Ing. Hudec Boris, PhD.

Majumdar, S., Chen, Y., Hudec, B., Hou, T.H., and Suri, M.: Semi-empirical RC circuit model for non-filamentary Bi-layer OxRAM devices, IEEE Transactions on Electron Devices 67 (2020) 1348-1352. (Not IEE SAS)

#     1. Huan, C.: IEEE 3rd Inter. Conf. Electron. Technol. – ICET 2020, no. 9119574, pp. 639-643.

Chang, C.C., Huang, H.H., Hudec, B., Wu, M.H., Chang, C.C.,  Liu, P.T., and Hou, T.H.: Strong read and write interference induced by breakdown failure in crossbar arrays, IEEE Trans. on Electron Devices 67 (2020) 5497-5504. (Not IEE SAS)

1. Chen, Y.-C.: Micromachines 12 (2021) 50.
2. Chen, Y.C.: IEEE Trans. Electron Dev. 68 (2021) 4363.

Kingra, S.K., Parmar, V., Chang, C.C., Hudec, B., Hou, T.-H., and Suri, M.: SLIM: Simultaneous logic-in-memory computing exploiting bilayer analog OxRAM devices, Sci Rep. 10 (2020) 2567.(Not IEE SAS)

1. Ziegler, M.: Sci Rep. 10 (2020)‏ 11843.
2. Zanotti, T.: IEEE J. Emerg. Select. Topics in Circuits Systems 10 (2020) 478.
3. Bhattacharjee, D.: IEEE ACM Inter. Conf. Comput. Aided-Design (ICCAD) 2020.
4. Doube, M.: Royal Soci Open Sci 8 (2021) 201784.

Hudec, B., Chang, C.-C., Wang, I-T., Fröhlich, K., and Hou, T.-H.: Three-dimensional integration of ReRAMs. In Proc. IEEE Conf. Nanotechnol. (2019) 8626351.

1. Xu, W.: Inter. Conf. ASIC 2019.

Hudec, B., Chang, C.-C., Wang, I-T., Fröhlich, K., and Hou, T.-H.: Three-dimensional integration of ReRAMs. In IEEE Nano 2018. Cork 2018.  Proc. IEEE Conf. Nanotechnol. (2019) 8626351.(Not IEE SAS)

1. Xu, W.: Inter. Conf. ASIC ‏2019.

Lanza, M., Wong, H.S.P., Pop, E., Ielmini, D., Strukov, D., Regan, B.C., Larcher, L., Villena, M.A., Yang, J.J., Goux, L., Belmonte, A., Yang, Y.C., Puglisi, F.M., Kang, J.F.,  Magyari-Kope, B., Yalon, E., Kenyon, A., Buckwell, M., Mehonic, A., Shluger, A., Li, H.T., Hou, T.H., Hudec, B., Akinwande, D., Ge, R.J., Ambrogio, S., Roldan, J.B., Miranda, E., Sune, J., Pey, K.L., Wu, X., Raghavan, N., Wu, E., Lu, W.D., Navarro, G., Zhang, W.D., Wu, H.Q., Li, R.W., Holleitner, A., Wurstbauer, U., Lemme, M.C., Liu, M., Long, S.B., Liu, Q., Lv, H.B., Padovani, A., Pavan, P., Valov, I., Jing, X., Han, T.T., Zhu, K.C., Chen, S.C., Hui, F., and Shi, Y.Y.: Recommended methods to study resistive switching devices, Adv. Electron. Mater. 5 (2019) 1800143.(Not IEE SAS)

1. Hajri, B.: IEEE Access 7 (2019) 168963.
2. Fouda, M.E.: IEEE Trans. Nanotechnol.‏ 18 (2019) 704.
3. Li, S.-S.: RSC Adv.‏ 9 (2019) 2941.
4. Dutta, M.: Adv. Electron. Mater.‏ 5 (2019) 1800288.
5. Qiu, J.T.: Langmuir 35 (2019) 3897.
6. Majumdar, S.: Adv. Electron. Mater.‏ 5 (2019) 1800795.
7. Yen, Te J.: Sci Rep.‏ 9 (2019) 6144.
8. Stewart, D.A.: Phys. Rev. Mater.‏ 3 (2019) 055605.
9. Romero, F.J.: Nanomater. 9 (2019) 6.
10. Jeon, Y.-R.: ACS Applied Mater. Interfac. 11 (2019) 23329.
11. Tan, Z.J.: IEEE Electron Dev. Lett. 40 (2019) 1546.
12. Yun, H.J.: Ceram. Inter. 45 (2019) 16311.
13. Chen, Y.-C.: Sci Rep.‏ 9 (2019) 12420.
14. Hajto, D.: Mater. 12 (2019) 3573.
15. Salonikidou, B.: ACS Applied Electron. Mater. 1 (2019) 2692.
16. Stathopoulos, S.: Sci Rep.‏ 9 (2019) 19412.
17. Gupta, V.: IETE Techn. Rev.‏ 37 (2020)‏ 377.
18. Reuben, J.: IEEE Trans. Nanotechnol. 19 (2020)‏ 508.
19. Xu, X.: IEEE Trans. Electron Dev.‏ 67 (2020)‏ 118.
20. Romero, F.J.: Front. Mater. 7 (2020)‏ 17.
21.Filatov, D. O.: J. Statist. Mechanics-Theory Experiment 2020 (2020)‏ 024005.
22. Banerjee, W.: J. Applied Phys. 127 (2020)‏ 051101.
23. Banerjee, W.: Applied Phys. Lett. 116 (2020)‏ 053502.
24. Ling, H.: Applied Phys. Rev. 7 (2020)‏ 011307.
25. Lee, D.: Nanotechnol. 31 (2020)‏ 245202.
26. Nath, S.K.: Nanotechnol. 31 (2020)‏ 235701.
27. Eskandari, F.: Organic Electron. 79 (2020)‏ UNSP 105628.
28. Ginnaram, S.: ACS Omega 5 (2020)‏ 7032.
29. Zahoor, F.: Nanoscale Res. Lett.‏ 15 (2020)‏ 90.
30. Bryja, H.: J. Phys. D‏ 53 (2020)‏ 184002.
31. Rao, B.N.: ACS Applied Electron. Mater. 2 (2020)‏ 1065.
32. Fuentes, V.: J. Magnetism Magnet. Mater.‏ 501 (2020)‏ 166419.
33. Lopez-Vidrier, J.: Applied Phys. Lett. 116 (2020)‏ 193503.
34. Sahu, V.K.: J. Phys. D‏ 53 (2020)‏ 225303.
35. Kundys, D.: Phys. Rev. Applied 13 (2020)‏ 064034.
36. Miron, D.: Applied Phys. Lett. 116 (2020)‏ Iss. 22.
37. Senapati, A.: Electron. 9 (2020)‏ 1106.
38. Melianas, A.: Sci Adv.‏ 6 (2020)‏ eabb2958.
39. Lee, J.: ACS Applied Mater. Interf.‏ 12 (2020)‏ 33908.
40. Huang, C.-H.: Applied Phys. Lett. 117 (2020)‏ 043502.
41. Han, J.-K.: IEEE Electron Device Lett. 41 (2020)‏ 1157.
42. Varun, I.: EDTM 2020.
43. Belete, M.: Adv. Electron. Mater.‏ 6 (2020) 1900892.
44. Yang, Y.-H.: Organic Electr. 77 (2020)‏ 105518.
45. Gonzalez-Cordero, G.: Semicond. Sci Technol. 35 (2020)‏ 025021.
46. Sangwan, V.K.: Nature Nanotechnol. 15 (2020)‏ 517.
47. An, H.: Sci Rep.‏ 10 (2020) 5793.
48. Maikap, S.: Adv. Electron. Mater.‏ 6 (2020) 2000209.
49. Banerjee, W.: Adv. Electron. Mater.‏ 6 (2020) 2000488.
50. Lubrano, C.: MRS Comm. 10 (2020)‏ 398.
51. Cho, H.: Nanomater. 10 (2020) 1821.
52. Cho, H.: Nanomater. 10 (2020) 1709.
53. Ryu, H.: Nanomater. 10 (2020) 2055.
54. Matsukatova, A.N.: J. Comm. Technol. Electr.‏ 65 (2020)‏ 1198.
55. Loy, D.J.J.: ACS Applied Electron. Mater. 2 (2020)‏ 3160
56. Jeong, H.: ACS Applied Mater. Interf.‏ 12 (2020)‏ 46288.
57. Kim, T.-H.: Applied Phys. Lett. 117 (2020)‏ 152103.
58. Ryu, H.: Metals 10 (2020)‏ 1410.
59. Ryu, H.: Nanomater. 10 (2020) 2159.
60. Giotis, C.: IEEE Trans. Electron Dev.‏ 67 (2020)‏ 5166.
61. Ryu, H.: Nanomater. 10 (2020) 2462.
62. Bengel, C.: IEEE Trans. Circuits Systems I‏ 67 (2020)‏ ‏4618.
63. Matsukatova, Anna N.: Applied Phys. Lett. 117 (2020)‏ 243501.
64. Carlos, E.: Adv. Mater. 33 (2021)‏ 2004328.
65. Shchanikov, S.: Bionanosci‏ 11 (2021)‏ 84.
66. Fyrigos, I.-A.: IEEE Trans. Nanotechnol.‏ 20 (2021)‏ 113.
67. Nath, Shimul K.: ACS Applied Mater. Interf.‏ 13 (2021)‏ 2845.
68. Lee, B.-S.: Nanotechnol. 32 (2021)‏ 14LT01.
69. Kurnia, F.: J. Phys. Chem. Lett. 12 (2021) 2327.
70. Ge, R.J.: Adv. Mater. 33 (2021) 2007792.
71. Isyaku, U.B.: IEEE Access 9 (2021) 105012.
72. Gumyusenge, A.: Annual Rev. Mater. Res. 51 (2021) e 47.
73. Kuzmichev, D.S.: Physica Status Solidi-RRL 15 (2021) 2000461.
74. Nath, S.K.: ACS Applied Mater. Interfac. 13 (2021) 2845.
75. Romero-Zaliz, R.: Electron. 10 (2021) 346.
76. Carstens, N.: Nanomater. 11 (2021) 265.
77. Jehn, J.:  Microelectron. Engn. 239 (2021) 111524.
78. Ryu, H.: Metals 11 (2021) 440.
79. Eskandari, F.: Applied Phys. A 127 (2021) 220.
80. Banerjee, W.: Adv. Electron. Mater. 7 (2021) 2100022.
81. Carlos, E.: J.Mater. Chem. C 9 (2021) 3911.
82. Almadhoun, M.N.: Nano Lett. 21 (2021) 2666.
83. Lee, B.S.: Nanotechnol. 32 (2021) 14LT01.
84. Zhuang, P.P.: Applied Phys. Lett. 118 (2021) 143101.
85. Kim, S.: Metals 11 (2021) 772.
86. Spirito, D.: Physica Status Solidi-RRL 15 (2021) 2100120.
87. Kim, M.: Applied Sci-Basel 11 (2021) 5020.
88. Banerjee, W.: Adv. Function. Mater. (2021) 2104054.
89. Olorunyomi, J.F.: Mater. Horizons 8 (2021)  2387.
90. Pareja-Rivera, C.:  J. Phys.-Energy 3 (2021) 032014.
91. Hassanzadeh, P.: Life Sci 279 (2021) 119272.
92. Rushchanskii, K.Z.: Phys. Rev. Lett. 127 (2021) 087602.
93. Manamel, L.T.: Nanotechnol. 32 (2021) 35LT02.

Chang, C.C., Chen, P.C., Hudec, B., Liu, P.T., and Hou, T.H.: Interchangeable hebbian and anti-hebbian STDP applied to supervised learning in spiking neural network. In 64th IEEE Annual Inter. Electron Devices Meeting (IEDM) 2018.(Not IEE SAS)

1. Wlazlak, E.: J. Mater. Chem. C 8 (2020) 6136.
2. Lyu, B.: Adv. Mater.‏ 32 (2020) 1907633.
#     3. Huan, C.: IEEE 3rd Inter. Conf. Electron. Technol. – ICET 2020, no. 9119574, pp. 639-643.

Chang, C.C., Chen, P.C., Chou, T., Wang, I.T., Hudec, B., Chang, C.C., Tsai, C.M., Chang, T.S., and Hou, T.H.: Mitigating asymmetric nonlinear weight update effects in hardware neural network based on analog resistive synapse, IEEE J. Emerging Select. Topics in Circuits Systems 8 (2018) 116-124.(Not IEE SAS)

1. Aldacher, M.: IEEE Inter. Conf. Electron. Circuits Systems 2017, p.‏ 310.
2. Jacobs-Gedrim, R. B.: J. Applied Phys.‏ 124 (2018) 202101.
3. Parmar, V.: J. Phys. D‏ 51(2018) 454004.
4. Chai, Z.: IEEE Electron Dev. Lett.‏ 39 (2018) 1652.
5. Frascaroli, J.: Sci Rep.‏ 8 (2018) 7178.
6. Fouda, M.E.: IEEE Trans. Nanotechnol.‏ 18 (2019) 704.
7. Fouda, M.E.: IEEE Trans. Nanotechnol.‏ 18 (2019) ‏ 611.
8. Lim, S.: IEEE J. Electron Dev. Soc‏ 7 (2019) 522.
9. Kwon, D.: IEEE Trans. Electron Dev.‏ 66 (2019)‏ ‏ 395.
10. Li, S.-J.: IEEE Trans. Electron Dev.‏ 66 (2019)‏ 810.
11. Kim, C.-H.: Nanotechnol.‏ 30 (2019) 032001.
12. Zhang, P.: Nano Lett.‏ 19 (2019) 4279.
13. Han, K.H.: ACS Applied Mater. Interf.‏ 11 (2019) 20949.
14. Giovinazzo, C.: ACS Applied Electron. Mater. 1 (2019) 900.
15. Kasper, S.: Inter. J. Psychiatry in Clinical Practice 23 (2019) 134.
16. Cheung, A.C.K.: Early Child Development Care 189 (2019) 2265.
17. Bae, J.-H.: J. Nanosci Nanotechnol.19 (2019) 6135.
18. Park, J.: ACS Applied Mater. Interf.‏ 11 (2019) 32178.
19. Ren, Z.Y.: ACS Applied Mater. Interf.‏ 12 (2020) ‏7833.
20. Feng, B.: Mobile Networks Appl.‏ 25 (2020) ‏SI82.
21. Kim, T.-H.: IEEE Trans. Nanotechnol.‏ 19 (2020) ‏475.
22. Zhao, M.: Applied Phys. Rev.‏ 7 (2020) ‏011301.
23. Kwon, D.: Front. Neurosci‏ 14 (2020) ‏423.
24. Park, Y.: Carbon 165 (2020) ‏455.25.
25. Cho, S.: Semicond. Sci Technol.‏ 35 (2020) ‏085006.
26. Wang, Y.: Neurocomput. 407 (2020) 270.
27. Fu, Y.: Nanoscale 12 (2020) 22970.
28. Lee, J.-E.: Electron. 9 (2020) 1946.
29. Lee, H.-S.: Adv. Funct. Mater. 30 (2020) 2003683.
30. Fouda, M.E.: IEEE Access 8 (2020) 228392.
31. Huang, H.-M.: Adv. Sci‏ 7 (2020) 2001842.
32. Bair, A.: Psychophysiol. 58 (2021) e13628.
33. Li, J.: Adv. Electron. Mater.‏ 7 (2021) 2000535.
34. Ryu, J.-H.: J. Alloys Comp. 850 (2021) 156675.
35. Xi, Y.: Proc. IEEE 109 (2021) 14.
36. Krishnan, G.: IEEE Inter. Reliab. Phys. Symp. – IRPS 2021.
37. Lim, D.H.: Nature Comm. 12 (2021) 319.
38. Wang, D.C.: IEEE Trans. Reliab. 70 (2021) 188.
39. Park, Y.: J. Mater. Chem. C 9 (2021) 5396.
40. Deng, X.:  Adv. Function. Mater. 31 (2021) 2101099.
41. Kumar, M.: IEEE Trans. Electron Dev.‏ 68 (2021)‏ 3346.
42. Shaban, A.: Nature Comm. 12 (2021) 4234.
43. Zhao, M.R.: IEEE Trans. Electron Dev.‏ 68 (2021)‏ 3813.

Chen, H.Y., Brivio, S., Chang, C.C., Frascaroli, J., Hou, T.H., Hudec, B., Liu, M., Lv, H.B., Molas, G., Sohn, J., Spiga, S., Teja, V.M., Vianello, E., and Wong, H.S.P.: Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication, J. Electroceram.‏ 39 ( (201(2017) SI21-38. (Not IEE SAS)

1. Napolean, A.: 4TH Inter. Conf. Dev., Circuits And Systems (ICDCS) 2018, p. 290.
2. Kuzmichev, D.S.: Physica Status Solidi-RRL‏ 12 (2018) 1800429.
3. Pan, C.: IEEE Trans. Electron Dev.‏ 65 (2018)‏ 3214.
4. Grossi, A.: Sci Rep.‏ 8 (2018) 11160.
5. Zha, Y.: J. Low Power Electron.‏ 14 (2018) 195.
6. Thakur, C.S.: Front. Neurosci‏ 12 (2018) 891.
7. Wang, Y.: J. Electron. Mater.‏ 48 (2019) 517.
8. Zhang, T.: Physica Status Solidi-RRL‏ 13 (2019) 1900029.
9. Wang, H.: Physica Status Solidi-RRL‏ 13 (2019) 1900073.
10. Nath, S.K.: Nanotechnol.‏ 31 (2020) 235701.
11. Soni, M.: Philos. Trans. Royal Soc A‏ 378 (2020) SI20190156.
12. Kumari, C.: AIP Adv. 10 (2020) 025110.
13. Huang, X.D.: Applied Phys. Lett.‏ 116 (2020) Iss.‏ 17.
14. Huang, X.-D.: IEEE Electron Device Lett.‏ 41 (2020) 549.
15. Beilliard, Y.: Nanotechnol.‏ 31 (2020) 445205.
16. Sun, X.: Annual Rev. Mater. Res. 50 (2020) 229.
17. Chen, P.-H.: Applied Phys. Express 13 (2020) 056503.
18. Kuzmichev, Dmitry S.: Phys. Status Solidi A 217 (2020) 1900952.
19. Yu, J.: Nanoscale 12 (2020)‏ 23391.
20. Huang, M.: IEEE Electron Dev. Lett.‏ 42 (2021) 106.
21. Panda, D.: Semicond. Sci Technol. 33 (2021) 045002.
22. Kuzmichev, D.S.: Physica Status Solidi-RRL‏ 15 (2021) 2000461.
23. Lyapunov, N.: J.Adv. Dielectric. 11 (2021) 2150004.
24. Ahn, Y.: Ceramics Inter. 47 (2021) 9342.
25. Moreno, J.A.:  IEEE Trans. Magnet. 57 (2021) 800317
26. Hennen, T.: Rev. Sci Instrum. 92 (2021) 054701.
27. Rehman, M.M.: ACS Applied Electron. Mater. 3 (2021) 2832.

Chang, C.-C.,  Liu, J.-C., Shen, Y.-L., Chou, T., Chen, P.-C., Wang, I.-T., Su, C.-C., Wu, M.-H., Hudec, B., Chang, C.-C., Tsai, C.-M., Chang, T.-S., Wong, H.-S. P., and Hou, T.-H.: Challenges and opportunities toward online training acceleration using RRAM-based hardware neural network. In IEEE Inter. Electron Devices Meeting (IEDM).  San Francisco 2017. (Not IEE SAS)

1. Lin, Yu-H.: IEEE Trans. Electron Dev.‏ 66 (2019)‏ ‏1289.
2. Kim, C.-H.: Nanotechnol.‏ 30 (2019) 032001.
3. Lim, S.: IEEE J. Electron Dev. Soc‏ 7 (2019) 522.
4. Guo, Y.: Front. Neurosci 13 (2019) 812.
5. Zhao, M.: Applied Phys. Rev.‏ 7 (2020) 011301.
6. Liao, Y.: IEEE Trans. Electron Dev.‏ 67 (2020) 1593.
7. Charan, G.: IEEE J. Explorat. Solid-State Comput. Dev. Circuits 6 (2020) 27.
8. Chen, J.: IEEE Electron Dev. Lett.‏ 41 (2020) 353.
9. Pan, W.-Q.: IEEE Trans. Electron Dev.‏ 67 (2020)‏ 895.
10. Wu, C.: Nanotechnol.‏ 32 (2021) 085203.
11. Yu, J.M.: Adv. Function. Mater. 31 (2021) 2010971.

Hudec, B., Wang, I-T., Lai, W.L., Chang, C.-C., Jančovič, P., Fröhlich, K., Mičušík, M., Omastová, M., and Hou, T.-H.: Interface engineering HfO2-based 3D vertical ReRAM, J. Phys. D 49 (2016) 215102.

1. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
2. Yan, X.: J. Mater. Chem. C 5 (2017) 2259.
3. Banerjee, W.: ISED 2017.
4. Munjal, S.: Sci Rep. 7 (2017) 12427.
5. Banerjee, W.: IEEE Trans. Electron Dev. 65(2018) 957.
6. Kuzmichev, D.S.: Phys. Status Solidi RRL 12 (2018) 1800429.
7. Zhang, H.: ACS Applied Mater. Interfaces 10 (2018) 29766.
8. Shima, H.: IEEE J. Electron Devices Soc 6 (2018) 8495005, pp. 1225.
#  9. Azuma, A.: ECS Trans. 86 (2018) 13.
Chen, Q.: Physica Scripta 94 (2019) 045001.
11. Lin, C.-Y.: J. Phys. D 52 (2019) 095108.
12. Niu, G.: Mater. Res. Lett. 7 (2019) 117.
13. Wang, Q.: J. Mater. Chem. C 7 (2019) 12682.
14. Munjal, S.: J. Phys. D 52 (2019) 433002.
15. Ou, Q.-F.: Materials 13 (2020) 3532.
16. Sun, B.: Mater. Today Adv. 9 (2021) 100125.
17. Bilder, CR.: Statist. Medicine 40 (2021) 3021.

Hudec, B., Hsu, C.-W., Wang, I-T., Lai, W.L., Chang, C.-C., Wang, T., Fröhlich, K., Ho, C.-H., Lin, C.-H., and Hou, T.-H.: 3D resistive RAM cell design for high-density storage class memory – a review, Sci China Infor. Sci  59 (2016) 061403.

1. Zhu, D.: J. Semicond. 38 (2017) 071002.
2. Aussen, S.: ECS Trans. 80 (2017) 87.
3. Parveen, F.: Asia South Pacific Design Automat. Conf. Proc. 2018, pp. 361-366.
4. Zhang, J.: Sci China-Inf. Sci 61 (2018) 012105.
5. Ting, Y.-H.: SMALL 14 (2018) UNSP 1703153.
6. Panda, D.: NANOSCALE RES. LETT. 13 (2018) 8.
7. Chen, Q.: Sci China-Inf. Sci 61 (2018) 060411.
8. Zhao, X.: Sci China-Inf. Sci 61 (2018) 060413.
9. Han, R.: Science China-Inf. Sci 62 (2019) 022401.
10. Chen, Q.: Physica Scripta 94 (2019) 045001.
11. Cremers, V.: Applied Phys. Rev. 6 (2019) 021302.
12. Wang, C.: ACM Trans. Design Automat. Electron. Systems 24 (2019) 46.
13. Belay, Y. A.: PRIME 2019, pp. 29-32.
14. Zhou, F.: Parallel Comput. 87 (2019) 70.
15. Kim, M.: IEEE Electron Dev. Lett. 40 (2019) 1622.
16. Fang, Y.: Sci China-Inf. Sci 62 (2019) 229401.
17. Takeuchi, K.: IEEE J. Electron Devices Soc‏ 7 (2019) 1284.
18. Li, W.: Nano Energy 67 (2020) 104213.
19. Jin, H.: IEEE Trans. Parallel Distrib. Systems 31 (2020) 779.
20. Zhang, Z.: INFOMAT 2 (2020) 261.
21. Liu, Z.-C.: IEEE Access 8 (2020) 76471.
22. Shi, L.: Nanoscale Adv. 2 (2020) 1811.
23. Wang, Da-W.: Sci China-Inf. Sci 63 (2020) 189401.
24. Cambou, B.: ACM J. Emerg. Technol. in Comput. Systems 16 (2020)‏ SI40.
25. Chen, Q.: Adv. Electr. Mater. 7 (2021) 2000864.
26. Fahmy, G.A.: Electronics 10 (2021) 622.
27. Cambou, B.: Cryptography 5 (2021) 8.
28. An, H.Y.: IEEE Trans. Emerg. Topics Comput. Intellig. 5 (2021) 668.

Chou, C.-T., Hudec, B., Hsu, C.-W., Lai, W.-L., Chang, C.-C., and Hou, T.-H.: Crossbar array of selector-less TaOx/TiO2 bilayer RRAM, Microelectron. Reliab. 55 (2015) 2220-2223. (Not IEE SAS)

1. Gao, Y.: Integration-VLSI J.‏ 54 (2016) 56.
2. Park, K.: RSC Adv. 6 (2016) 21736.
3. Valov, I.: Semicond. Sci Technol. 32 (2017) 093006.
4. Cheng, W. K.: Solid-State Electron.‏ 132 (2017) 19.
5. Bang, S.: IEEE Silicon Nanoelectron. Workshop 2017, p.‏ 81.‏
6. Hu, Q.: Japan. J. Applied Phys.‏ 57 (2018) 086501.
7. Srivastava, S.: Nanotechnol.‏ 29 (2018) 505702.
8. Srivastava, S.: Nanoscale 11 (2019) ‏18159.
9. Park, J.H.: ACS Applied Mater. Interfac.‏ 11 (2019) 29408.
10. Li, T.: ACM Trans. Design Automat. Electron. Systems 24 (2019) 25.
11. Cho, H.: J. Phys. D‏ 53 (2020) 435102.
#   12. Jagath, A.L.: IEEE Inter. Conf. Semicond. Electron. – Proc. ICSE 2020, no. 9166874, pp. 9-12.
13. Siegel, S.: Adv. Electr. Mater. 7 (2021) 2000815.
14. Wu, C.: Nanotechnol.‏ 32 (2021) 085203.
15. Gergel-Hackett, N.: J. Circuits Systems Comput. 30 (2021) 2120002.
16. Jeon, K.: Nature Comm. 12 (2021) 2968.

Miranda, E., Hudec, B., Suñé, J., and Fröhlich, K.: Model for the current–voltage characteristic of resistive switches based on recursive hysteretic operators, IEEE Electron Dev. Lett. 36 (2015) 944-946.

1. Cisternas Ferri, A.: Argentine Conf. Electron. (CAE) 2019, p. 58.
2. Abraham, I.: IEEE Access 7 (2019) 166451.
3. Cisternas Ferri, A.: Materials 12 (2019) 2260.

Čičo, K., Jančovič, P., Dérer, J., Šmatko, V., Rosová, A., Blaho, M., Hudec, B., Gregušová, D., and Fröhlich, K.: Resistive switching in nonplanar HfO2-based structures with variable series resistance, J. Vacuum Sci Technol. B 33 (2015) 01A108.

1. Hardtdegen, A.: IEEE Inter. Memory Workshop 2016.
2. Hardtdegen, A.: IEEE Trans. Electron Dev. 65 (2018) 3229.
3. Lin, Chih-Y.: J. Phys. D 52 (2019) 095108.
4. Cueppers, F.: APL Mater. 7 (2019) 091105.

Jančovič, P., Hudec, B., Dobročka, E., Dérer, J., Fedor, J., and Fröhlich, K.: Resistive switching in HfO2-based atomic layer deposition grown metal-insulator-metal structures, Applied Surface Sci 312 (2014) 112-116.

1. Zhang, R.: J. Non-Crystall. Solids 406 (2014) 102.
2. Chen, P.-H.: IEEE Electron Device Lett. 37 (2016) 280.
#     3. Hardtdegen, A.: 8th IEEE IMW 2016. ISBN: 978-146738831-3. Art. no. 7495280.
4. Akbar, S.: Physica B-Cond. Matter 520  (2017) 112.
5. Rosa, R.: Phys. Rev. Mater. 2 (2018) 032401.
6. Sokolov, A.S.: Applied Surface Sci 434 (2018) 822.
7. Jung, Y.C.: Applied Surface Sci 435 (2018) 117.
8. Schie, M.: Phys. Rev. Mater. 2 (2018) 035002.
9. Akbar, S.: Microelectr. Reliab. 102 (2019) UNSP 113409.
10. Kumar, S.: Phys. Status Solidi A 217 (2020) 1900756.

Paskaleva, A., Hudec, B., Jančovič, P., Frohlich, K., and Spassov, D.: The influence of technology and switching parameters on resistive switching behavious of Pt/HfO2/TiN MIM structures, Facta Universitas 27 (2014) 621.

1. Attarimashalkoubeh, H.: IEEE Inter. Conf. Microelectron. – MIEL 2019, p. 79.

Murakami, K., Rommel, M., Hudec, B., Rosová, A., Hušeková, K., Dobročka, E., Rammula, R., Kasikov, A., Han, J.H., Lee, W., Song, S.J., Paskaleva, A., Bauer, A.J., Frey, L., Frőhlich, K., Aarik, J., and Hwang, C.S.: Nanoscale characterization of TiO2 films grown by atomic layer deposition on RuO2 electrodes, Applied Mater. Interfaces 6 (2014) 2486-2492.

1. Azevedo, J.: Energy & Environmen. Sci 7 (2014) 4044.
2. Jeon, W.: ACS Applied Mater. Interfaces 6 (2014) 21632.
3. Azevedo, J.: Nano Energy 24 (2016) 10.
4. Chirakkara, S .: Mater. Res. Express 3 (2016) 045023.
5. Head, A.R .: J. Phys. Chem. C 120 (2016) 243.
6. Porti, M.: IEEE Trans. Nanotechnol. 15 (2016) 986.
7. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
8. Nafria, M.: ECS Trans. 79 (2017) 139.
9. Croizier, G.: TRANSDUCERS 2017. P. 1237.
10. Ruiz, A.: Applied Phys. Lett. 114 (2019) 093502.
11. Ros, C.: ACS Applied Mater. Interfaces 11 (2019) 29725.
12. Ruiz, A.: Microelectron. Engn. 216 (2019) 111048.
13. Mitronika, M.: Applied Surface Sci 541 (2021) 148510.
14. Ruiz, A.: IEEE Access 9 (2021) 90568.
15. Miquelot, A.: J. Mater. Sci 56 (2021) 10458.

Aarik, L., Arroval, T., Rammula, R., Mändar, H., Sammelselg, V., Hudec, B., Hušeková, K., Fröhlich, K., and Aarik, J.: Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors, Thin Solid Films 565 (2014) 19-24.

1. Winzer, A.: J. Vacuum Sci Technol. B 33 (2015) 01A106.
2. Kukli, K.: Thin Solid Films 589 (2015) 597.
3. Simon, D.K.: IEEE Photovoltaic Specialists Conf. 2015.
4. Dirnstorfer, I.: IEEE J. Photovolt. 6 (2016) 86.
5. Aich, S.: Materials Lett. 178 (2016) 135.
6. Dirnstorfer, I.: Nanosci Technol.  (2016) 41.
7. Testoni, G. E.: J. Phys. D 49 (2016) 375301.
8. Lee, G.-H.: ECS Trans. 75 (2016) 53.
9. Yurkevich, O.: J. Synchrotron Radiat. 24 (2017) 775.
10. Bao, Y.: Adv. Electronic Mater. 3 (2017) SI1600491.
11. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
12. Guerra-Nunez, C.: Chem. Mater. 29 (2017) 8690.
13. Atay, F.: J. Electronic Mater. 47  (2018) 1601.
14. Digdaya, I.A.: J. Phys. Chem. C 122  (2018) 5462.
15. Lale, A.: Thin Solid Films 666 (2018) 20.
16. Cergel, M.S.: Ionics 25 (2019) 3823.
17. Berghuis, W.J.H.: J. Vacuum Sci Technol. A 38 (2020) Iss. 2.
18. Atay, F.: J. Electronic Mater.‏ 49 (2020) SI5542.
19. Ghazaryan, L.: Nanotechnol. 32 (2021) 095709.
20. Kwon, D.S.: ACS Applied Mater. Interfac. 13 (2021) 23915.
21. Chiappim, W.: Micromachin. 12 (2021) 588.
22. Kim, B.: ECS J. Solid State Sci Technol. 10 (2021) 083006.
23. Lale, A.: Thin Solid Films 732 (2021) 138761.

Arroval, T., Aarik, L., Rammula, R., Mändar, H., Aarik, J., Hudec, B., Hušeková, K., and Fröhlich, K.: Influence of growth temperature on the structure and electrical properties of high-permittivity TiO2 films in TiCl4-H2O and TiCl4-O3 atomic-layer-deposition processes, Phys. Status Solidi a 211 (2014) 425-432.

1. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
2. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
3. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kim, S.H.: ACS Applied Mater. Interfac. 10 (2018) 41544.

Hudec, B., Paskaleva, A., Jančovič, P., Dérer, J., Fedor, J., Rosová, A., Dobročka, E., and Fröhlich, K.: Resistiveswitching in TiO2-based metal-insulator-metal structures with Al2O3 barrier layer at the metal/dielectric interface, Thin Solid Films 563 (2014) 10-14.

1. Castan, H.: Thin Solid Films 591 (2015) 55.
#       2. Liu, P.: Key Engn. Mater. 645 (2015) 572.
3. Liu, P.: IEEE 10th NEMS 2015. P. 585.
4. Alekseeva, L.: Japan. J. Applied Phys. 55 (2016) 08PB02.
5. Duenas, S.: IEEE 32nd Conf. Design Circuits Integr. Systems -DCIS 2017.
6. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
7. Stathopoulos, S.: Sci Rep. 7 (2017) 17532.
8. Chen, X.: J. Semicond. 38 (2017) 084003.
9. Rylkov, V.V.: J. Experiment. Theoret. Phys. 126 (2018)  353.
10. Duenas, S.: J. Electron. Mater. 47 (2018) 4938.
11. Nikiruy, K.E.: J. Comm. Technol. Electron. 64 (2019) 1135.
12. Park, S.-J.: J. Alloys Comp. 825 (2020) 154086.
13. Nikolaev, S.N.: Techn. Phys. 65 (2020)‏ 243.
14. Siegel, S.: Adv. Electr. Mater. 7 (2021) 2000815.

Hudec, B., Hušeková, K., Rosová, A., Šoltýs, J., Rammula, R., Kasikov, A., Uustare, T., Mičušík, M., Omastová, M. Aarik, J., and Fröhlich, K.: Impact of plasma treatment on electrical properties of  TiO2/RuO2 based DRAM capacitor, J. Phys. D 46 (2013) 385304.

1. Pointet, J.: J. Vacuum Sci Technol. A 32 (2014) 01A120.
2. Wang, W.: Sci Reports 4 (2014) 4452.
3. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
4. Jeon, W.: J. Mater. Chem. C 2 (2014) 9993.
5. Seok, J.: Phys. Chem. Chem. Phys. 17 (2015) 3004.
6. Luo, W.-B.: Chemical Comm. 51 (2015) 8269.
7. Liu, C.: Adv. Mater. Interfac. 3 (2016) 1500503.
8. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
9. Kim, H.: J. Nanosci Nanotechnol. 17 (2017) 2906.
10. Nabatame, T.: ECS Trans. 80 (2017) 365.
11. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
12. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
13. Nong, S.: J. American Chem. Soc 140 (22018) 5719.
14. Li, M.: Applied Surface Sci 439 (2018) 612.
15. Li, X.: Applied Surface Sci 470 (2019) 306.
16. Bi, L.: J. Alloys Comp. 845 (2020) 156271.
17. Tsuji, R.: ACS Omega 5 (2020) 6090.
18. Zhang, J.: Catal. Sci Technol. 10 (2020) 1518.
19. Park, H.: Chemosphere ‏265 (2021) 129166.
20. Jung, E.Y.: Nanotechnol. 32 (2021) 045201.
21. dos Reis, M.N.G.: J. Electroanalyt. Chem. 895 (2021) 115461.

Aarik, J., Arroval, T., Aarik, L., Rammula, R., Kasikov, A., Mändar, H., Hudec, B., Hušeková, K., and Fröhlich, K.: Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: Growth of high-permittivity dielectrics with low leakage current, J. Crystal Growth 382 (2013) 61-66.

1. Lecoq, E.: J. Phys. D 47 (2014) 195201.
2. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
3. Pessoa, R.S.: Applied Surface Sci 422 (2017) 73.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Biyikli, N.: Semicond. Sci Technol. 32 (2017) 093002.
6. Gonullu, M.P.: Superlatt. Microstruct. 147 (2020) 106699.

Aarik, J., Hudec, B., Hušeková, K., Rammula, R., Kasikov, A., Arroval, T., Uustare, T., and Fröhlich, K.: Atomic layer deposition of  high-permitivity TiO2 dielectrics with leakage current on RuO2 in TiCl4-based processes, Semicond. Sci Technol. 27 (2012) 074007.

1. Swerts, J.: IEEE Electron Dev. Lett. 35 (2014) 753.
2. Baryshnikova, M.: Phys. Status Solidi A 212 (2015) 1533.
3. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Dollt, M.: Front. in Neurosci 14 (2020) 552876.

Fröhlich, K., Hudec, B., Ťapajna, M., Hušeková, K., Rosová, A., Eliáš, P., Aarik, J., Rammula, R., Kasikov, A., Arroval, T., Aarik, L., Murakami, K., Rommel, M., Bauer, A.J.: TiO2-based metal-insulator-metal structures for future DRAM storage capacitors, ECS Transactions 50 (2012) 79-87.

#     1. Schroeder, U.: In Thin Films on Silicon: Electronic and Photonic Appl. 8 (2016) 369.
2. Pešić, M.: J. Applied Phys. 119 (2016)  064101.
3. Austin, D.Z.: Chem. Mater.29 (2017)  1107.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kozodaev, M.G.: J. Chem. Phys. 151 (2019) 204701.
6. Khalili, S.: Applied Phys. A 125 (2019) 661.
7. Maier, F.J.: J. Phys. Conf. Ser. 1837 (2021) 012009.
8. Hayes, M.: J. Vacuum Sci Technol. A 39 (2020) 052402.

Hudec, B., Hušeková, K., Dobročka, E.,  Aarik, J., Rammula, R., Kasikov, A., Tarre, A., Vincze, A., and Fröhlich, K.: Atomic layer deposition grown metal-insulator-metal capacitors with RuO2 electrodes and Al-doped rutile TiO2 dielectric layer, J. Vacuum Sci Technol. B 29 (2011) 01AC09.

1. Kaynak, C. B.: Thin Solid Films 520 (2012) 4518.
2. Yota, J.: J. Vacuum Sci Technol. A 31 (2013) 01A134.
3. Yota, J.: J. ECS Trans. 53 (2013) 281.
4. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
5. Dong, W.: ACS Applied Mater. Interf. 7 (2015) 25321.
6. Enriquez, E.: Sci Reports 7 (2017) 46184.
7. Austin, D.Z.: Chem. Mater. 29 (2017) 1107.
8. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
9. Kwon, D.S.: ACS Applied Mater. Interf. 13 (2021) 23915.

Hudec, B., Hušeková, K., Tarre, A., Han, J.H., Han, S., Rosová, A., Lee, W., Kasikov, A., Song, S.J., Aarik, J., Hwang, C.S., and Fröhlich, K.: Electrical properties of  TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes, Microelectr. Engn. 88 (2011) 1514-1516.

1. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
2. Bayati, M.: J. Mater. Res. 28 (2013) SI1669.
3. Avril, L.: Applied Surface Sci 288 (2014) 201.
4. Wang, W.: Sci Reports 4 (2014) 4452.
5. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
6. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
7. Shkondin, E.: J. Vacuum Sci Technol. A 34 (2016) 031605.
8. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
*    9. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
*   10. Amiaud A.-Ch.: PhD thesis. Univ. Sorbonne 2018.
11. Yildirim, M.: J. Alloys Comp. 773 (2019) 890.
12. Jenkins, M.: ECS J. Solid State Sci Technol. 8(2019) N159.
13. Dollt, M.: Front. in Neurosci 14 (2020) 552876.
14. Qaid, M.M.: Mater. Chem. Phys. 259 (2021) 124054.
15. Lei, J.: J. Alloys Comp. 870 (2021) 159391.

Fröhlich, K., Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., Rammula, R., Vincze, A.: Low equivalent oxide thickness TiO2 based capacitors for DRAM applications, ECS Trans. 41 no. 2 (2011) 73.

1. Yoo, W.S.: ECS J. Solid State Sci Technol. 4 (2015) N76.
2. Das, D.: IEEE Trans. Electron Dev. 67 (2020) 2489.

Racko, J., Mikolášek, M., Harmatha, L., Breza, J., Hudec, B., Fröhlich, K., Aarik, J., Tarre, A., Granzner, R., and Schwierz, F.: Analysis of leakage current mechanisms in RuO2-TiO2-RuO2 MIM structures, J. Vacuum Sci Technol. B 29 (2011) 01AC08.

1. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
2. Scheuermann, A.G.: Energy & Environmen. Sci 9 (2016) 504.
3. Perla, V.K.: J. Mater. Sci-Mater. Electron. 30 (2019) 22652.
4. Maier, F.J.: J. Phys. Conf. Ser. (2021) 012009.

Fröhlich, K., Hudec, B., Aarik, J., Tarre, A., Machajdík, D., Kasikov, A., Hušeková, K., and Gaži, Š.: Post-deposition processing and oxygen content of  TiO2-based capacitors, Microelectr. Engn. 88 (2011) 1525-1528.

1. Bayati, M.: J. Mater. Res. 28(2013) SI1669.
2. Verstraete, R.: Chem. Mater. 31 (2019) 7192.
3. Dollt, M.: Front. in Neurosci 14 (2020) 552876.

Hudec, B., Hušeková, K., Dobročka, E., Lalinský, T., Aarik, J., Aidla, A., and Fröhlich, K.: High-permittivity metal-insulator-metak capacitors with TiO2 rutile dielectric and RuO2 bottom electrode, IOP Conf. Series: Mater. Sci Engn. 8 (2010) 012024.

1. Yildiz A.: J. Applied Phys. 108 (2010) 083701.
2. Wu, Y.-H.: IEEE Electron Device Lett. 32(2011) 1107.
3. Shen, Y.D.: J. Phys. Chem. C 116(2012) 3449.
4. AlHoshan, M.S.: Electrochim. Acta 62 (2012) 390.
5. Mathew, S.: J. Fluoresc. 22(2012) 1563.
6. Yen, C.-F.: Solid-State Electron. 73 (2012) 56.
7. Bhattacharya, P.: Express Polymer Lett. 7(2013) 212.
8. Mamalchel, A.: Crystal Growth & Design 13 (2013) 4730.
9. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
10. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
11. Choi, S.-J.: J. Microelectromech. Systems 24 (2015) 1006.
12. Yu, L.: Inter. J. Smart Nano Mater. 6 (2015) 268.
13. Gielis, S.: J. European Ceramic Soc 37 (2017) 611.
14. Becherescu, N.: Univ. Politehnica Bucharest Sci Bull.-Ser. A 79 (2017) 203.
15. Cui, Y.: J. Photochem. Photobiol. A 353 (2018) 625.
16. Li, T.: Electrochim. Acta 306 (2019) 71.
17. Kang, W.S.: Ceramics Inter. 47 (2021) 25826.

Hudec, B., Hranai, M., Hušeková, K., Aarik, J., Tarre, A., and  Fröhlich, K.: Resistive switching in RuO2/TiO2/RuO2 MIM structures for non-volatile memory application. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P.  255-258.

1. Ho, P.W.C.: ICED 2014 7015808, pp. 249.
2. Castan, H.: Thin Solid Films 591 (2015) 55.
3. Ho, P.W.C.: J. Semicond. 37 (2016) 064001.

Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., and  Fröhlich, K.:  RuO2/TiO2 based MIM capacitors for DRAM application. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 341-344.

1. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 155.
2. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
3. Chiappim, W.: Nanomater.‏ 10 (2020) 33.

Hudec, B., Ťapajna, M., Hušeková, K., Aarik, J., Aidla, A., and Fröhlich, K.: Low equivalent oxide thickness metal/insulator/metal structures for DRAM applications. In: ASDAM 2008. The 7th Inter. Conf. Advanced Semicond. Devices Microsyst. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 123-126.

1. Paskaleva, A.: J. Applied Phys. 106 (2009) 054107.
2. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 155.