1997) 872.
3. Castel, X.: J. Crystal Growth 187 (1998) 211.
4. Malandrino, G.: Chemical Vapour Depos. 6 (2000) 233.
5. Lo Nigro, R.: Chem. Mater. 13 (2001) 4402.
6. Delarosa M.J.: J. Coord. Chem. 55 (2002) 781.
7. Lo Nigro, R.: Chem. Mater. 15 (2003) 1434.
8. Evans, M.: Phys. Status Solidi C 12 (2015) 996.

Fröhlich, K., Weiss, F., Boursier, D., Senateur, J., : Superconducting properties of YBa2Cu3O7 films prepared by aerosol MOCVD Physica C 235-240 (1994) 659.

       1. Watson, I.M.: Chemical Vapor Deposition 3 (1997) 9.

Fröhlich, K., Machajdík, D., Weiss, F., Bochu, B., : Thin epitaxial CeO2 films prepared by aerosol MOCVD Materials Lett. 21 (1994) 377.

1. Tian, C.Y.: J. Vacuum Sci Technol. A 15 (1997) 85.
2. Malandrino, G.: Chemical Vapour Depos. 6 (2000) 233.
3. Maruyama, J.: J. Mater. Sci Lett. 19 (2000) 1723.
4. Schafer, P.: Advanced Mater. Optic Electr. 10 (2000) 169.
5. Schafer, P.: Integrated Ferroelectr. 30 (2000) 165.
6. Lo Nigro, R.: Chem. Mater. 13 (2001) 4402.
7. Lo Nigro, R.: J. Electrochem. Soc. 148 (2001) F159.
8. Zhao, P.: Ceramics Inter. 40 (2014) 15919.

Gömöry, F., Lobotka, P., Fröhlich, K., : Variable temperature insert for AC susceptiibility measurements at AC field amplitude up to 0.1T Cryogenics 34 (1994) 837.

1. Chen, D.X.: Measurement Sci Technol. 15 (2004) 1195.
2. Laurent, P.: Measurement Sci Technol. 19 (2008) 085705.
3. Lousberg, G.P.: Supercond. Sci Technol. 22 (2009) 045009.
#   4. Laurent, P.: In Advanced Instrument Engn.: Measurement, Calibration, and Design. IGI Global: 2013 ISBN: 978-1-4666-4165-5. P. 208.

Chenevier, B., Marsden, A., Weiss, F., Machajdík, D., Fröhlich, K., : X-ray diffraction analysis of YBCO thin films synthesized by aerosol MOCVD Physica C 235-240 (1994) 657.

1. Aindow, M.: Phil. Mag. Lett. 74 (1996) 267-272.
2. Perrin, A.: Microelectr. J. 27 (1996) 343.

Šouc, J., Fröhlich, K., : Preparation of the YBaCuO thin films by MOCVD method. In: 7th Czecho-Slovak Conf. Thin Films. Ed.: V.Tvarožek. Lipt. Mikuláš: 1993. P. 59.

     1. Dobrovodský, J.: Chem. listy 88 (1994) 273.

Weiss, F., Fröhlich, K., Haase, R., Labeau, M., Selbmann, D., Senateur, J., Thomas, O., : Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources J. de Physique IV, C3 (1993) 321.

1. Dahmen, K.H.: Progress in Crystal Growth and Characterization of Materials 27 (1993) 117.
2. Dobrovodský, J.: Chem. listy 88 (1994) 273.
3. Gorbenko, O.Y.: J. Mater. Chem. 4 (1994) 1585.
4. Jergel, M.: Supercond. Sci. Technol. 8 (1995) 67.
5. Gomezaleixandre, C.: Adv. Mater. 7 (1995) 111.
7. Xu, C.Y.: Chem. Mater. 7 (1995) 1539.
8. Klippe, L.: Applied Supercond.  1. Bristol: IPP 1995. P. 611.
9. Xu, C.Y.: Inorg. Chemie 34 (1995) 4767.
*   10. Santiso,  J.: Handbook of Thin Film Process Technol. IPP 1995, Part X 6.2.
11. Becht, M.: Applied Supercond. 4 (1996) 475.
12. Gorbenko, I.M.: Chemical Vapor Depos. 3 (1997) 193.
13. Klippe, L.: J. Alloys Compounds 251 (1997) 249.
14. Dahmen, K.H.: J. Alloys Compounds 251 (1997)270.
15. Gorbenko, O.Y.: J. Materials Chemistry 7 (1997) 747.
16. Grevin, B.: Physica C 275 (1997) 238.
17. Watson, I.M.: Chemical Vapor Depos. 3 (1997) 9.
*   18. Pignard, S.: PhD Thesis. Grenoble, INPG 1997.
*   19. Schmatz, U.: PhD Thesis. Grenoble, INPG 1997.
20. Maury, F.: Annales De Chimie-Sci Des Materiaux 23 (1998) 637
21. Wahl, G.: Surface Coatings Technol. 101 (1998) 132
22. Saanila, V.: Chemical Vapor Depos. 6 (1998) 227
23. Gorbenko, O.Y.: J. de Physique IV 9 (1999) 659.
24. Wahl, G.: High-Temperature Supercond. Novel Inorganic Materials. Dordrecht: Kluwer Academic Publ 1999. P. 79.
25. Vehkamaki, M.: Chemical Vapor Depos. 7 (2001) 75.
26. Yamamoto, S.: Chemical Vapor Depos. 7 (2001) 7.
27. Selvakumar, J.: J. Phys. Chem. C 113 (2009) 19011.

Fedorko, P., Skákalová, V., Fröhlich, K., Foltin, O., Annus, J., : Pressure relaxation of the dc conductivity and optical absorption spectra in doped polypyrrole Mater. Sci Forum 122 (1993) 99.

     1. Breza, M.: Macromol. Theory Simul. 5 (1996) 107-120.

Fröhlich, K., Šouc, J., Machajdík, D., Pochaba, I., Gömöry, F., Kliment, V., : Properties of YBaCuO thin films prepared by MOCVD technique with post-deposition annealing. In: EUCAS 93. Ed. H.C.Freyhardt. Oberursel: DGM, 1993. P. 395.

     1. Schulte, B.: J. Alloys Comp. 251 (1997) 360.

Weiss, F., Delabouglise, G., Lebedev, O., Fröhlich, K., Mossang, E., Senateur, J., Thomas, O., : Transport critical current in MOCVD YBa2Cu3O7-x thin films using a pulse technique J. Alloys and Compounds 195 (1993) 475.

1. Gorbenko, O.Y.: J. Mater. Chem. 4 (1994) 1585.
2. Ye, M.: Physica B 204 (1995) 200.
*    3. Gorbenko, O.Yu.: Supercond: Research and Development 5-6 (1995) 38.

Weiss, F., Fröhlich, K., Haase, R., Labeau, M., Selbmann, D., Senateur, J., Thomas, O., : YBa2Cu3O7 films prepared by aerosol MOCVD. In: EUCAS 93. Ed. H.C.Freyhardt. Oberursel: DGM, 1993. P. 403.

1. Jergel, M.: Supercond. Sci. Technol. 7 (1994) 931.
2. Jergel, M.: Supercond. Sci. Technol. 8 (1995) 67.
3. Becht, M.: Applied Superconductivity 4 (1996) 475.
4. Wahl, G.: Surface & Coatings Techn 101 (1998) 132.
5. Wells, J.J.: In: Inst. of Physics Conf. Ser. 167 (2000) 318.

Fröhlich, K., Šouc, J., Machajdík, D., Vávra, I., : Characterization of thin superconducting YBa2Cu3O7-x films prepared by MO CVD deposition Mater. Sci Engn. B 14 (1992) 43.

1. Leskelä, M.: Supercond. Sci Technol. 6 (1993) 627.
2. Dobrovodský, J.: Chem. listy 88 (1994) 273.
3. Watson, I.M.: Thin Solid Films 251 (1994) 51.
*    4. Gorbenko, O.Yu.: Supercond.: Research and development 5-6 (1995) 38.
*    5. Douglas, L.: In: CVD of Nonmetals. Weinheim: 1996. Chapt. 2., p.39.

Fröhlich, K., Šouc, J., Chromik, Š., Machajdík, D., : MO CVD of YBa2Cu3O7-x thin films using Ba Flourocarbon-based precursor Physica C 202 (1992) 121.

1. Leskelä, M.: Supercond. Sci Technol. 6 (1993) 627.
2. Lehmann, B.E.: Water Resour. Research 29 (1993) 2027.
3. Dobrovodský, J.: Chem. listy 88 (1994) 273.
4. Watson, I.M.: J. Mater. Chem. 4 (1994) 1393.
5. Richards, B.C.: Physica C 252 (1995) 229.
*    6. Gorbenko, O.Yu.: Supercond.: Research and development 5-6 (1995) 38.
7. Watson, I.M.: Chemical Vapor Deposition 3 (1997) 9.
8. Burtman, V.: Chem. Materials 9 (1997) 3101
*   9. Douglas, L.: In: CVD of Nonmetals. Weinheim: 1996. Chapt. 2., p.39.

Park, J., Wattiaux, A., Grenier, J., Fröhlich, K., Dordor, P., Peuchard, M., Hagenmuller, P., : Preparation and characterization of highly densified YBa2Cu3O7- ceramics used for electrochemical oxidation, Zeitschrift für Anorg. Algemeine Chemie 608 (1992) 153.

    1. Nemudry, A.:  Solid State Sci 4 (2002) 677.

Šouc, J., Machajdík, D., Šmatko, V., Štrbik, V., Fröhlich, K., Hríb, Š., Štefánik, S., Kordoš, P., Ivan, J., : Preparation and properties of Ba-deficient superconducting thin Y-Ba-Cu-O films J. Crystal Growth 107 (1991) 710.

1. Leskelä, M.: Supercond. Sci Technol. 6 (1993) 627.
2. Volkov, S.V.: J. de Phys. IV. C5 (1995) 553.
*    3. Gorbenko, O.Yu.: Supercond.: Research and  development 5-6 (1995) 38.
4. Faqir, H.: J. Physics Chem. Solids 58 (1997) 821.
*    5. Douglas, L.: In: CVD of Nonmetals. Weinheim: VCH 1996, chapter 2., p. 39.

Hlásnik, I., Kokavec, J., Fröhlich, K., Janšák, L., : Static and dynamic characteristics of Nb3Ge layers for rapid superconducting power switches Cryogenics 31 (1991) 590.

     1. Chen, L.J.: J. Phys.Chem. Solids 55 (1994) 871.

Heintz, J., Magro, C., Fröhlich, K., Dordor, P., Bonnet, J., : Analysis of critical current density limitations in YBa2Cu3O7-x sin tered at low temperature European J. Solid State Inorg. Chemie 27 (1990) 703.

*    1. Nganga, L.: PhD. Thesis. Univ. de Bordeaux 1990.
2. Park, J.C.: Z. Anorg. Allg. Chem. 608 (1992) 153.
3. Cazy, E.: J. Mater. Research 12 (1997) 1451.
4. Fabrizio, M.: Rapid Comm. in Mass Spectrometry 12 (1998) 675
5. Niwa, T.: IEEE Trans. Applied Supercond. 13 (2003) 2747.
6. Cazy, E.: J. Materials Sci 42 (2007) 6310.

Nganga, L., Hung, P., Chaminade, J., Dordor, P., Fröhlich, K., Jergel, M., : Influence of annealing under oxygen on the chemical and superconducting properties of YBa2Cu3Ox single crystals J. Less-Common Metals 164-165 (1990) 208.

1. Gömöry, F.: Rev. Sci Instrum. 62 (1991) 2019.
2. Gömöry, F.: Thermochim. Acta 174 (1991) 299.
3. Vanderah, T.A.: J. Crystal Growth 118 (1992) 385.
4. Gerrard, D.L.: Analytical Chem. 64 (1992) R502.
5. Rosová, A.: Ferroelectrics 141 (1993) 73.
6. Rosová, A.: Ferroelectrics 141 (1993) 87.
*    7. Rosová, A.: Reálna struktura  látek. Vojtěchovice: 1992. S. 58.
8. Rosová, A.: Physica C 214 (1993) 247.
*    9. Rosová, A.: In: Studies of HTS. New York: Nova Sci Pub 1999. P. 125.

Gömöry, F., Takács, S., Lobotka, P., Fröhlich, K., Plecháček, V., : AC magnetization of high Tc superconductors at low superimposed DC fields Physica C 160 (1989) 1.

1. Wahid, S.F.: Physica C 170 (1990) 395.
2. Campbell, A.M.: Physica C 172 (1990) 253.
3. Loegel, B.: Supercond. Sci Technol. 3 (1990) 504.
4. Gianelli, A.: Physica A 168 (1990) 277.
5. Campbell, A.M.: Supercond. Sci Technol. 3 (1990) 450.
6. Ludwig, F.: Physica C 177 (1991) 401.
7. Campbell, A.M.: IEEE Trans. Magnet. 27 (1991) 1660.
8. Doyle, R.A.: Supercond. Sci Technol. 4 (1991) S274.
9. Forsthuber, M.: Physica C 177 (1991) 401.
*   10. Campbell, A.M.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York, Plenum Press 1991. P. 129.
*   11. Nicolo, M.: PhD Thesis. Boulder: Univ. Colorado 1991.
12. Wahid, S.F.: Physica C 194 (1992) 211.
13. Gjolmesli, S.: Physica C 220 (1994) 33.
14. Lee, S.: Japan. J. Applied Phys. 33 (1994) 3889.
15. Martinez, E.: Physica C 289 (1997) 1.
16. Ramsbottom, H.D.: J. Phys. C 9 (1997) 4437.
17. Babu, N.H.: Physica C 302 (1998) 167.
18. Ramsbottom, H.D.: J. Applied Phys. 85 (1999) 3732.
19. Thakur, K.P.: Supercond. Sci Technol. 24 (2011) 045006.

Fröhlich, K., Melišek, T., : Critical currents and scaling law in CVD prepared Nb3Ge superconductor alloyed with Al Cryogenics 29 (1989) 736.

1. Dorofeev, G.L.: Supercond. Sci Technol. 5 (1992) S460.
2. Shirshov, L.S.: IEEE Trans. Magnetics 28 (1992) 813.

Černuško, V., Jergel, M., Fröhlich, K., Polák, M., : A small Nb3Ge test solenoid IEEE Trans. Magnetics 23 (1987) 577.

     1. Dobrovodský, J.: Chem. listy 88 (1994) 273.

Fröhlich, K., : Chemical vapour deposition of superconducting Nb3Ge controlled by diffusion in the gas phase Thin Solid Films 150 (1987) 311.

*    1. Superconductors Transition Temperatures and Characterization of Elements, Alloys and  Compounds. Ed. R.Flükiger. Vol. 21 Subvol. b1. Berlin, Springer 1994.
*    2. Douglas, L.: In: CVD of Nonmetals. Ed. W. S. Rees Jr. Weinheim, VCH 1996, chapter 2., p.39.
3. Lee, S.: J. Mater. Chem. C 1 (2013) 1674.

Fröhlich, K., Melišek, T., Černuško, V., : Scaling law for pinning forces in superconducting Nb3Ge compound prepared by chemical vapor-deposition Phys. Low Temper. 12 (1986) 563.

*    1. Superconductors Transition Temperatures and Characterization of Elements, Alloys and  Compounds. Ed. R.Flükiger. Vol. 21 Subvol. b1. Berlin: Springer 1994.

Černuško, V., Fröhlich, K., Jergel, M., Machajdík, D., Tarnovská, M., Fedorov, V., Cheremnykh, P., : Properties of Nb3Ge tape superconductor prepared by CVD method J. de Physique 45 (1984) C1-429.

1. Wahl, G.: J. Mater. Sci. 24 (1989) 1141.
*    2. Supercond. Transition Temp. Characterization of Elements, Alloys and  Compounds. Ed. R.Flükiger. Vol. 21, Subvol. b1. Berlin, Springer-Verlag 1994.

 Fröhlich, K., Machajdík, D., Beňačka, Š., Černuško, V., : On the Tc measurement of Nb3Ge superconductors Acta Physica Hungarica 53 (1982) 419.

*     1. Superconductors Transition Temperatures and Characterization of Elements, Alloys and  Compounds. Ed. R.Flükiger. Vol. 21 Subvol. b1. Berlin, Springer 1994.

Černuško, V., Fröhlich, K., Machajdík, D., Jergel, M., : Development of long Nb3Ge tape with Tc above 20K IEEE Trans. Magnet. 17 (1981) 2051.

*    1.  Narlikar,  A.V.: Supercond. Supercond. Mater. New Delphi: South Asian Publ. 1983. P. 141.
2. Nakagawa, Y.: J. Applied Phys. 61 (1987) 305.
3. Suzuki, M.: Japan. J. Applied Phys. 26 (1987) 881.
4. Wahl, G.: J. Mater. Sci 24 (1989) 1141.
5. Fujiura, K.: J. Less Comm. Metals. 113 (1985) 283.
6. Superconductors Transition Temperatures and Characterization of Elements, Alloys and  Compounds. Ed. R.Flükiger. Vol. 21, Subvol. b1. Berlin: Springer 1994.