Ing. Kováč Pavol, DrSc.

Kováč, P., Kopera, L., Hain, M., Martínez, E., Kováč, J., Melišek, T., Berek, D., and Hušek, I.: MgB2 cables made of thin wires manufactured by IMD process, Supercond. Sci Technol. 33 (2020) 085004.

1. Rosova, A.: Applied Phys. A 127 (2021) 152.

Kováč, P., Hušek, I., Pérez, N., Rosová, A., Berek, D., Gelušiaková, B., Kopera, L., Melišek, T., and Nielsch, K.: Structure and properties of barrier-free MgB2 composite wires made by internal magnesium diffusion process, J. Alloys Comp. 829 (2020) 154543.

1. Yetis, H.: Physica B 593 (2020) 412277.
2. Kambe, H.: Applied Phys. Express 14 (2021) 025504.

Kopera, L., Kováč, P., Kováč, J., Melišek, T., Hušek, I., and Berek, D.: Small diameter wind and react coil made of anodised Al-sheathed MgB2 wire, Supercond. Sci Technol. 32 (2019) 105003.

1. Tanaka, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss.‏ 4.
2. Rosova, A.: Applied Phys. A 127 (2021) 152.

Kováč, P., Hušek, I., Rosová, A., Melišek, T., Kováč, J., Kopera, L., Scheiter, J., and Haessler, W.: Strong no-barrier SS sheathed MgB2 composite wire, Physica C 560 (2019) 40-44.

1. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.

Kováč, P., Hušek, I., Kulich, M., Kováč, J., Melišek, T., Kopera, L., and Pachla, W.: Multi-core MgB2 wire with a Ti barrier and a reinforced Al+Al2O3 sheath, Supercond. Sci Technol. 31 (2018) 095006.

1. Musenich, R.: IEEE Trans. Applied Supercond. 30 (2020) 4500305.

Kováč, J., Kulich, M., Kopera, L., and Kováč, P.: AC losses of Rutherford MgB2 cables made by powder-in-tube and internal magnesium diffusion processes, Supercond. Sci Technol. 31 (2018) 125014.

1. Nikulshin, Y.: Rev. Sci Instrum. 90 (2019) 065111.
2. Abdel-Salam, M.: MEPCON 2019, pp. 484.
3. Abdel-Salam, M.: J. Energy Storage 30 (2020) 101461.

Kováč, P., Hušek, I., Rosová, A., Kulich, M., Kováč, J., Melišek, T., Kopera, L., Balog, M., and Krížik, P.: Ultra-lightweight superconducting wire based on Mg, B, Ti and Al, Sci Reports 8 (2018) 11229.

1. Prikhna, T.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200905.
2. Patel, D.: Scripta Mater. 178 (2020) 198.
3. Fujii, H.: Physica C 576 (2020) 1353704.
4. Bovone, G.: Supercond. Sci Technol. 33 (2020) 125003.
5. Patel, D.: ACS Applied Mater. Interf.‏ 13 (2021) 3349.
6. Prikhna, T.: IEEE Trans. Applied Supercond. 31 (2021) 8000705.

Kováč, P., Kopera, L., Kováč, J., Hain, M., Melišek, T., Kulich, M., and Hušek, I.: Rutherford cable made of internal magnesium diffusion MgB2 wires sheathed with Al-Al2O3 particulate metal matrix composite, Supercond. Sci Technol. 31 (2018) 015015.

1. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
2. Wang, D.Y.: J. Supercond. Novel Magnetism 33 (2020) 2657.

Cubero, A., Navarro, R., Kováč, P., Kopera, L., Rindfleisch, M., and Martínez, E.: Quench dynamics in MgB2 Rutherford cables, Supercond. Sci Technol. 31 (2018) 045009.

1. Yagai, T.: Cryogenics 96 (2018) 75.
2. Matsumoto, T.: IEEE Trans. Applied Supercond. 29 (2019) 4700806.

Balog, M., Rosová, A., Szundiová, B., Orovčík, Ľ., Krížik, P., Švec, P.Jr., Kulich, M., Kopera, L., Kováč, P., Hušek, I., and Ibrahim, A.M.H.: HITEMAL-an outer sheath material for MgB2 superconductor wires: The effect of annealing at 595–655 °C on the microstructure and properties, Mater. Design 157 (2018) 12–23.

1. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.
#      2. Prokhasko, L.: Inter. J. Adv. Sci Technol. 29 (2020) 2668.

Rosová, A., Hušek, I., Kulich, M., Melišek, T., Kováč, P., Dobročka, E., Kopera, L., Scheiter, J., and Haessler, W.: Microstructure of undoped and C-doped MgB2 wires prepared by an internal magnesium diffusion technique using different B powders, J. Alloys Comp. 764 (2018) 437e445.

1. Maeda, M.: J. Alloys Comp. 787 (2019) 1265.
2. Iida, K.: Supercond. Sci Technol. 33 (2020) 043001.
3. Olatunji, S.O.: Comput. Mater. Sci 192 (2021) 110392.

Kováč, P., Kulich, M., Kopera, L., Melišek, T., Kováč, J., and Hušek, I.: Filamentary MgB2 wires manufactured by different processes subjected to tensile loading and unloading, Supercond. Sci Technol. 30 (2017) 065006.

1. Nosov, A.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200705.
2. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
3. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
4. Tanaka, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.

Kováč, P., Hušek, I., Melišek, T., Kulich, M., Rosová, A., Kováč, J., Kopera, L., Balog, M., Krížik, P., and Orovčík, Ľ.: Lightweight Al-stabilized MgB2 conductor made by the IMD process, Supercond. Sci Technol. 30 (2017) 115001.

1. Fujii, H.: Physica C 576 (2020) 1353704.
2. Zhang, J.: Acta Microscop.‏ 29 (2020) 1695.

Kováč, P., Balog, M., Hušek, I., Kopera, L., Krížik, P., Rosová, A., Kováč, J., Kulich, M., and Čaplovičová, M.: Properties of near- and sub-micrometre Al matrix composites strengthened with nano-scale in-situ Al2O3 aimed for low temperature applications, Cryogenics 87 (2017) 58–65.

1. Kannan, C.: Mater. Today-Proc.‏ 22 (2020) 1507.

Hušek, I., Kováč, P., Melišek, T., Kulich, M., Rosová, A., Kopera, L., and Szundiová, B.: Superconducting MgB2 wires with vanadium diffusion barrier, Supercond. Sci Technol. 30 (2017) 105008.

1. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.

Brunner, B., Kováč, P., Rosová, A., Reissner, M., and Dobročka, E.: Properties of MgB2 wires doped with BaZrO3 nanopowder made by a modified internal magnesium diffusion process, Supercond. Sci Technol. 30 (2017) 115003.

1. Yetis, H.: Physica B 593 (2020) 412277.
2. Zhang, D.: Physica C 578 (2020) 1353749.

Rosová, A., Kulich, M., Kováč, P., Brunner, B., Scheiter, J., and Haessler, W.: The effect of boron powder on the microstructure of MgB2 filaments prepared by the modified internal magnesium diffusion technique, Supercond. Sci Technol. 30 (2017) 055001.

1. Zhang, Z.: Supercond. Sci Technol. 32 (2019) 055009.
2. Arvapalli, S.S.: Supercond. Sci Technol. 33 (2020) 115009.
3. Arvapalli, S.S.: Mater. Sci Engn. B‏ 265 (2021) 115030.
4. Yang, L.Q.: Crystals 11 (2021) 278.

Laliena, C., Qureishy, T., Martinez, E., Navarro, R., Mikheenko, P., Johansen, T.H., and Kováč, P.: Effect of ball milling on the local magnetic flux distribution and microstructure of in situ Fe/MgB2 conductores, J. Alloys Comp. 717 (2017) 164-170.

1. Maeda, M.: J. Alloys Compounds 787 (2019) 1265.
2. Li, C.: Supercond. Sci Technol. 33 (2020) 075001.
3. Jeong, H.: J. Alloys Comp. 857 (2021) 158253.
4. Choi, S.: J. Alloys Comp. 864 (2021) 158867.

Jirsa, M., Rameš, M., Ďuran, I., Melíšek, T., Kováč, P., and Viererbl, L.: Electromagnetic properties of REBaCuO superconducting tapes considered for magnets of fusion reactors, Fusion Engn. Design 124 (2017) 73-76.

1. Wu, Y.: Fusion Engn. Design 143 (2019) 240.
2. Guan, M.: AIP Adv. 10 (2020) 035102.

Brunner, B., Rosová, A., Kováč, P., Reissner, M., and Dobročka, E.: Effect of Dy2O3 doping on phase formation and properties of MgB2 wires made by the modified internal magnesium diffusion process, Supercond. Sci Technol. 30 (2017) 025004.

1. Zhang, D.: IOP Conf. Ser. 279 (2017) UNSP 012025.
2. Li, W.: J. Rare Earths 37 (2019) 124.

Kopera, L., Kováč, P., Kulich, M., Melišek, T., Rindfleisch, M., Yue, J., and Hušek, I.: Critical currents of Rutheford MgB2 cables compacted by two-axial rolling, Supercond. Sci Technol. 30 (2017) 015002.

1. Hoang, T.-K.: IEEE Trans. Applied Supercond. 28 (2018) 5206705.
2. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
3. Yagai, T.: Cryogenics 96 (2018) 75.
#    4. Yagai, T.: J. Phys.: Conf. Ser. 1054 (2018) 012080.
5. Jimbo, M.: IEEE Trans. Applied Supercond. 29 (2019) 8003305.
6. Yagai, T.: IEEE Trans. Applied Supercond. 29 (2019) 4602705.
7. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
8. Xue, S.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 2.

Haessler, W., Kováč, P., Scheiter, J., Rosová, A., and Pachla, W.: MgB2 multicore wire prepared by IMD technology – investigation of the MgB2 layer formation during annealing , IEEE Trans. Applied Supercond. 27 (2017) 6200504.

1. Shimada, Y.: J. Alloys Compounds 740 (2018) 305.
2. Liu, H.: Mater. Lett. 227 (2018) 305.
3. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.

Jirsa, M., Rameš, M., Ďuran, I., Melíšek, T., Kováč, P., and Viererbl, L.: Electric currents in REBaCuO supercoducting tapes, Supercond. Sci Technol. 30 (2017) 045010.

1. Talantsev, E.: Annalen der Physik 529 (2017) 1700197.
2. Parra-Borda, J. A.: J. Phys. Conf. Ser. 935 (2017) UNSP 012005.
3. Fischer, D. X.: Supercond. Sci Technol. 31 (2018) 044006.
4. Eisterer, M.: Supercond. Sci Technol. 31 (2018) 013001.
5. Cubero, A.: Cryogenics 108 (2020) UNSP 103070.

Kováč, P.: Effect of mechanical load on Jc of MgB2 wires. In: MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 439-454.

1. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.

Brunner, B., Reissner, M., Kulich, M., and Kováč, P.: Magnetic studies of MgB2 prepared by internal magnesium diffusion with various doping, IEEE Trans. Applied Supercond. 26 (2016) 6201205.

1. Shao, H.: Rare Metal Mater. Engn. 47 (2018) 2976.

Kováč, P., Hušek, I., Melišek, T., Kulich, M., and Kopera, L.: Bending strain tolerance of a MgB2 superconducting wires, Supercond. Sci Technol. 29 (2016) 045002.

1. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
2. Yoo, B.: IEEE Trans. Applied Supercond. 28 (2018) 8400806.
3. Sosnowski, J.: Acta Phys. Polonica A 134 (2018) 1194.
4. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
5. Corduan, M.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 2.
6. Bagni, T.: Sci Rep. 11 (2021) 7767.
7. Avci, D.: J. Supercond. Novel Magnetism 34 (2021) 2121.

Kováč, P., Hušek, I., Pachla, W., Melišek, T., Kulich, M., Rosová, A., and Kopera, Ľ.: Effect of cold isostatic pressing on the transport current of filamentary of MgB2 wire made by the IMD process, Supercond. Sci Technol. 26 (2016) 075004.

1. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
2. Shimada, Y.: J. Alloys Compounds 740 (2018) 305.
3. Wang, Q.: Inter. J. Modern Phys. B 34 (2020) 2050012.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., Kulich, M., : Fast creation of dense MgB2 phase in wires made by IMD process,. Supercond. Sci Technol. 26 (2016) 10LT01.

1. Al Hossain, Md.S.: Supercond. Sci Technol. 30 (2017) 010501.
2. Qin, F.: J. Mater. Sci-Mater. Electron. 28 (2017) 15625.
3. Cai, Q.: J. Mater. Sci-Mater. Electron. 29(2018) 10323.
4. Shimada, Y.: J. Alloys Compounds 740 (2018) 305.
5. Patel, D.: J. Mater. Chem. C 8 (2020) 2507.
6. Zhang, D.:‏ IOP Conf. Ser.-Mater. Sci Engn. 756 (2020) 012019.
7. Rosova, A.: Applied Phys. A 127 (2021) 152.

Kováč, P., Hušek, I., Kováč, J., Melišek, T., Kulich, M., and Kopera, L.: Filamentary MgB2 wires with low magnetization AC losses, IEEE Trans. Applied Supercond. 26 (2016) 6200705.

1. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
2. Nikulshin, Y.: Supercond. Sci Technol. 32 (2019) 075007.
3. Xue, S.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.

Kulich, M., Kováč, P., Hain, M., Rosová, A., and Dobročka, E.: High density and connectivity of a MgB2 filament made using the internal magnesium diffusion technique, Supercond. Sci Technol. 29 (2016) 035004.

1. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
2. Liu H.: Rare Metal Mater. Engn. 47 (2018) 1020.
3. Liu, H.: Mater. Lett. 227 (2018) 305.
4. Yetis, H.: Physica B 593 (2020) 412277.
5. Bovone, G.: Supercond. Sci Technol. 33 (2020) 125003.
6. Yetis, H.: Physica C‏ 581 (2021) 1353807.

Kováč, P., Kopera, L., Melišek, T., Kulich, M., Hušek, I., Lin, H., Yao, C., Zhang, X., and Ma, Y.: Electromechanical properties of iron and silver sheathed Sr0.6K0.4Fe2As2 tapes, Supercond. Sci Technol. 28 (2015) 035007.

1. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
2. Togano, K.: J. Japan Inst. Metals Mater. 83 (2019) SI346.
3. Wang, C.: IEEE Trans. Applied Supercond. 30 (2020) 4000205.
4.  Qian, X.X.: Physica C 580 (2021) 1353787.

Kováč, J., Šouc, J., Kováč, P., and Hušek, I.: Magnetization AC losses in MgB2 wires made by IMD process, Supercond. Sci Technol. 28 (2015) 015013.

1. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
2. Hou Y.: Rare Metal Mater. Engn. 47 (2018) 1406.
3. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 8201504.
4. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 6200906.
5. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
6. Nikulshin, Y.: Rev. Sci Instrum. 90 (2019) 065111.

Kováč, J., Šouc, J., Kováč, P., and Hušek, I.: AC losses of single-core MgB2 wires with different metallic sheaths, Physica C 519 (2015) 95-99.

1. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 8201504.
2. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 6200906.
3. Law, Y-M.: J. Comput. Phys. 378 (2019) 591.
4. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
5. Nikulshin, Y.: Supercond. Sci Technol. 32 (2019) 075007.
6. Yetis, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss.‏ 5.

Rosová, A., Kováč, P., Hušek, I., Brunner, B., Dobročka, E., : Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion and in-situ powder-in-tube processes – Secondary phase intergrain nanolayers as an oxygen content indicator. Physica C 516 (2015) 1-9.

1. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
2. Mackinnon, I.D.R. .: Supercond. Sci Technol. 30 (2017) 055004.
#    3. Herbirowo, S.: Mater. Sci Forum 929 (2018)  27.

Rosová, A., Hušek, I., Kováč, P., Dobročka, E., Melišek, T., : Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion process. J. Alloys Comp. 619 (2015) 726-732.

1. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
2. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
3. Yetis, H.: Physica B 593 (2020) 412277.

Kováč, P., Hušek, I., Rosová, A., Kulich, M., Melišek, T., Kopera, Ľ., Brunner, B., : Properties of MgB2 wires made by internal magnesium diffusion into different boron powders. Supercond. Sci Technol. 28 (2015) 095014.

1. Xu, D.: Supercond. Sci Technol. 29 (2016) 045009.
2. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
3. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
4. Xu, D.: Supercond. Sci Technol. 29 (2016) 105019.
5. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
6. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
7. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.

Pitel, J., Kováč, P., Tropeano, M., Grasso, G., : Study of the potential of three different MgB2 tapes for application in cylindrical coils operating at 20K. Supercond. Sci Technol. 28 (2015) 055012.

1. Volpini, G.: IEEE Trans. Applied Supercond. 26 (2016) Iss. 4.
2. Poole, C.: Supercond. Sci Technol. 29 (2016) 044003.
3. Vargas-Llanos, R.C.: Supercond. Sci Technol. 29 (2016) 034008.
#     4. Wozniak, M.: IEEE Trans. Applied Supercond. 26 (2016) 5201105.
5. Wang, D.: Supercond. Sci Technol. 30 (2017) Iss. 6.
6. Morandi, A.: IEEE Trans. Applied Supercond. 27 (2017) 5700404.
7. Liu H.: Rare Metal Mater. Engn. 48 (2019) 1256.
8. Melone, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200405.

Kováč, P., Kopera, Ľ., Melišek, T., Sarmiento, G., Sanz Castillo, S., Brisigotti, S., Nardelli, D., Tropeano, M., :Tensile and bending strain tolerance of ex-situ MgB2/Ni/Cu superconductor tape. IEEE Trans. Applied Supercond. 25 (2015) 6200607.

1. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
2. Volpini, G.: IEEE Trans. Applied Supercond. 26 (2016) Iss. 4.
*    3. Bertora, L.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 485.
4. Mackinnon, I. D. R.: Supercond. Sci Technol. 30 (2017) 055004.
5. Nosov, A.A.: IEEE Trans. Applied Supercond. 28 (2018) 6200205.
6. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
7. Yoo, B.: IEEE Trans. Applied Supercond. 28 (2018) 8400806.
8. Berriaud, C.: IEEE Trans. Applied Supercond. 28 (2018) 4701505.
9. Nosov, A.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200705.
10. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
11. Patel, D.: Scripta Materialia 204 (2021) 114156.

Hušek, I., Kováč, P., Rosová, A., Melišek, T., Pachla, W., Hain, M., : Advanced MgB2 wire made by internal magnesium diffusion process. J. Alloys Comp. 588 (2014) 366-369.

1. Maeda, M.: J. Alloys Compounds 636 (2015) 29.
*     2. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 419.
3. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
4. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
5. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
6. Akdogan, M.: J. Alloys Compounds 702 (2017) 399.
7. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.
8. Yetis, H.: Physica B 593 (2020) 412277.

Brunner, B., Kováč, P., Reissner, M., Hušek, I., Melišek, T., and Pardo, E.: Critical current density and pinning behaviour of mono-core MgB2 wires prepared by internal magnesium diffusion and in-situ powder-in-tube method, Physica C 505 (2014) 39-43.

1. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
2. Xu, D.: Supercond. Sci Technol. 29 (2016) 045009.
3. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
4. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
5. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
6. Glowacki, B.A.: ELMECO & AOS 2017.
7. Li, W.: ACS Applied Mater. Interfaces 11 (2019) 10818.
8. Glowacki, B.A.: Acta Phys. Polonica A 135 (2019) 7.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., and Kováč, J.: Critical currents, Ic-anisotropy and stress tolerance of MgB2 wires made by internal magnesium diffusion, Supercond. Sci Technol. 27 (2014) 065003.

1. Jarvela, J.: IEEE Trans. Applied Supercond. 25 (2015) 8200308.
2. Li, Y.: J. Applied Phys. 117 (2015) 213912.
3. Yang, Y.: Physica C 519 (2015) 118.
#    4. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
5. Wang, D.: Supercond. Sci Technol. 29 (2016) 065003.
6. Hagner, M.: IEEE Trans. Applied Supercond. 26 (2016) 6200305.
*    7. Giunchi, G.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 159.
*     8. Collings, E.W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 341.
9. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
10. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
11. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
12. Du, S.: Metals 7 (2017) 78.
13. Cai, Q.: J. Mater. Sci-Mater. Electron. 29(2018) 10323.
14. Liu H.: Rare Metal Mater. Engn. 47 (2018) 1020.
15. Shao, H.: Rare Metal Mater. Engn. 47 (2018) 2976.

Sanz, S., Arlaban, T., Manzanas, R., Tropeano, M., Funke, R., Kováč, P., Yang, Y., Neumann, H., and Mondesert, B.: Superconducting light generator for large offshore wind turbines, J. Phys.: Conf. Series 507 (2014) 032040.

1. Magnusson, N.: Physica C 506 (2014) SI133.
2. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
3. Bateni, A.: J. Applied Phys. 117 (2015) 153905.
4. Keysan, O.: Supercond. Sci Technol. 28 (2015) 034004.
5. Magnusson, N.: Energy Procedia 80 (2015) 56.
6. Liu, D.: IEEE Trans. Applied Supercond. 26 (2016) 5204205.
7. Radyjowski, P.: Supercond. Sci Technol. 29 (2016) 044002.
8. Wang, J.: IEEE Trans. Industrial Electron. 63 (2016) 1618.
*     9. Abrahamsen, A.B.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 611.
10. Hiramatsu, Y.: Phys. Procedia 81 (2016) 69.
11. Kundu, A.: J. Supercond. Novel Magnetism 30 (2017) 2957.
12. Magnusson, N.: IEEE Trans. Applied Supercond. 28 (2018) 5207105.
13. Huang, Z.: IEEE Trans. Applied Supercond. 28 (2018) 5204606.
14. Patel, D.: Supercond. Sci Technol. 31 (2018) 105010.
15. Rosova, A.: Applied Phys. A 127 (2021) 152.
16. Cakal, G.: IET Renewab. Power Gener. 15 (2021) 139.
17. Magnusson, N.: Physica C 587 (2021) 1353901.

Kováč, P., Kopera, L., Melišek, T., and Hušek, I.: Electro-mechanical behaviour of in situ W add MgB2 wire, Cryogenics 60 (2014) 5-8.

1. Karaboga, F.: Mater. Sci Engn. A 721 (2018) 89.

Hossain, M., Motaman, A., Barua, S., Patel, D., Mustapic, M., Kim, J., Maeda, M., Rindfleisch, M., Tomsic, M., Çiçek, O., Melišek, T., Kopera, Ľ., Kario, A., Ringsdorf, B., Runtsch, B., Jung, A., Dou, S., Goldacker, W., and Kováč, P.The rolel of CHPD: superior critical current density and n-value obtained in binary in situ MgB2 cables, Supercond. Sci Technol. 27 (2014) 095016.

1. Sugino, S.: Supercond. Sci Technol. 28 (2015) 055016.
2. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
3. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
4. Karaboga, F.: J. Supercond. Novel Magnetism 31 (2018) 1359.
5. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.
6. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
7. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.

Levin, G., Murphy, J., Haugan, T., Šouc, J., Kováč, J., Kováč, P., : AC losses of copper stabilized multifilament YBCO coated conductors. IEEE Trans. Applied Supercond. 23 (2013) 6600604.

1. Demencik, E.: IEEE Trans. Applied Supercond. 24 (2014) 6601008.
2. Cai, X.: IEEE Trans. Applied Supercond. 25 (2015) 6601604.
3. Vojenciak, M.: Supercond. Sci Technol. 28 (2015) 104006.
4. Osipov, M. J.: Phys. Conf. Ser. 747 (2016) 012044.
5. Cai, X.: Supercond. Sci Technol. 29 (2016) 105018.
6. Grilli, F.: Supercond. Sci Technol. 29 (2016) 083002.
7. Xing, D.: IEEE Trans. Applied Supercond. 27 (2017) 5203005.
8. Godfrin, A.: IEEE Trans. Applied Supercond. 27 (2017) 5900809.
9. Wang, Y.: Supercond. Sci Technol. 32 (2019) 025003.
10. Li, M.: IEEE Trans. Applied Supercond. 29 (2019) 8200307.

Kováč, P., Kopera, Ľ., Melišek, T., Rindfleisch, M., Haessler, W., Hušek, I., : Behaviour of filamentary MgB2 wires subjected to tensile stress at 4.2 K. Supercond. Sci Technol. 26 (2013) 105028.

1. Xin, C.: IEEE Trans. Applied Supercond. 26 (2016) 8401104.
2. Al Amin, A.: Supercond. Sci Technol. 29 (2016) 055008.
*    3. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
4. Deissler, R.J.: Supercond. Sci Technol. 30 (2017) 025021.
5. Lenoir, G .: IEEE Trans. Applied Supercond. 27 (2017) 8400105.
#      6. Amin, A.A.: IEEE Trans. Applied Supercond. 27 (2017) 7820118.
7. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
8. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
9. Poole, C.: Cryogenics 100 (2019) 18.
10. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
11. Diaz, M.A.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
12. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.

Rosová, A., Kováč, P., Hušek, I., Kopera, Ľ., : Composition changes in thin-filament MgB2/Ti/GlidCop® wires heat treated at variable periods,. J. Alloys Compounds 572 (2013) 25-30.

       1. AlZayed, N.S.: J. Alloys Comp. 594 (2014) 60.

Kováč, J., Šouc, J., Kováč, P., Hušek, I., Gömöry, F., : Experimental study of magnetization AC loss in MgB2 wires and cables with non-magnetic sheath. Physica C 495 (2013) 182-186.

1. Magnusson, N.: Physica C 506 (2014) SI133.
2. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
3. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.

Safran, S., Šouc, J., Gömöry, F., Kováč, P., and Gencer, A.: Experimentally determined magnetization ac losses of mono and multifilamentary MgB2 wires, J. Supercond. Novel Magn. 26 (2013) 1557-1561.

1. Jiao, C.: J. Supercond. Novel Magnetism 27 (2014) 1813.
2. Cevizci, B.: J. Mater. Sci-Materials in Electron. 27 (2016) SI13171.
#      3. Kalsia, M.: Inter. J. Control Theory Appl. 9 (2016) 309.
4. Yazdani-Asrami, M.: J. Supercond. Novel Magnetism 31 (2018) 3899.
5. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 6200906.
6. Law, Y.-M.: IEEE Trans. Magnet. 55 (2019) 9000111.
7. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., Polák, M., : Filamentary MgB2 superconductors with titanium barriers. J. Supercond. Novel Magnet. 26 (2013) 2109-2114.

1. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
2. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.

Kováč, P., Hušek, I., Kopera, Ľ., Melišek, T., Rosová, A., and Dobročka, E.: Properties of in situ made MgB2 in Nb or Ti sheath, Supercond. Sci Technol. 26 (2013) 025007.

1. Li, G.Z.: Supercond. Sci Technol. 26 (2013) 095007.
2. Li, G.: IEEE Trans. Applied Supercond. 24 (2014) 6200105.
3. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
4. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
5. Abdyukhanov, I.: IEEE Trans. Applied Supercond. 28 (2018) 6200504.
6. Aldica, G.: J. Supercond. Novel Magnetism 31 (2018) 3423.
7. Ahmad, I.: Physica B‏ 603 (2021) 412675.

Kopera, Ľ., Kováč, P., Hušek, I., and Melišek, T.: Rutherford cable made of single-core MgB2 wires, Supercond. Sci Technol. 26 (2013) 125007.

#      1. Wesche, R.:  Physical Properties of High-Temp. Supercond. Wiley & Sons, Ltd: 2015. ISBN: 978-9971-5-0683-4.
2. Morandi, A.: Supercond. Sci Technol. 29 (2016) 015014.
3. Morandi, A.: IEEE Trans. Applied Supercond. 26 (2016) 0604007.
*      4. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
5. Pan, X.F.: IEEE Trans. Applied Supercond. 27 (2017) 6201005.
6. Kutukcu, M.N.: IEEE Trans. Applied Supercond. 28 (2018) 6200704.
7. Yagai, T.: Cryogenics 96 (2018) 75.
8. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
9. Jimbo, M.: IEEE Trans. Applied Supercond. 29 (2019) 8003305.
10. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss.‏ 4.

Kopera, Ľ., Kováč, P., Hušek, I., : Calculated and measured normal state resistivity of 19-filament MgB2/Ti/Cu/stainless steel wire. Supercond. Sci Technol. 25 (2012) 025021..

     1. Zhou, C.: Supercond. Sci Technol. 26 (2013) 025002.

Viljamaa, J., Kario, A., Dobročka, E., Reissner, M., Kulich, M., Kováč, P., and Haessler, W.: Effect of heat treatment temperature on superconducting performance of B4C added MgB2/Nb conductors, Physica C 473 (2012) 34-40.

#       1. Yan, G.: Materials China 32 (2013) 550.
2. Burdusel, M.: Current Applied Phys. 15 (2015) 1262.
3. Rajput, S.: Cryogenics 83 (2017) 17.
4. Savaskan, B.: J. Supercond. Novel Magnet. 32 (2019) 827.

Kováč, P. and Kopera, Ľ.: Electromechanical properties of filamentary MgB2 wires, IEEE Trans. Applied Supercond. 22 (2012) 8400106.

1. Jarvela, J.: IEEE Trans. Applied Supercond. 23 (2013) 6449325.
2. Pasquet, R.: IEEE Trans. Applied Supercond. 24 (2014).
3. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
4. Shin, H.-S.: IEEE Trans. Applied Supercond. 29 (2019) 8400805.
5. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
6. Diaz, M.A.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.

Kováč, J., Šouc, J., Kováč, P., : Experimental study of the AC magnetization loss in MgB2 superconducting wires at different temperatures. Physica C 475 (2012) 1-4.

1. Taxt, H.: IEEE Trans. Applied Supercond. 23 (2013) 8200204.
2. Magnusson, N.: Physica C 506 (2014) SI133.
3. Nikulshin, Y.: Rev. Sci Instrum. 90 (2019) 065111.

Kario, A., Haessler, W., Rodig, C., Schubert, M., Kováč, P., Melišek, T., Nast, R., Goldacker, W., and Holzapfel, B.: High energy milled ex situ MgB2 as precursor for superconducting tapes without critical current anisotropy, J. Supercond. Novel Magn. 25 (2012) 2337-2341.

1. Bhadauria, P.P.S.: J. Applied Phys. 113 (2013) 063908.
2. Bhadauria, P.P.S.: J. Applied Phys. 115 (2014) 183905.
3. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
#    4. Bhadauria, P.P.S.: In Comprehensive Energy Systems. Elsevier 2018. ISBN: 978-012809597-3, pp. 303-328.
5. Fujii, H.: Physica C 559 (2019) 32.
6. Hossain, M.S.A.: J. Magnet. Magnetic Mater. 497 (2020) 166046.
7. Fujii, H.: Physica C 576 (2020) 1353704.
8. Fujii, H.: Physica C 583 (2021) 1353838.

Kováč, P., Hušek, I., Melišek, T., : Improved current density of filamentary MgB2 wire by two-stage formation. Physica C 475 (2012) 43-45.

         1. Kulich, M.: Supercond. Sci Technol. 26 (2013) 105019.
#       2. Yan, G.: Materials China 32 (2013) 550.
3. Akdogan, M.: J. Alloys Compounds 702 (2017) 399.

Kario, A., Grinenko, V., Kauffmann, A., Haessler, W., Rodig, C., Kováč, P., Melišek, T., Holzapfel, B., :Isotropic behavior of critical current for MgB2ex situ tapes with 5 wt.% carbon addition. Physica C 483 (2012) 222-224.

1. Fujii, H.: J. Alloys Compounds 664 (2016)  650.
2. Ballarino, A.: J. Phys.: Conf. Ser. 871 (2017) 012098.

Kováč, P., Kulich, M., Haessler, W., Herrmann, M., Melišek, T., and Reissner, M.: Properties of MgB2 wires made of oxidized powders. Physica C 477 (2012) 20-23.

1. Bateni, A.: Applied Phys. Lett. 105 (2014) 202605.
2. Bhagurkar, A.G.: Supercond. Sci Technol. 28 (2015) 015012.
3. Li, L.: IEEE Trans. Applied Supercond. 27 (2017) 7000105.
4. Matera, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200806.
5. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
6. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
7. Zhang, H.: J. Phys.: Conf. Ser. 871 (2017) 012057.
8. Matera, D.: IEEE Trans. Applied Supercond. 28 (2018) 6200405.

Kováč, P., Melišek, T., Kopera, Ľ., Kováč, J., Hušek, I., : Selected properties of GlidCop® sheathed MgB2 wires. Supercond. Sci Technol. 25 (2012) 095008.

#       1. Yan, G.: Materials China 32 (2013) 550.
*       2. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271.

Polák, M., Demenčík, E., Hušek, I., Kopera, Ľ., Kováč, P., Mozola, P., Takács, S., : AC losses and transverse resistivity in filamentary MgB2 tape with Ti barriers. Physica C 471 (2011) 389-394.

1. Meerovich, V.: Mater. Sci Forum 721 (2012) 27.
2.  Zhou, C.: Supercond. Sci Technol. 26 (2013) 025002.
3. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
4. Poole, C.: Supercond. Sci Technol. 30 (2017) 105005.
5. Poole, C.: IEEE Trans. Applied Supercond. 27 (2017) 4700605.
6. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
7. Abdel-Salam, M.: J. Energy Storage 30 (2020) 101461.

Kováč, P., Hušek, I., Pachla, W., Kulczyk, M., Melišek, T., Dvorák, T., : As-deformed filament’s density and transport currents of MgB2/Ti/Glidcop wire. J. Alloys Compounds 509 (2011) 8783-8787.

       1. Wozniak, M.: Supercond. Sci Technol. 27 (2014) 035008.
*     2. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
3. Liu, D.: J. Supercond. Novel Magnet. 30 (2017) 1757.
4. Karaboga, F.: Mater. Sci Engn. A 721 (2018) 89.

Viljamaa, J., Rostila, L., Kováč, P., Melišek, T., Hinterberger, A., Reissner, M., : Comparison of different critical current density models for undoped monofilamentary Ti-sheathed MgB2 tapes. J. Supercond. Novel Magn. 24 (2011) 287-297.

     1. Giunchi, G.: IEEE Trans. Applied Supercond. 23 (2013) 6200605.
2. Pitel, J.: Cryogenics 81 (2017) 33.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., : Current densities of thin filament MgB2/Ti/GlidCop® wire. Supercond. Sci Technol. 24 (2011) 105006. (VEGA 2/0037/09).

     1. Giunchi, G.: IEEE Trans. Applied Supercond. 23 (2013) 6200605.
2. Vignolo, M.: Supercond. Sci Technol. 26 (2013) 105022.
3. Vignolo, M.: Supercond. Sci Technol. 27 (2014) 065007.
*   4. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
#   5. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.

Viljamaa, J., Kulich, M., Kováč, P., Melišek, T., and Reissner, M.: Comparison on effects of B4C, Al2O3, and SiC doping on performance of MgB2 conductors, IEEE Trans. Applied Supercond. 21 (2011) 2659-2663.

1. Cheng, F.: J. Alloys Compounds 727 (2017) 1105.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., : Filamentary MgB2 wire twisted before and after heat treatment. Supercond. Sci Technol. 24 (2011) 115006.

#       1. Yan, G.: Materials China 32 (2013) 550.
2. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
3. Yang, Y.: Physica C 519 (2015) 118.
*       4. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
5. Wan, F.: IEEE Trans. Applied Supercond. 27 (2017) 6200105.
6. Liu, D.: J. Supercond. Novel Magnet. 30 (2017) 1757.
7. Wang, D.Y.: J. Supercond. Novel Magnet. 33 (2020) 2657.

Rostila, L., Demenčík, E., Šouc, J., Brisigotti, S., Kováč, P., Polák, M., Grasso, G., Lyly, M., Stenvall, A., Tumino, A., Kopera, Ľ., : Magnesium diboride wires with nonmagnetic matrices – AC loss measurements and numerical calculations. IEEE Trans. Applied Supercond. 21 (2011) 3338-3341.

1. Taxt, H.: Cryogenics 54 (2013) 44.
2. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
3. Prikhna, T.: J. Supercond. Novel Magnetism 32 (2019) SI3115.
4. Yetis, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss.‏ 5.

Pitel, J., Kováč, P., : On some consequences of an external magnetic field applied to HTS coils. Physica C 471 (2011) 1680-1688.

1. Chudy, M.: Supercond. Sci Technol. 26 (2013) 075012.
2. Badia-Majos, A.: Supercond. Sci Technol. 28 (2015) 024003.
3. Yu, D.: Materials 11 (2018) 339.

Kulich, M., Kováč, P., Weber, H., Haessler, W., : SiC doped MgB2 wires in a Ti sheath prepared by stage formation. Supercond. Sci Technol. 24 (2011) 065025.

1. Guo Z.-C.: Acta Phys. Sinica 61 (2012) 177401.
2. Togano, K.: Supercond. Sci Technol. 26 (2013) 065003.
3. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.

Kováč, P., Martinez, E., Melišek, T., Kopera, Ľ., Hušek, I., : Stability of multi-core MgB2/Ti/Cu/SS wires. Cryogenics 51 (2011) 16-20.

1. Zhou, C.: Supercond. Sci Technol. 26 (2013) 025002.
2. Zhou, C.: Supercond. Sci Technol. 27 (2014) 075002.
3. Spurrell, J.: IEEE Trans. Applied Supercond. 25 (2015) 6918426.

Hušek, I., Kováč, P., Melišek, T., Kopera, Ľ., : Thermally stabilized MgB2 composite wires with different barriers. Cryogenics 51 (2011) 550-554.

1. Rodrigues, D.: IEEE Trans. Applied Supercond. 25 (2015) 6200705.

Haessler, W., Kováč, P., Eisterer, M., Abrahamsen, A., Herrmann, M., Rodig, C., Nenkov, K., Holzapfel, B., Melišek, T., Kulich, M., Zimmermann, M., Bednarcik, J., Grivel, J., : Anisotropy of the critical current in MgB2 tapes made of high energy milled precursor powder. Supercond. Sci Technol. 23 (2010) 065011.

1. Fluekiger, R.: IEEE Trans. Applied Supercond. 21 (2011) 2649.
2. Fluekiger, R.: Physica C 471 (2011) 1119.
3. Wang, C.: Supercond. Sci Technol. 25 (2012) 125001.
*     4. Fluckiger, R.: In: Proc.CAS-CERN Accelerator School: Superconductivity for Accelerators. Erice, Italy 2013. Ed. R. Bailey. Geneva: CERN, 2014. ISBN 978-92-9083-405-2. P. 247.
*      5. Hossain, S.M.A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
6. Kodama, M.: Supercond. Sci Technol. 30 (2017) 044006.
7. Grigoroscuta, M. A.: Supercond. Sci Technol. 32 (2019) 125001.
8. Hossain, M.S.A.: J. Magnet. Magnetic Mater. 497 (2020) 166046.
9. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
10. Li, J.: Acta Metallurg. Sinica-Eng. Lett. 33 (2020) 471.
11. Matera, D.: Sci Rep.‏ 10 (2020) 17656.
12. Grivel, J.-C.: Physica C 578 (2020) 1353750.

Stenvall, A., Mikkonen, R., Kováč, P., : Comparison of 1D, 2D and 3D quench onset simulations. Physica C 470 (2010) 2047-2050.

1. Pelegrin, J.: Supercond. Sci Technol. 26 (2013) 045002.
2. Djokic, D.M.: Inter. J. Thermal Sci 111 (2017) 160.
3. Baig, T.: Supercond. Sci Technol. 30 (2017) 043002.
4. Berriaud, C.: IEEE Trans. Applied Supercond. 28 (2018) 4701505.
5. Poole, C.: Cryogenics 100 (2019) 18.
6. Zhang, D.: Supercond. Sci Technol. 32 (2019) 125003.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., and Reissner, M.: Cu stabilized MgB2 composite wire with an NbTi barrier, Supercond. Sci Technol. 23 (2010) 025014.

1. Togano, K.: Supercond. Sci Technol. 23 (2010) 085002.
2. Kario, A.: Supercond. Sci Technol. 23 (2010) 115007.
3. Shimada, Y.: IEEE Trans. Applied Supercond. 21 (2011) 2668.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Sun, Y.Y.: J. Supercond. Novel Magnetism 25 (2012) 943.
#    6. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
7. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
#    8. Yagai, T: Cryogenics 96 (2018) 75.
9. Yagai, T.: J. Phys.: Conf. Ser. 1054 (2018) 012080.
10. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
11. Hira, M.: J. Phys.: Conf. Ser. 1590 (2020) 012058.
12. Kodama, M.: Supercond. Sci Technol. 34 (2021) 074003.

Viljamaa, J., Kováč, P., Hušek, I., Melišek, T., Štrbik, V., Dobročka, E., : Effect of fabrication route on density and connectivity of MgB2 filaments J. Phys.: Conf. Series 234 (2010) 022041.

*    1. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
#    2. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
3. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.

Kováč, P., Hušek, I., Kulich, M., Hušeková, K., Melišek, T., and Dobročka, E.: Effects influencing the grain connectivity in ex-situ MgB2 wires, Physica C 470 (2010) 340-344.

1. Yucel, E.: J. Mater. Sci-Mater. Electron. 23 (2012) 1284.
2. Yakinci, M. E.: Cryogenics 52 (2012) SI749.
3. Akamaru, S.: Mater. Trans. 54 (2013) 2258.
4. Guo, Z.-C.: Acta Phys. Sinica 63 (2014) 067401.
5. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
6. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.
7. Maulana, M.I.: AIP Conf. Proc. 2232 (2020) 050002.

Kováč, P., Hušek, I., Rosová, A., Melišek, T., and Kopera, Ľ.: Fine-filamentary in situ MgB2 wires, Supercond. Sci Technol. 23 (2010) 105006.

1. Hossain, M.S.A.: Supercond. Sci Technol. 24 (2011) 075013.
2. Wang Q.: Rare Metal Mater. Engn. 42 (2013) 881.
#   3. Yan, G.: Materials China 32 (2013) 550.
*   4. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
5. Yagai, T.: Cryogenics 96 (2018) 75.

Rostila, L., Grasso, G., Demenčík, E., Tumino, A., Brisigotti, S., Kováč, P., : Low field critical current density of titanium sheathed magnesium diboride wires, J. Phys.: Conf. Series 234 (2010) 022029.

1. Lahtinen, V.: Supercond. Sci Technol. 25 (2012) 115001.
2. Liu, D.: J. Supercond. Novel Magnet. 29 (2016) 2299.
3. Liu, D.: J. Supercond. Novel Magnet. 30 (2017) 1757.
4. Pitel, J.: Cryogenics 81 (2017) 33.
5. Yetis, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 5.

Hušeková, K., Hušek, I., Kováč, P., Kulich, M., Dobročka, E., Štrbik, V., : Properties of MgB2 superconductor chemically treated by accetic acid. Physica C 470 (2010) 331-335.

1. Altin, S.: J. Phys. Chem. Solids 72 (2011) 1070.
2. Sun, Y.: J. Supercond. Novel Magnetism 25 (2012) 1735.
3. Song, K.J.: IEEE Trans. Applied Supercond. 23 (2013) 7100304.
4. Sun, Y.: Scripta Materialia 70 (2014) 55.
5. Owolabi, T.O.: J. Supercond. Novel Magnetism 28 (2015) 75.
6. Owolabi, T.O.: Applied Comput. Intelligence Soft Computing (2016) 1709827.
7. Grivel, J.-C.: Physica C 528 (2016) 65.
8. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
9. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
10. Qaid, S.A.S.: J. Mater. Sci-Mater. Electron. 28(2017) 14696.
11.  Zhang, Y.: Physica C‏ 573 (2020) 1353633.
12. Capra, M.: Mater. Today Comm. 26 (2021) 101731.
13. Olatunji, S.O.: Comput. Mater. Sci 192 (2021) 110392.

Hušek, I. and Kováč, P.: Mechanical properties, interface reactions and transport current densities of multi-core MgB2/Ti/Cu/SS wire, Supercond. Sci Technol. 23 (2010) 075012.

1. Maeda, M.: Ceramics Inter. ‏46 (2020) 21752.

Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., and Reissner, M.: Stainless steel reinforced multi-core MgB2 wire subjected to variable deformations, heat treatments and mechanical stressing. Supercond. Sci Technol. 23 (2010) 065010.

1. Sun, Y.Y.: Physica C 477 (2012) 56.
2. Thomas, S.: Cryogenics 52 (2012) SI767.
3. Wang, Q.: Physica C 484 (2013) 163.
#    4. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
 5. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
6. Young, E.A.: J. Phys.: Conf. Series 507 (2014) 032061.
7. Yang, Y.: Physica C 519 (2015) 118.
8. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
9. Alknes, P.: IEEE Trans. Applied Supercond. 26 (2016) 8401205.
#   10. Senol, M.A.: J. Supercond. Novel Magnetism 29 (2016) 2479.
11. Wan, F.: IEEE Trans. Applied Supercond. 27 (2017) 6200105.
12. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
13. Mattje, V.M.: Periodico Tche Quimica 16 (2019) 301.
14. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
15. Maeda, M.: Ceramics Inter. ‏46 (2020) 21752.

Kováč, P., : Critical current anisotropy of MgB2 tapes J. Phys.: Conf. Series 153 (2009) 012019. (APVV 0398-07).

       1. Hossain, M.S.A.: Supercond. Sci Technol. 22 (2009) 095004.

Eisterer, M., Haessler, W., Kováč, P., : Critical currents in weakly textured MgB2: Nonlinear transport in anisotropic heterogeneous media Phys. Rev. B 80 (2009) 174516.

1. Sandu, V.: J. Applied Phys. 110 (2011) 123921.
2. Sandu, V.: Modern Phys. Lett. B 26 (2012) 1230007.
#    3. Wang, J.-W.: Modern Phys. Lett. B 26 (2012) 1250087.
#    4. Wozniak, M.: IEEE Trans. Applied Supercond. 26 (2016) 7364174.
5. Grigoroscuta, M. A.: Supercond. Sci Technol. 32 (2019) 125001.
6. Hossain, M.S.A.: J. Magnet. Magnetic Mater. 497 (2020) 166046.
7. Sandu, V.: Sci Rep. 11 (2021) 5951.
8. Melone, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200405.

Kováč, P., Reissner, M., Melišek, T., Hušek, I., and Mohammad, S.: Current densities of MgB2 wires by combined ex situ/in situ process, J. Applied Phys. 106 (2009) 013910.

1. Yucel, E.: J. Materials Sci-Mater. Electr. 22 (2011) 1143.
2. Martinez, E.: Supercond. Sci Technol. 26 (2013) 125017.
3. Shah, M.: Solid State Comm. 218 (2015) 31.
*    4. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
5. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
6. Kodama, M.: Mater. Res. Express 6 (2019) 026003.
7. Shah, M.S.: Refrigeration Sci Technol. 2019, p. 91.

Kulich, M., Kováč, P., Eisterer, M., Hušek, I., Melišek, T., Weber, H., Haessler, W., : Effect of C and SiC additions into in situ or mechanically alloyed MgB2 deformed in Ti sheath. Physica C 469 (2009) 827-831.

       1. Sinha, B.B.: J. Alloys Compounds 486 (2009) 666.
2. Feng, W.J.: Physica C 470 (2010) 236.
3. Bhagurkar, A.G.: Supercond. Sci Technol. 28 (2015) 015012.
4. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.

Polichetti, M., Zola, D., Hušek, I., Kováč, P., Pace, S., : Effects of impurities addition in MgB2/Nb tapes on flux jumps instability and critical current density J. Phys.: Conf. Series 150 (2009) 052212.

        1. Wang, Q.: Rare Metal Mater. Engn. 42 (2013) 881.

Kováč, P., Melišek, T., Kopera, Ľ., Hušek, I., Polák, M., and Kulich, M.: Progress in electrical and mechanical properties of rectangular MgB2 wires, Supercond. Sci Technol. 22 (2009) 075026.

1. Malagoli, A.: Supercond. Sci Technol. 23 (2010) 025032.
2. Hossain, M.S.A.: Supercond. Sci Technol. 24 (2011) 075013.
3. Malachevsky, M.T.: IEEE Trans. Applied Supercond. 21 (2011) 2676.
4. Yamamoto, A.: Japan. J. Applied Phys. 51 (2012) 010105.
5. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
6. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
7. Ballarino, A.: J. Phys. Conf. Ser. 871 (2017) 012098.
8. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
9. Wang Q.: Rare Metal Mater. Engn. 48 (2019) 3320.
10. Wang Q.: Rare Metal Mater. Engn. 49 (2020)‏ 2825.

Kováč, P., Hušek, I., Melišek, T., Fedor, J., Cambel, V., Morawski, A., and Kario, A.: Properties of hot pressed MgB2/Ti tapes, Physica C 469 (2009) 713-716.

1. Sinha, B.B.: J. Alloys Compounds 486 (2009) 666.
2. Kim, J.H.: Physica C 470 (2010) 1207.
3. Cui, Y.J.: Phys. Status Solidi A 207 (2010) 2532.
4. Wang, D.: Supercond. Sci Technol. 25 (2012) 065013.
5. Sinha, B.B.: J. Supercond. Novel Magnetism 25 (2012) 413.
6. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
7. Cetner, T.: High Pressure Res. 32 (2012) 419.
8. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
9. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
10. Wang, D.: Physica C 508 (2015) 49.
11. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
12. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
13. Wang, D .: Supercond. Sci Technol. 29 (2016) 065003.
14. Wang, D.: Supercond. Sci Technol. 30 (2017) Iss. 6.
15. Mikhailov, B.P.: Phys. Atomic Nuclei 81 (2018) 1573.
16. Wang, D.: IEEE Trans. Applied Supercond. 29 (2019) 6200405.
17. Alimenti, A.: J. Phys.: Conf. Ser. 1559 (2020) 012039.
18. Ozge, E.: Cryogenics 112 (2020) 103205.

Stenvall, A., Mikkonen, R., and Kováč, P.Relation between transverse and longitudinal normal zone propagation velocities in impregnated MgB2 windings. IEEE Trans. Applied Supercond. 19 (2009) 2403-2406.

1. Chan, W.: IEEE Trans. Applied Supercond. 22 (2012) 4706010.
2. Morandi, A.: IEEE Trans. Applied Supercond. 23 (2013) 5600404.
3. Bonura, M.IEEE Trans. Applied Supercond. 25 (2015) 6601304.
4. Poole, C.: Supercond. Sci Technol. 29 (2016) 044003.
5. Poole, C.: IEEE Trans. Applied Supercond. 27 (2017) 4700605.
6. Baig, T.: Supercond. Sci Technol. 30 (2017) 043002.
7. Poole, C.: Supercond. Sci Technol. 30 (2017) 105005.
8. Poole, C.: Cryogenics 100 (2019) 18.
9. Zhang, D.: Supercond. Sci Technol. 32 (2019) 125003.

Martinez, E., Angurel, L., Schlachter, S., and Kováč, P.Transport and magnetic critical currents of Cu-stabilized monofilamentary MgB2 conductors, Supercond. Sci Technol. 22 (2009) 015014.

1. Kim, J.H.: Physica C 470 (2010) 1207.
2. Li, G.Z.: Supercond. Sci Technol. 25 (2012) 025001.
3. Meerovich, V.: Mater. Sci Forum 721 (2012) 27.
4. Li, G.: IEEE Trans. Applied Supercond. 24 (2014) 6200105.
5. Motaman, A.: J. Supercond. Novel Magnetism 27 (2014) 1643.
6. Gajda, D.: J. Applied Phys. 117 (2015) 173908.
7. Yang, Y.: Physica C 519 (2015) 118.
8. Choi, Y.H.: Results in Phys. 10 (2018) 222.
9. Kodama, M.: Supercond. Sci Technol. 34 (2021) 025018.

Hušek, I., Kováč, P., Melišek, T., and Kopera, Ľ.: Transport current densities of MgB2 wires, cable and continually transposed conductor, Cryogenics 49 (2009) 366-370.

1. Schlachter, S.I.: AIP Conf. Proc. 1219 (2010) 302.
2. Stenvall, A.: Supercond. Sci Technol. 24 (2011) 085016.
3. Zangenberg, N.: In: High Temperature Superconductors (HTS) for Energy Applications. Woodhead Publ. 2012. P. 369.
4. Cheadle, M.: IEEE Trans. Applied Supercond. 23 (2013) 6200805.
5. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
6. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
*     7.  Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 549.
8. Pan, X.F.: IEEE Trans. Applied Supercond. 27 (2017) 6201005.
9. Nosov, A.A.: IEEE Trans. Applied Supercond. 28 (2018) 6200205.
10. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
11. Yagai, T.: Cryogenics 96 (2018) 75.
#  12. Yagai, T.: J. Phys.: Conf. Ser. 1054 (2018) 012080.
13. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
14. Jimbo, M.: IEEE Trans. Applied Supercond. 29 (2019) 8003305.
15. Nosov, A.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200705.
16. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
17. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
18. Hira, M.: J. Phys.: Conf. Ser. 1590 (2020) 012058.

Holúbek, T., Kováč, P., and Hušek, I.: Relation between current transfer length and stability of Fe/ MgB2 and Fe/Nb/MgB2 conductors, Acta Physica Polonica A 113 (2008) 367-370.

1. Ulgen, A.T.: J. Supercond. Novel Magnetism 30 (2017) 3367.

Holúbek, T., Kováč, P., Takács, S., Hušek, I., and Melišek, T.: Current sharing and the stability of composite MgB2 superconductors, Supercond. Sci Technol. 21 (2008) 065013.

1. Majkic, G.: Supercond. Sci Technol. 22 (2009) 034021.
2. Nakane, T.: Physica C 469 (2009) 1531.
3. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
4. Jarvela, J.: Cryogenics 51 (2011) 400.
5. Badica, P.: J. Optoelectron. Adv. Mater. 17 (2015) 1636.
6. Ahmad, I.: IEEE Trans. Applied Supercond. 29 (2018) Iss. 4.
7. Ahmad, I.: AIP Conf. Proc. 2009 (2018)020045.
8. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
9. Ahmad, I.: AIP Conf. Proc. 2220 (2020)110022.
10. Ahmad, I.: Physica B‏ 603 (2021) 412675.

Kováč, P., Hušek, I., and Melišek, T.: MgB2 cable made from two-axially rolled wires. Supercond. Sci Technol. 21 (2008) 125003.

1. Holubek, T.: Supercond. Sci Technol. 22 (2009) 055011.
2. Malagoli, A.: Supercond. Sci Technol. 22 (2009) 105017.
3. Stenvall, A.: Supercond. Sci Technol. 24 (2011) 085016.
4. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
*     5. Malagoli, A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 239.
*    6. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
7. Pan, X.F.: IEEE Trans. Applied Supercond. 27 (2017) 6201005.
8. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
9. Yagai, T.: Cryogenics 96 (2018) 75.
10. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss.‏ 4.
11. Hira, M.: J. Phys.: Conf. Ser. 1590 (2020) 012058.

Kováč, P., Hušek, I., Dobročka, E., Melišek, T., Haessler, W., Herrmann, M., : MgB2 tapes made of mechanically alloyed precursor powder in different metallic sheaths. Supercond. Sci Technol. 21 (2008) 015004.

1. Lee, T.G.: Supercond. Sci Technol. 22 (2009) 045006.
2. Eisterer, M.: Supercond. Sci Technol. 23 (2010) 034006.
3. Eisterer, M.: Physica C 470 (2010) S651.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Takahashi, M.: Supercond. Sci Technol. 26 (2013) 075007.
6. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
7. Sun, Y.Y.: Physica C 485 (2013) 24.
#        8. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
9. Patel, D.: Progress in Supercond. and Cryogenics (PSAC) 18 (2016) 1.
10. Kodama, M.: Supercond. Sci Technol. 30 (2017) 044006.
11. Karaboga, F.: J. Alloys Compounds 727 (2017) 20.
12. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
13. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
14. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
15. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.

Kováč, P., Pachla, W., Hušek, I., Kulczyk, M., Melišek, T., Holúbek, T., Diduszko, R., Reissner, M., : Multicore MgB2 wires made by hydrostatic extrusion. Physica C 468 (2008) 2356- 2360. (APVV 0398-07).

        1. Argyropoulou, R.: J. Alloys Compounds 480 (2009) 575.
2. Hossain, M.S.A.: Supercond. Sci Technol. 22 (2009) 095004.
3. Zhou, S.H.: Solid State Sci 12 (2010) 105.
4. Grivel, J.-C.: Supercond. Sci Technol. 25 (2012) 015010.
5. Sun, Y.Y.: J. Supercond. Novel Magnetism 25 (2012) 943.
6. Lee, T.-H.: Metals Mater. Inter. 21 (2015) 402.

Kopera, L., Kováč, P., and Melišek, T.: Electromechanical characterization of selected superconductors, Supercond. Sci Technol. 21 (2008) 115001.

1. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.

Kováč, P., Birajdar, B., Hušek, I., Holúbek, T., Eibl, O., : Stabilized in situ rectangular MgB2 wires: the effect of B purity and sheath materials. Supercond. Sci Technol. 21 (2008) 045011.

1. Chen, S.K.: Supercond. Sci Technol. 22 (2009) 125005.
2. Kim, J.H.: Supercond. Sci Technol. 23 (2010) 075014.
3. Kario, A.: Supercond. Sci Technol. 23 (2010) 025018.
4. Wang, C.: Supercond. Sci Technol. 25 (2012) 035018.
5. Wang, C.: Supercond. Sci Technol. 25 (2012) 075010.
6. Motaman, A.: J. Supercond. Novel Magnetism 27 (2014) 1643.
7. Rahul, S.: Mater. Research Bull. 93 (2017) 296.
8. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
9. Kang, M.O.: Progress in Supercond. Cryogen. 21 (2019) 18.
10. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
11. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.

Zola, D., Polichetti, M., Adesso, M., Kováč, P., Martini, L., Pace, S., : Thermomagnetic instability and critical current density in MgB2 monofilamentary tapes. Physica C 468 (2008) 761-764.

     1. Takikawa Y.: Physica C 471 (2011) 905.

Holúbek, T., Dhalle, M., and Kováč, P.Current transfer in MgB2 wires with different sheath materials, Supercond. Sci Technol. 20 (2007) 123-128.

   1. Mikheenko, P.: Applied Phys. Lett. 91 (2007) art. no. 202508.
*  2. Mikhenko, P.: IEEE/CSC & ESAS European Supercond. News Forum (2007) No. 2, ST6.
3. Stenvall, A.: Supercond. Sci Technol. 21 (2008) art. no. 065012.
4. Wang, X.: Cryogenics 48 (2008) 469.
5. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
6. Togano, K.: Supercond. Sci Technol. 23 (2010) 085002.
7. Jarvela, J.: Cryogenics 51 (2011) 400.
8. See, K.W.: Supercond. Sci Technol. 24 (2011) 105009.
9. Li, G.Z.: IEEE Trans. Applied Supercond. 23 (2013) 6200204.
10. Fabbricatore, P.: Supercond. Sci Technol. 26 (2013) 085001.
11. Cui, Y.-M.: Inter. J. Modern Phys. B 27 (2013) SI1361006.
  12. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
13. Gajda, D.: Supercond. Sci Technol. 28 (2015) 115003.
14. Gajda, D.: J. Alloys Compounds  647 (2015) 303.
15. Karaboga, F.: J. Alloys Compounds  727 (2017) 20.
16. Liu, Y.: J. Supercond. Novel Magnetism 31 (2018) 1323.
17. Ahmad, I.: AIP Conf. Proc. 2009 (2018) 020045.
18. Ulgen, A.T.: Ceram. Inter. 45 (2019) 1031.
19. Karaboga, F.: J. Mater. Sci.-Mater. Electron.‏ 31 (2020) 7141.
20. Ahmad, I.: Physica B‏ 603 (2021) 412675.
21. Fournier-Lupien, J.H.: Supercond. Sci Technol. 34 (2021) 085001.

Stenvall, A., Korpela, A., Mikkonen, R., Kováč, P., : Discrepancies in modeling magnets utilizing MgB2 conductor with ferro- and non-magnetic matrix configurations. IEEE Trans. Applied Supercond. 17 (2007) 2369-2372.

        1. Pelegrin, J.: IEEE Trans. Applied Supercond. 26 (2016) 6200905.
#      2. Wozniak, M.: IEEE Trans. Applied Supercond. 26 (2016) 7364174.

Kováč, P., Hušek, I., Pachla, W., Kulczyk, M., : Properties of seven-filament in-situ MgB2/Fe composite deformed by hydrostatic extrusion, drawing and rolling. Supercond. Sci Technol. 20 (2007) 607-610.

   1. Nachtrab, W.T.: Advances Cryogenic Engn. 54, 986 (2008) 367.
2. Vignolo, M.: IEEE Trans. Applied Supercond. 18 (2008) 1175.
3. Qu, B.: Supercond. Sci Technol. 22 (2009) 075014.
4. Wang, C.: Supercond. Sci Technol. 25 (2012) 125001.
* 5. Hossain, S.M.A. and Flückiger, R.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
6. Jie, H.: Scripta Materialia 129 (2017) 79.

Kováč, P., Hušek, I., Melišek, T., Holúbek, T., : Properties of stabilized MgB2 composite wire with Ti barrier. Supercond. Sci Technol. 20 (2007) 771-776.

*      1. Birajdar, B.: PhD Thesis. Univ. Tubingen 2007.
2. Lee, T.G.: Supercond. Sci Technol. 22 (2009) 045006.
3. Eisterer, M.: IEEE Trans. Applied Supercond. 19 (2009) 2788.
4. Spillantini, P.: Adv. Space Research. 45 (2010) 900.
5. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
6. Kario, A.: Supercond. Sci Technol. 23 (2010) 115007.
7. Spillantini, P.: Acta Astronautica 68 (2011) 1430.
8. Rostila, L.: J. Supercond. Novel Magnetism 24 (2011) 313.
9. Spillantini, P.: Acta Astronautica 104 (2014) SI509.
*     10. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271.
11. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
12. Diaz, M.A.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
13. Ahmad, I.: Physica B‏ 603 (2021) 412675.

Kováč, P., Hušek, I., Skákalová, V., Meyer, J., Dobročka, E., Hirscher, M., Roth, S., : Transport current improvements of in-situ MgB2 tapes by the addition of carbon nanotubes, silicon carbide or graphite. Supercond. Sci Technol. 20 (2007) 105-111.

   1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) Art. No. 122502.
2.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Zhang, X.P.: Supercond. Sci Technol. 20 (2007) 1198.
4. Awana, V.P.S.: Physica C 467 (2007) 67.
5. Shekhar, C.: J. Applied Phys. 102 (2007) art. no. 093910.
6. Xu, A.X.: Physica C 466 (2007) 190.
7. Hassler, W.: Supercond. Sci Technol. 21 (2008) 062001.
8. Asthana, A.: Supercond. Sci Technol. 21 (2008) 115013.
9. Serrano, G.: J. Phys. Conf. Series 97 (2008) 012129.
10. Serrano, G.: J. Phys. Conf. Series 97 (2008) 012127.
11. Vinod, K.: Solid State Sci 12 (2010) 610.
12. Devadas, K.M.: J. Alloys Compounds 509 (2011) 8038.
13. Yao, C.: Supercond. Sci Technol. 24 (2011) 055016.
14. Novosel, N.: Supercond. Sci Technol. 26 (2013) 105024.
15. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
16. Liu, H.R.: J. Mater. Sci-Mater. Electron. 29 (2018) 7763.
17. Liu, H.: J. Supercond. Novel Magnetism 31 (2018) 1053.
18. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
19. Melone, M.: Mater. Today-Proc. 14 (2019)SI168.
20. Qaid, S.A.S.: Physica C 568 (2020) 1353578.

Kováč, P.: Ic anisotropy of flat composite superconductors, IEEE Trans. Applied Supercond. 16 (2006) 1453-1456.

1. Yang, T.H.: Physica C 582 (2021) 1353825.

Kováč, P., Hušek, I., and Melišek, T.: Aspect ratio and temperature effect on the Ic anisotropy in situ MgB2 tapes, Supercond. Sci Technol. 19 (2006) 470-472.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Wang, D.L.: Physica C 470 (2010) 1435.
3. Iwanaka, T.: Supercond. Sci Technol. 32 (2019) 045004.
4. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
5. Iwanaka, T.: Mater. Res. Express 7 (2020) 056003.

Kopera, Ľ., Kováč, P., Melišek, T., : Compact design of cryogen-free HTS magnet for laboratory use. IEEE Trans. Applied Supercond. 16 (2006) 1415-1418.

     1. Choi, S.: IEEE Trans. Applied. Supercond. 19 (2009) 1249.
2. Choi, S.: IEEE Trans. Applied. Supercond. 21 (2011) 2410.
3. Yoon, S.W.: Physics Procedia 27 (2012) 424.
4. Yoon, S.: IEEE Trans. Applied. Supercond. 23 (2013) 4600604.
5. Yoon, S.: Physica C 494 (2013) 242.
6. Yoon, S.: IEEE Trans. Applied Supercond. 24 (2014) 4602904.
7. Pradhan, J.: Rev. Sci Instrum. 89 (2018) 045110.

Stenvall, A., Ahoranta, M., Korpela, A., Mikonen, R., Kováč, P., : Critical current of an MgB2 coil with a ferromagnetic matrix. Supercond. Sci Technol. 19 (2006) 32-38.

        1. Pelegrin, J.: IEEE Trans. Applied Supercond. 26 (2016) 6200905.
#      2. Wozniak, M.: IEEE Trans. Applied Supercond. 26 (2016) 7364174.

Kováč, P., Hušek, I., Melišek, T., Haessler, W., Herrmann, M., : Improvement of current density by texture and Ic anisotropy in thin filament MgB2/Fe tapes. Supercond. Sci Technol. 19 (2006) 998-1002.

1.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
*     2. van Weeren, H.: PhD Thesis. Enschede: 2007.
3. Mochizuki, T.: J. Japan Inst. Metals 74 (2010) 428.
4. Kim, J.H.: Physica C 470 (2010) 1426.
5. Kim, J.H.: Advanced Mater. 23 (2011) 4942.
6. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
7. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.

Grivel, J., Pinholt, R., Andersen, N., Kováč, P., Hušek, I., and Homeyer, J.: In situ investigations of phase transformations in Fe-sheathed MgB2 wires, Supercond. Sci Technol. 19 (2006) 96-101.

1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) 122502.
2.  Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
4. Yan, S.C.: J. Alloys Compounds 443 (2007) 161.
*     5. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
*     6. Birajdar, B.: PhD Thesis. Universität Tübingen 2007.
7. Defouw, J.D.: Acta Materialia 56 (2008) 5751.
8. Defouw, J.D. : Acta Materialia 56 (2008) 1680.
9. Birajdar, B.: J. Applied Phys. 105 (2009) 033903.
10. Vignolo, M.: IEEE Trans. Applied Supercond. 19 (2009) 2718.
11. Kario, A.: Supercond. Sci Technol. 23 (2010) 025018.
12.  DeFouw, J.D.: Physica C 470 (2010) 648.
13. Kario, A.: Supercond. Sci Technol. 23 (2010) 115007.
14.  Ma, Z.Q.: Materials Chem. Phys. 126 (2011) 114.
15. Vignolo, M.: Supercond. Sci Technol. 24 (2011) 065014.
16. Ma, Z.Q.: Inter. Mater. Rev. 56 (2011) 267.
17. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
18. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
19. Karaboga, F.: J. Alloys Compounds  727 (2017) 20.
20. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.
21. Karaboga, F.: J. Supercond. Novel Magnetism 31 (2018) 1359.
22. Bulbul, F.: Kovove Mater.-Metall. Mater. 56 (2018) 223.
23. Aji, L.B.B.: J. Applied Phys. 125 (2019) 075306.
24. Ulgen, A.T.: Ceram. Inter. 45 (2019) 1031.
25. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
26. Karaboga, F.: J. Mater. Sci-Mater. Electr. ‏ 31 (2020) 7141.

Kováč, P., Hušek, I., Melišek, T., : MgB2 composite superconductors made by ex-situ and in-situ process. Advances in Sci and Technol. 47 (2006) 131-136.

         1. Nardelli, D.: Supercond. Sci Technol. 26 (2013) 075010.

Kováč, P., Hušek, I., Melišek, T., Kulich, M., and Štrbik, V.: MgB2 composite wires with Fe, Nb and Ta sheaths, Supercond. Sci Technol. 19 (2006) 600-605.

1. Liang, G.: Supercond. Sci Technol. 19 (2006) 1146.
2. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
3. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
4. Yamamoto, A.: Physica C 463 (2007) 807.
5. Shcherbakov, A.V.: IEEE Trans. Applied Supercond. 17 (2007) 2806.
6. Liang, G.: Physica C 457 (2007) 47.
7. Ye, L.: Supercond. Sci Technol. 20 (2007) 621.
8. Grivel, J.C.: Supercond. Sci Technol. 21 (2008) art. no. 035006.
*     9. van Weeren, H.: PhD Thesis. Enschede: 2007.
10. Feng, W.J.: Physica C 470 (2010) 236.
11. Zhang, X.P.: Physica C 470 (2010) 104.
12. Jung, A.: Supercond. Sci Technol. 23 (2010) 095006.
13. Jarvela, J.: Cryogenics 51 (2011) 400.
14. Fujii, H.: IEEE Trans. Applied Supercond. 21 (2011) 2664.
15. Ma, Z.Q.: Inter. Mater. Rev. 56 (2011) 267.
16. Abdyukhanov, I.: IEEE Trans. Applied Supercond. 28 (2018) 6200504.
17. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
18. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705.
19. Madhar, N.A.: Metals 9 (2019) 1190.
20. Yetis, H.: Physica B 593 (2020) 412277.
21. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.

Kováč, P., Hušek, I., Melišek, T., Martinez, E., Dhalle, M., : Properties of doped ex and in situ MgB2 multi-filament superconductors. Supercond. Sci Technol. 19 (2006) 1076-1082.

1.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Stenvall, A.: Supercond. Sci Technol. 20 (2007) 859.
*     3. van Weeren, H.: PhD Thesis. Enschede: Univ. of Twente 2007.
4. Horvat, J: Supercond. Sci Technol. 21 (2008) 065003.
       5. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
6. Sobrero, C.E.: Adv. Cond. Matter Phys. (2015) 297363.
       7. Yang, Y.: Physica C 519 (2015) 118.
8. Shah, M.: Solid State Comm. 218 (2015) 31.
9. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
10. Wan, F.: IEEE Trans. Applied Supercond. 27 (2017) 6200105.
11. Liu, D.: J. Supercond. Novel Magnetism 30 (2017) 1757.

Pachla, W., Morawski, A., Kováč, P., Hušek, I., Mazur, A., Lada, T., Diduszko, R., Melišek, T., Štrbik, V., Kulczyk, M., : Properties of hydrostatically extruded in situ MgB2 wires doped with SiC. Supercond. Sci Technol. 19 (2006) 1-8.

1. Zhang, X.P.: Supercond. Sci Technol. 19 (2006) 699.
2. Zhang, X.P.: Supercond. Sci Technol. 19 (2006) 479.
3. Xu, H.L.: Supercond. Sci Technol. 19 (2006) 1169.
#    4. Giunchi, G.: Mater. Res. Soc. Symp. Proc. 946 (2006) 9.
5. Demencik, E.: J. Phys.: Conf. Series 43 (2006)  83.
6. Dou, S.X.: Phys. Rev. Lett. 98 (2007) 097002.
7. Liang, G.: Supercond. Sci Technol. 20 (2007) 697.
8. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
9. Shekhar, C.: J. Applied Phys. 102 (2007) 093910.
10. Susner, M.A.: Physica C 456 (2007) 180.
11. Zhang, F.F.: Arch. Pathol. & Lab. Medicine 131 (2007) 773.
*    12. Birajdar, B.: PhD Thesis. Universität Tübingen 2007.
13. Zhang, X.P.: Magnesium – Aluminium Mater. – Aerospace Mater. – Supercond.Functional Mater. 546-549 (2007) 2041.
14. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012246.
15. Birajdar, B.: Supercond. Sci Technol. 21 (2008) 073001.
16. Yamamoto, A.: Adv. in Condensed Matter Mater. Research. Nova Publ. 2010. ISBN: 978-1-60741-959-4. P. 83-115.
17. Maeda, M.: Scripta Materialia 64 (2011) 1059.
18. Adelmann, B.: Applied Phys. A 122 (2016) 642.
*     19. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271.
20. Adelmann, B.: Applied Phys. A 123 (2017) 454.
#    21. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.

Martinez, E., Lera, F., Martínez-López, M., Yang, Y., Schlachter, S., Lezza, P., Kováč, P., : Quench development and propagation in metal/MgB2 conductors. Supercond. Sci Technol. 19 (2006) 143-150.

1. Gambardella, U.: IEEE Trans. Applied Supercond. 17 (2007) 2937.
*     2. van Weeren, H.: PhD Thesis. Enschede: 2007.
3. Stenvall, A.: Physica C 468 (2008) 968.
4. Alessandrini, M. : IEEE Trans. Applied Supercond. 18 (2008) 945.
5. Wang, X.: Cryogenics 48 (2008) 469.
6. Majkic, G.: Supercond. Sci Technol. 22 (2009) 034021.
7. Alessandrini, M.: IEEE Trans. Applied Supercond. 19 (2009) 2437.
8. Jarvela, J.: IEEE Trans. Applied Supercond. 23 (2013) 9000305.
9. Morandi, A.: IEEE Trans. Applied Supercond. 23 (2013) 5600404.
10. Jarvela, J.: IEEE Trans. Applied Supercond. 23 (2013) 9500309.
11. Lu, W.J.: Physica C 484 (2013) 153.
     12. Baig, T.: Supercond. Sci Technol. 27 (2014) 125012.
     13. Lewandowska, M.: Applied Mathem. Modell. 38 (2014) 4733.
14. Ye, L.: Supercond. Sci Technol. 28 (2015) 035015.
15. Bonura, M.: Supercond. Sci Technol. 28 (2015) 115014.
16.Tong, Y.: Supercond. Sci Technol. 30 (2017) 045002.
17. Romanovskii, V.R.: Mater. Res. Express 6 (2019) 106003.
18. Zhang, D.: Supercond. Sci Technol. 32 (2019) 125003.
19. Pi, W.: IEEE Trans. Applied Supercond. 30 (2020) 4801206.
20. Romanovskii, V.R.: Cryogenics 111 (2020) 103163.
21. Romanovskiy, V.R.: J. Phys.: Conf. Ser. 1590 (2020) 012022.

Zola, D., Gömöry, F., Polichetti, M., Strýček, F., Šouc, J., Kováč, P., Pace, S., : Analysis of coupling losses in multifilamentary untwisted BSCCO/Ag tapes through a.c. susceptibility measurements. IEEE Trans. Applied Supercond. 15 (2005) 2903-2906.

     1. Celebi, S.: Supercond. Sci Technol. 22 (2009) 034018.
2. Fabbricatore, P.: J. Applied Phys. 106 (2009) 083905.
3. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.

Kováč, P., Hušek, I., Melišek, T., Štrbik, V., : Basic properties of rectangular MgB2/FeNiCo and MgB2/Fe wires made in situ. Supercond. Sci Technol. 18 (2005) 856-860.

       1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) 122502.
2. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Grivel, J.C.: Supercond. Sci Technol. 21 (2008) 035006.
*     4. van Weeren, H.: PhD Thesis. Enschede: 2007.
5. Ye, S.J.: Supercond. Sci Technol. 27 (2014) 055017.
*     6. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 315.

Kováč, P., Masti, M., Lehtonen, J., Kopera, Ľ., Kawano, K., Abell, S., Metz, B., and Dhalle, M.: Comparison and analysis of Hall probe scanning, magneto-optical imaging and magnetic knife measurements of Bi-2223/Ag tape, Supercond. Sci Technol. 18 (2005) 805-812.

1. Amemiya, N.: Physica C 445 (2006) 712.
2. Maruyama, O.: IEEE Trans. Applied Supercond. 16 (2006) 1035.
3. Gomory, F.: Supercond. Sci Technol. 20 (2007) S271.
#     4. Nascimento, F.M.: Phys. Lett. A 376 (2012) 2722.
5. Nakao, K.: Supercond. Sci Technol. 26 (2013) 055001.
6. Higashikawa, K.: Physica C 504 (2014) 62.
7. Furukawa, K.: IEEE Trans. Applied Supercond. 25 (2015) 6937130.
8. Higashikawa, K.: IEEE Trans. Applied Supercond. 26 (2016) 6200804.
9. Talantsev, E.F.: AIP Adv. 7 (2017) 125230.
10. Talantsev, E.F.: Mater. Res. Express 6 (2019) 026002.

Oemry, F., Diantoro, M., Sutjahja, I.M., Tjia, M.O., Kopera, L., Bonfait, G., and Kováč, P.: Variation of vortex structure characteristics of Bi-2223/Ag superconducting tapes with respect to applied magnetic field direction, Physica C 426-431 (2005) 396-401.

1. Hendrik, S.P.: IOP Conf. Ser. 202 (2017) 012025.
2. Awad, M.A.: Mater. Lett.‏ 268 (2020) 127626.

Bartolome, E., Granados, X., Cambel, V., Fedor, J., Kováč, P., Hušek, I., : Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging. Supercond. Sci Technol. 18 (2005) 1135-1140.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Higashikawa, K.: Physica C 504 (2014) 62.

Kováč, P., Melišek, T., Dhalle, M., den Ouden, A., and Hušek, I.: Critical currents of MgB2 wires prepared in situ and ex situ subjected to axial stress, Supercond. Sci Technol. 18 (2005) 1374-1379.

1. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
*    2. van Weeren, H.: PhD Thesis. Enschede: 2007.
*    3. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
4. Nardelli, D.: Supercond. Sci Technol. 26 (2013) 075010.
5. Li, C.S.: Physica C 494 (2013) 177.
6. Pasquet, R.: IEEE Trans. Applied Supercond. 25 (2015) 4603605.
7. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
8. Alknes, P.: IEEE Trans. Applied Supercond. 26 (2016) 8401205.
*    9. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 315.
10. Akdogan, M.: J. Alloys Compounds 702 (2017) 399.
11. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
12. Ulgen, A.T.: Ceram. Inter. 45 (2019) 1031.
13. Togano, K.: J. Japan Inst. Metals Mater. 83 (2019) SI346.

Holúbek, T., Kováč, P., and Melišek, T.: Current transfer length in MgB2/Fe mono-core wire and approximation of the interface layer resistivity, Supercond. Sci Technol. 18 (2005) 1218-1221.

1. Liang, G.: Physica C 442 (2006) 113.
2. Stenvall, A.: Supercond. Sci Technol. 20 (2007) 92.
3. Zhang, X.P.: Supercond. Sci Technol. 20 (2007) 1198.
*    4. van Weeren, H.: PhD Thesis. Enschede: 2007.
5. Stenvall, A.: Supercond. Sci Technol. 21 (2008) art. no. 065012.
6. Wang, X.: Cryogenics 48 (2008) 469.
7. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
8. Jarvela, J.: Cryogenics 51 (2011) 400.
9. See, K.W.: Supercond. Sci Technol. 24 (2011) 105009.
10. Li, G.Z.: IEEE Trans. Applied Supercond. 23 (2013) 6200204.
11. Vojenčiak, M.: Cryogenics 57 (2013) 189.
12. Zhou, C.: Supercond. Sci Technol. 27 (2014) 095014.
13. Ahmad, I.: IEEE Trans. Applied Supercond. 29 (2018) Iss. 4.
14. Ahmad, I.: AIP Conf. Proc. 2009 (2018)020045.
15. Ahmad, I.: AIP Conf. Proc. 2220 (2020)110022.

Haigh, S., Kováč, P., Prikhna, T., Savchuk, Y., Kilburn, M., Salter, C., Hutchinson, J., Grovenor, C., : Chemical interactions in Ti doped MgB2 superconducting bulk samples and wires. Supercond. Sci Technol. 18 (2005) 1190-1196.

1. Rudziak, M.K.: Advances Cryogenic Engn.  52A & 52B 824 (2006) 617.
2. Zhao, Y.Y.: Inter. Conf. Nanosci Nanotechnol. 1-2  (2006) 242.
3. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
4. Zhang, X.P.: IEEE Trans. Applied Supercond. 17 (2007) 2925.
5. Lee, B.W.: J. Magnetism Magnetic Mater. 320 (2008) E484.
6. Vinod, K.: Supercond. Sci Technol. 22 (2009) 055009.
7. Talapatra, A.: J. Phys. Chem. Solids 70 (2009) 527.
8. Groh, D.: Phys. Rev. 83 (2011) 115122.
9. Wang Y.-B.: Acta Phys. Sinica 61 (2012) 197401.
10. Bateni, A.: Applied Phys. Lett. 108 (2016) 202601.
11. Eisterer, M.: Supercond. Sci Technol. 31 (2018) 013001.
12. Kizilkoca, B.: Mater. Res. Express 6 (2019) 106001.
13. Haessler, W.: Physica C 571 (2020) 1353617.
14. Ansari, I. A.: Indian J. Phys. 94 (2020) 485.
15. Naito, T.: Supercond. Sci Technol. 33 (2020) 125004.

Kováč, P., Melišek, T., Hušek, I., : Ic anisotropy of in situ made MgB2 tapes. Supercond. Sci Technol. 18 (2005) L45-L48.

1. Liang, G.: Supercond. Sci Technol. 20 (2007) 697.
2. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Long, N.J.: Supercond. Sci Technol. 21 (2008) art. no. 025007.
4. Serrano, G.: J. Applied Phys. 103 (2008) art. no. 023907.
5. Serrano, G.: J. Phys.: Conf. Series 97 (2008).
6. Eisterer, M.: Supercond. Sci Technol. 23 (2010) 034006.
7. Wang, D.L.: Physica C 470 (2010) 1435.
8. Liang, G.: IEEE Trans. Applied Supercond. 21 (2011) 2672.
9. Fluekiger, R.: Physica C 471 (2011) 1119.
*   10. Hossain, S.M.A. and Flückiger, R.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
11. Melone, M.: Mater. Today-Proc. 14 (2019) SI168.
12. Grigoroscuta, M.A.: Supercond. Sci Technol. 32 (2019) 125001.
13. Hossain, M.S.A.: J. Magnet. Magnetic Mater. 497 (2020) 166046.
14. Melone, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200405.

Cambel, V., Fedor, J., Gregušová, D., Kováč, P., and Hušek, I.: Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization, Supercond. Sci Technol. 18 (2005) 417-421.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Ma, Z. Q.: Inter. Materials Rev. 56  (2011) 267.
3. Higashikawa, K.: Physica C 504 (2014) 62.
4. Rostami, Kh.R.: Instrum. Experimen. Techn. 59 (2016) 273.
5. Shaw, G.: Rev. Sci Instrum. 87 (2016) 113702.
6. Rostami, Kh. R.: Measurement Techn. 59 (2017) 1297.
7. Rostami, Kh.R.: Instrum. Experimen. Techn. 62 (2019) 450.
8. Zhang, W.: Ceramics Inter. 45 (2019) 6413.
9. Shaw, G.: AIP Conf. Proc. 2115 (2019) UNSP 030210.
10. Rostami, Kh.R.: Techn. Phys.‏ 65 (2020) 1975.
11. Huang, Z.: Supercond. Sci Technol. 34 (2021) 075007.

Dhalle, M., van Weeren, H., Wessel, S., den Ouden, A., ten Kate, H., Hušek, I., Kováč, P., Schlachter, S., Goldacker, W., : Scaling the reversible strain response of MgB2 conductors. Supercond. Sci Technol. 18 (2005) S253-S260.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007)  R47.
2. Sumption, M.D.: Physica C 458 (2007)  12.
*     3. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
4. Oh, S.: Physica C 468 (2008) 1821.
5. Zeng, R.: Applied Phys. Lett. 94 (2009) 042510.
6. Oh, S.: J. Applied Phys. 106 (2009) 063912.
7. Ekin, J.W.: Supercond. Sci Technol. 23 (2010) 083001.
8. Malachevsky, M.T.: IEEE Trans. Applied Supercond. 21 (2011) 2676.
9. Cheggour, N.: Supercond. Sci Technol. 25 (2012) 015001.
10. Nishijima, G.: Supercond. Sci Technol. 25 (2012) 054012.
11. Pasquet, R.: IEEE Trans. Applied Supercond. 25 (2015) 4603605.
12. Al Amin, A.: Supercond. Sci Technol. 29 (2016) 055008.
*   13. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 315.
14. Ekin, J.W.: Supercond. Sci Technol. 29 (2016) 123002.
15. Deissler, R.J.: Supercond. Sci Technol. 30 (2017) 025021.
16. Baig, T.: Supercond. Sci Technol. 30 (2017) 043002.
#    17. Amin, A.A.: IEEE Trans. Applied Supercond. 27 (2017) 7820118.
18. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
19. Poole, C.: Cryogenics 100 (2019) 18.
20. Zhang, Y.: Physica C 573 (2020) 1353633.

Kopera, Ľ., Melišek, T., Kováč, P., Pitel, J., : The design and performance of a Bi-2223/Ag magnet cooled by a single-stage cryocooler. Supercond. Sci Technol. 18 (2005) 977-984.

     1. Gu, C.: Supercond. Sci Technol. 19 (2006) 9.
2. Gu, C.: IEEE Trans. Applied. Supercond. 17 (2007) 2394.
3. Ahn, M.C.: IEEE Trans. Applied. Supercond. 19 (2009) 2269.
4. Kwon, D.W.: Cryogenics 49 (2009) 514.
5. Choi, S.: IEEE Trans. Applied. Supercond. 21 (2011) 2410.
6. Yoon, S.W.: Physics Procedia 27 (2012) 424.
7. Yoon, S.: IEEE Trans. Applied. Supercond. 23 (2013) 4600604.
8. Yoon, S.: Physica C 494 (2013) 242.
9. Yoon, S.: IEEE Trans. Applied Supercond. 24 (2014) 4602904.

Ahoranta, M., Bukva, P., Kováč, P., Mikonen, R., and Tarhasaari, T.: Estimation of the stress state of axially tensioned Bi-2223/Ag Tapes, Physica C 432 (2005) 239-249.

1. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.
#     2. Rathod, V.T.: Bioengn. 4 (2017) 24.

Pachla, W., Kováč, P., Hušek, I., Melišek, T., Müller, M., Štrbik, V., Mazur, A., and Presz, A.: The effect of hydrostatic extrusion on the Jc(B) characteristic of ex situ MgB2 wires, Supercond. Sci Technol. 18 (2005) 552-556.

1. Zdunek, J.: Solid State Phenomena 114 (2006) 171.
2. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
3. Haessler, W.: IEEE Trans. Applied Supercond. 17 (2007) 2919.
*     4. van Weeren, H.: PhD Thesis. Enschede: 2007.
*     5. Birajdar, B.: PhD Thesis. Universität Tübingen 2007.
6. Fujii, H.: Supercond. Sci Technol. 21 (2008) art. no. 015002.
7. Birajdar, B.: Supercond. Sci Technol. 21 (2008) 073001.
8. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012246.
9. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012217.
10. Birajdar, B.: J. Applied Phys. 105 (2009) 033903.
11. Bhadauria, P.P.S.: J. Applied Phys. 113 (2013) 063908.
12. Fujii, H.: Supercond. Sci Technol. 27 (2014) 035002.
*   13. Birajdar, B.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 111.
*    14. Hossain, S.M.A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
#      15. Bhadauria, P.P.S.: In Comprehensive Energy Systems. Elsevier 2018. ISBN: 978-012809597-3, pp. 303-328.
16. Zhang, D.: Supercond. Sci Technol. 32 (2019) 125003.

Kováč, P., Hušek, I., Melišek, T., Dhalle, M., Müller, M., den Ouden, A., : The effect of shape and deformation in ex situ MgB2–W/Fe composite wires. Supercond. Sci Technol. 18 (2005) 615-622.

*       1. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
2. Lezza, P.: Supercond. Sci Technol. 19 (2006) 286.
3. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
4. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
*       5. van Weeren, H.: PhD Thesis. Enschede: 2007.
*       6.  Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
7. Deviatkin, E.A.: Inter. J. Applied Electromagn. Mechanics 27 (2008) 243.
8. Wang, D.L.: Physica C 470 (2010) 1435.
9. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.

Zola, D., Gömöry, F., Polichetti, M., Strýček, F., Seiler, E., Hušek, I., Kováč, P., and Pace, S.: A study of coupling loss on bi-columnar BSCCO/Ag tapes through ac susceptibility measurements. Supercond. Sci. Technol. 17 (2004) 501-511.

 1.Chen, D.X. : Supercond. Sci Technol. 21 (2008) 085013.
2. Celebi, S.: Supercond. Sci Technol. 22 (2009) 034018.
3. Fabbricatore, P.: J. Applied Phys. 106 (2009) 083905.
4. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.
5. Grinenko, V.: Supercond. Sci Technol. 25 (2012) 075006.
6. Ozturk, A.: European Phys. J.-Applied Phys. 80 (2017) 30601.
7. Menana, H.: Open Phys. 16 (2018) 183.
8. Topping, C.V.: J. Phys. – Cond. Matt. 31 (2019) 013001.
9. Niu, M.: J. Supercond. Novel Magnetism 32 (2019) 499.

Ahoranta, M., Lehtonen, J., Kováč, P., Hušek, I., Melišek, T., : Effect of bending and tension on the voltage–current relation of Bi-2223/Ag. Physica C 401 (2004) 241-245.

      1. Zhang, G.M.: Supercond. Sci Technol. 17 (2004) 1018.
2. Shigue, C.Y.: IEEE Trans. Applied Supercond. 15 (2005) 2492.
3. Baldan, C.A.: IEEE Trans. Applied Supercond. 15 (2005) 3552.
4. Malachevsky, M.T.: Supercond. Sci Technol. 18 (2005) 289.
5. Wu, Y.L.: ICEC 20 2005. P. 491.
6. Shigue, C.Y.: IEEE Trans. Applied Supercond. 16 (2006) 1027.
7. Ochiai, S.: J. Applied Phys. 106 (2009) 103916.
8. Ochiai, S.: Materials Trans. 51 (2010) 1663.
9. Huang, L.: IEEE Trans. Applied Supercond. 22 (2012) 6400404.

Pachla, W., Diduszko, R., Presz, A., Kováč, P., Hušek, I., : Effect of texture on Jc in Bi-2223 tapes. Supercond. Sci Technol. 17 (2004) 1426-1429.

        1. Gulamova, D.D.: Technical Phys. 54 (2009) 860.

Ahoranta, M., Lehtonen, J., Kováč, P., : Feasibility of iron-sheathed MgB2 wires for magnet applications. Physica C 400 (2004) 89-96.

        1. Stenvall, A.: Supercond. Sci Technol. 19 (2006) 184.
2. Stenvall, A.: Supercond. Sci Technol. 19 (2006) 581.
3. Stenvall, A.: IEEE Trans. Applied Supercond. 16 (2006) 1399.
#      4. Wozniak, M.: IEEE Trans. Applied Supercond. 26 (2016) 7364174.

Kováč, P., Hušek, I., Melišek, T., Grovenor, C., Haigh, S., and Jones, H.: Improvement of the current carrying capability of ex situ MgB2 wires by normal particle additions, Supercond. Sci Technol. 17 (2004) 1225-1230.

1. Holcomb, M.J.: Physica C 423 (2005) 103.
2. Musenich, R.: IEEE Trans. Applied Supercond. 15 (2005) 1452.
*       3. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005.
4. Nakane, T.: Applied Phys. Lett. 88 (2006) 022513.
5. Yamamoto, A.: Physica C 445 (2006) 806.
6. Gao, Z.S.: Supercond. Sci Technol. 20 (2007) 57.
7. Fujii, H.: J. Materials Res. 22 (2007) 1281.
8. Gozzelino, L.: IEEE Trans. Applied Supercond. 17 (2007) 2726.
9. Agostino, A.: IEEE Trans. Applied Supercond. 17 (2007) 2774.
10. Zhang, X.P.: IEEE Trans. Applied Supercond. 17 (2007) 2925.
11. Kumar, R.G.A.: Applied Phys. A 88 (2007) 243.
*     12. van Weeren, H.: PhD Thesis. Enschede: 2007.
13. Fujii, H.: Supercond. Sci Technol. 21 (2008) art. no. 015002.
14. Stenvall, A.: Supercond. Sci Technol. 21 (2008) 065012.
15. Chauhan, S.R.: IEEE Trans. Applied Supercond. 20 (2010) 26.
16. Wang, C.C.: J. Applied Phys. 108 (2010) 023901.
17. Hwang, S.M.: Physica C 470 (2010) 1430.
18. Tripathi, D.: J. Applied Phys. 114 (2013) 093906.
19. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
20. Tripathi, D.: J. Supercond. Novel Magnetism 27 (2014) 1647.
21. Tripathi, D.: Indian J. Phys. 88 (2014) 1175.
22. Badica, P.: Supercond. Sci Technol. 27 (2014) 095013.
23. Karaboga, F.: J. Mater. Sci-Mater. In Electron. 27 (2016) 8512.
24. Grivel, J.-C.: Physica C 550 (2018) 1.
25. Fujii, H.: Physica C 559 (2019) 32.
26. Haessler, W.: Physica C 571 (2020) 1353617.

Lehtonen, J., Korpela, A., Nah, W., Kang, J., Kováč, P., Melišek, T., : Influence of self-field on the critical current of Bi-2223/Ag tapes. Physica C 403 (2004) 257-262.

        1. Pan, A.V.: Phys. Rev. B 73 (2006) 0502506.
2. Gomory, F.: Supercond. Sci Technol. 19 (2006) 732.
3. Gomory, F.: Supercond. Sci Technol. 20 (2007) S271.

Grovenor, C., Goodsir, L., Salter, C., Kováč, P., Hušek, I., : Interfacial reactions and oxygen distribution in MgB2 wires in Fe, stainless steel and Nb sheaths. Supercond. Sci Technol. 17 (2004) 479-484.

1. Wang, X.L.: Supercond. Sci Technol. 17 (2004) L21.
2. Xu, X.L.: Physica C 419 (2005) 94.
3. Holcomb, M.J.: Physica C 423 (2005) 103.
4. Lezza, P.: IEEE Trans. Applied Supercond. 15 (2005) 3196.
5. Lezza, P.: Supercond. Sci Technol. 18 (2005) 753.
6. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
7. Chen, S.K.: Applied Phys. Lett. 87 (2005)  Art. No. 182504.
8. Lezza, P.: Supercond. Sci Technol. 19 (2006) 1030.
9. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
10. Gomory, F.: Applied Phys. Lett. 90 (2007) Art. No. 092506.
11.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
12. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
13. Tan, K.S.: Supercond. Sci Technol. 21 (2008) art. no. 015015.
*     14. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
15. Serrano, G.: : J. Phys.: Conf. Series 97 (2008) art. no. 012127.
16. Glowacki, B.A.: Supercond. Sci Technol. 22 (2009) 034013.
17. Togano, K.: Supercond. Sci Technol. 22 (2009) 015003.
18. Glowacki, B.A.: Przeglad Elektrotechn. 85 (2009) 151.
19. Glowacki, B.A.: J. Phys.-Cond. Matt. 21  (2009) 254206.
20. Kario, A.: Supercond. Sci Technol. 23 (2010) 025018.
21. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
22. Hwang SM.: Physica C 470 (2010) 1430.
23. Rostila, L.: J. Supercond. Novel Magnetism 24 (2011) 313.
24. Sandu, V.: J. Applied Phys. 110 (2011) 123921.
25. Sandu, V.: J. Supercond. Novel Magnetism 26 (2013) 125.
26. Wang Q.: Rare Metal Mater. Engn. 42 (2013) 881.
27. Ye, S.J.: Supercond. Sci Technol. 27 (2014) 055017.
28. Sobrero, C.E.: Adv. Cond. Matter Phys. (2015) 297363.
29. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
30. Atamert, S.: IEEE Trans. Applied Supercond. 26 (2016) 6201104.
*    31. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 315.
32. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
33. Ahmad, I.: AIP Conf. Proc. 2220 (2020)110022.
34. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
35. Ahmad, I.: Physica B‏ 603 (2021) 412675.

Hušek, I., Kováč, P., Grovenor, C., Goodsir, L., : Microhardness as a tool for the filament density and metal sheath analysis in MgB2/Fe/(Cu) wires. Supercond. Sci Technol. 17 (2004) 971-976.

       1. Balamurugan, S.: Modern Phys. Lett. B 19 (2005) 793.
2. Aksan, M.A.: Solid State Comm. 137 (2006) 320.
3. Kislyak, I.F.: Problems Atomic Sci Technol. (2009) 107.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Guan, M.Z.: IEEE Trans. Applied Supercond. 22 (2012) 9002404.
6. Sasaki, K.-I.: IEEE Trans. Applied Supercond. 22 (2012) 4500904.
7. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
8. Lin, H.: Sci  Rep. 5 (2015) 11506.
9. Xin, C.: J. Supercond. Novel Magnetism 28 (2015) 437.

Pachla, W., Presz, A., Kováč, P., Hušek, I., Diduszko, R., : Structural characterization of multifilament heat treated ex situ MgB2 superconducting wires with Cu and Fe sheaths. Supercond. Sci Technol. 17 (2004) 1289-1294.

*     1. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005.
2. Li, X.H.: Physica C 463 (2007) 1338.
3. Du, X.J.: IEEE Trans. Applied Supercond. 20 (2010) 2102.
4. Lin, H.: Sci Rep. 5 (2015) 11506.
5. Zhang, Q.: IEEE Trans. Applied Supercond. 26 (2016) 7300304.
6. Liu, S.: Supercond. Sci Technol. 30 (2017) 115007.
7. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.
8. Guo, W.W.: Supercond. Sci Technol. 34 (2021) 094001.

Hušek, I., Kováč, P., and Jones, H.: Tensile stress applied to NbTi, Nb3Sn, Bi-2223 and MgB2 composite superconductors at room temperature, Supercond. Sci Technol. 17 (2004) 1411-1414.

1. Salama, K.: Supercond. Sci Technol. 18 (2005) S369.
2. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
3. Hanna, A.: J. Mater. Process. Technol. 181 (2007) 44.
#     4. Yonezu, A.: Mater. Chem. Phys. 125 (2011) 528.
5. Sun, Y.Y.: Physica C 477 (2012) 56.
6. Sasaki, K.: IEEE Trans. Applied Supercond. 22 (2012) 4500904.
7. Guan, M. Z.: IEEE Trans. Applied Supercond. 22 (2012) 9002404.
8. Sun, Y.: J. Mater. Sci: Mater.Electr. 24 (2013) 1250.
#     9. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
10. Xin, C.: J. Supercond. Novel Magnetism 28 (2015) 437.
11. Xin, C.: IEEE Trans. Applied Supercond. 26 (2016) 8401104.
12. Degtyarev, M.V.: Phys. Metals Metall.117 (2016) 772.
13. Jia, S.: IEEE Trans. Applied Supercond. 27 (2017) 8401005.
14. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
15. Karaboga, F.: Mater. Sci Engn. A 721 (2018) 89.
16. Wang, X.: Rev. Sci Instrum. 89 (2018) 085117.
17. Mikhailov, B.P.: Phys. Atomic Nuclei 81 (2018) 1573.
18. Dhakarwal, M.: IEEE Trans. Applied Supercond. 29 (2019) 4802404.
19. Shin, H.-S.: IEEE Trans. Applied Supercond. 29 (2019) 8400805.
20. Wu, B.: IEEE Trans. Applied Supercond. 30 (2020) 4901105.

Kováč, P., Hušek, I., Melišek, T., : The effect of used deformation, metal sheath and heat treatment on the I–V curve of ex situ MgB2 composite. Physica C 401 (2004) 282-285.

*      1. Goldacker, W.: Frontiers in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
*      2. Goldacker, W.: Advan. Sci Technol. 47 (2006) 143.
3. Zhang, X.P.: Physica C 468 (2008) 1809.
4. Zhang, X.P.: Physica C 471 (2011) 1124.
5. Yang, H.: Applied Surface Sci 261 (2012) 364.

Gömöry, F., Seiler, E., Šouc, J., Kováč, P., Hušek, I., Farinon, S., Fabbricatore, P., Perkins, G., Caplin, A., Pardo, E., Sanchez, A., Navau, C., : The influence of filament arrangement on current distribution and AC loss in Bi-2223/Ag tapes. Supercond. Sci Technol. 17 (2004) S150-S154.

      1. Zhao, Y.F.: J. Low Temp. Phys. 156 (2009) 30.
2. Zhao, Y.F.: J. Low Temp. Phys.159 (2010) 515.
3. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.

Kováč, P., Hušek, I., Melišek, T., Grivel, J., Pachla, W., Štrbik, V., Diduszko, R., Homeyer, J., and Andersen, N.: The role of MgO content in ex situ MgB2 wires, Supercond. Sci Technol. 17 (2004) L41-L46.

1. Holcomb, M.J.: Physica C 423 (2005) 103.
2. Jiang, C.H.: Physica C 423 (2005) 45.
3. Perner, O.: IEEE Trans. Applied Supercond. 15 (2005) 3192.
4. Perner, O.: Physica C 432 (2005) 15.
*     5. Goldacker, W.: Fronties in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
6. Li, F.: Supercond. Sci Technol. 19 (2006) 1073.
7. Chen, S.K.: Applied Phys. Lett. 88 (2006) 192512.
8. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
9. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
10. Liang, G.: Physica C 457 (2007) 47.
11. Kumar, R.G.A.: Applied Phys. A 88 (2007) 243.
12. Vinod, K.: Supercond. Sci Technol. 21 (2008) art. no. 025003.
13. Chen, S.K.: Sains Malaysiana 37 (2008) 223.
14. Vignolo, M.: IEEE Trans. Applied Supercond. 18 (2008) 1175.
15. Zhang, X.P.: J. Phys.: Conf. Series 97 (2008).
16. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817.
17. Vignolo, M.: IEEE Trans. Applied Supercond. 19 (2009) 2718.
18. Hwang, S.M.: IEEE Trans. Applied Supercond. 19 (2009) 2710.
19. Hwang, S.M.: Physica C 469 (2009) 1523.
20. Ma, Z.Q.: Supercond. Sci Technol. 22 (2009) 125006.
21. Singh, K.: Phys. Status Solidi A 207 (2010) 1456.
22. Dancer, C.E.J.: Supercond. Sci Technol. 23 (2010) 065015.
23. Ojha, N.: Phys. Status Solidi A 207 (2010) 175.
24. Mamalis, A.G.: Supercond. Sci Technol. 23 (2010) 095011.
25. Wang, D.: Supercond. Sci Technol. 24 (2011) 075002.
26. Burdusel, M.: J. Materials Sci 47 (2012) 3828.
27. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
28. Song, X.: Ceramics Inter. 39 (2013) 4299.
29. Shang, R.: Inter. J. Applied Ceramic Technol. 10 (2013) 849.
30. Kulich, M.: Supercond. Sci Technol. 26 (2013) 105019.
31. Akamaru, S.: Mater. Trans. 54 (2013) 2258.
32. Agil, H.: J.Supercond. Novel Magnet. 26 (2013) SI 1525.
33. Jang, J.-J.: Phys. Procedia 45 (2013) 97.
34. Mustapic, M.: Acta Mater. 80 (2014) 457.
35. Shahabuddin, M.: AIP Adv. 4 (2014) 017113.
36. Prikhna, T. A.: Supercond. Sci Technol. 27 (2014) 044013.
37. Athanasiou-Ioannou, A.: J.Supercond. Novel Magnet. 27 (2014) 1041.
38. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
39. Wu, F.: J. Low Temp. Phys. 177 (2014) 157.
40. Wang, D.: Physica C 508 (2015) 49.
41. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
42. Yang, Y.: Sci Rep. 6 (2016) 29306.
43. Prikhna, T.A.: Low Temp. Phys. 42 (2016) 380.
*   44. Prikhna, T.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 131.
#    45. Degtyarev, M.V.: Phys. Metals Metall. 117 (2016) 772.
46. Kuznetsova, E.I.: Phys. Solid State 59 (2017) 1695.
47. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
48. Gregor, M.: Applied Surface SCI 461 (2018) SI124.
49. Iwanaka, T.: Supercond. Sci Technol. 32 (2019) 045004.
50. Yang, C.: Ceramics Inter. 45 (2019) 15681.
51. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
52. Prikhna, T.: IEEE Trans. Applied Supercond. 29 (2019) 6200905.
53. Krinitsina, T.P.: J. Phys.: Conf. Ser. 1389 (2019) 012068.
54. Matthews, G.A.B.: Supercond. Sci Technol. 33 (2020) 034006.
55. Yang, C.: J. Alloys Comp. 832 (2020) 154561.
56. Zhang, D.: Physica C 578 (2020) 1353749.
57. Yu, X.: Intermetall. 131 (2021) 107104.
58. Capra, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.
59. Capra, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.

Kováč, P., Dhalle, M., Melišek, T., van Eck, H., Wessel, S., ten Haken, B., and Hušek, I.: Dependence of the critical current in ex situ multi- and mono-filamentary MgB2/Fe wires on axial tension and compression, Supercond. Sci & Technol. 16 (2003) 600-607.

1. Fu, M.Y.: Physica C 406 (2004) 53.
2. Sugano, M.: Supercond. Sci Technol. 18 (2005) 369.
3. Eisterer, M.: J. Applied Phys. 98 (2005) 033906.
4. Li, X.H.: Physica C 463 (2007) 1338.
5. Sugano, M.: Supercond. Sci Technol. 21 (2008) 115019.
6. Arda, L.: J. Alloys Compounds 470 (2009) 404.
7. Malachevsky, M.T.: IEEE Trans. Applied Supercond. 19 (2009) 2730.
8. Sugano, M.: Supercond. Sci Technol. 23 (2010) 085013.
9. Yonezu, A.: Materials Chem. Phys. 125 (2011) 528.
10.Wang, Q.: Physica C 484 (2013) 163.
11. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
12. Al Amin, A.: Supercond. Sci Technol. 29 (2016) 055008.
13. Cai, Q.: J. Mater. Sci-Mater. in Electron. 27 (2016) 9431.
14. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
15. Sosnowski, J.: Acta Phys. Polonica A 134 (2018) 1194.
16. Shin, H.-S.: IEEE Trans. Applied Supercond. 29 (2019) 8400805.
17. Mattje, V.M.: Periodico Tche Quimica 16 (2019) 301.
18. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
19. Dhakarwal, M.: IEEE Trans. Applied Supercond. 29 (2019) 4802404.

Pachla, W., Kováč, P., Diduszko, R., Mazur, A., Hušek, I., Morawski, A., Presz, A., : Effects of the high-pressure treatment of ex situ MgB2 superconductors. Supercond. Sci Technol. 16 (2003) 7-13.

        1. Belevtsov, L.V.: Phys. Status Solidi B 237 (2003) 523.
2. Belevtsov, L.V.: Europhysics Lett. 67 (2004) 648.
3. Anan’ev, S.P.: Supercond. Sci Technol. 17 (2004) S274.
*      4. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
5. Dubitskiy, G.A.: JETP Lett. 81 (2005) 260.
6. Lezza, P.: Supercond. Sci Technol. 19 (2006) 286.
7. Senatore, C.: J. Applied Phys. 100 (2006) 113913.
8. Dubitsky, G.: Zeitschrift Naturforschung B 61 (2006) 1541.
9. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
10.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
*     11. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
12. Hossain, M.S.A.: Supercond. Sci Technol. 22 (2009) 095004.
13. Cui, Y.J.: Phys. Status Solidi A 207 (2010) 2532.
*     14. Hossain, S.M.A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
15. Cheng, F.: J. Alloys Compounds 727 (2017) 1105.

Fabbricatore, P., Greco, M., Musenich, R., Kováč, P., Hušek, I., Gömöry, F., : Influence of the sintering process on critical currents, irreversibility lines and pinning energies in multifilamentary MgB2 wires. Supercond. Sci Technol. 16 (2003) 364-370.

      1. Martinez, E.: Applied Physics Lett.  85 (2004) 1383.
2. Liu, S.L.: Solid State Comm. 133 (2005) 615.
3. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
4. Horvat J.: Applied Phys. Lett. 87 (2005) 102503.
5. Grinenko, V.: Solid State Comm. 138 (2006) 461.
6. Liu, S.L.: Physica Status Solidi B 243 (2006) 1314.
7. Liu, S.L.: Supercond. Sci Technol. 20 (2007) 444.
8. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
9.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
10. Gozzelino, L.: Physica C 460 (2007) 604.
11. Gozzelino, L.: IEEE Trans. Applied Supercond. 17 (2007) 2726.
12. Agostino, A.: IEEE Trans. Applied Supercond. 17 (2007) 2774.
*     13. van Weeren, H.: PhD Thesis. Enschede: 2007.
14. Liu, S.L.: J. Supercond. Novel Magnetism 21 (2008) 199.
15. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817.
16. Yucel, E.: J. Materials Sci-Mater. Electr. 22 (2011) 1143.
17. Li, G.: IEEE Trans. Applied Supercond. 24 (2014) 6200105.

Kováč, P., Hušek, I., Melišek, T., Ahoranta, M., Šouc, J., Lehtonen, J., and Gömöry, F.: Magnetic interaction of an iron sheath with a superconductor, Supercond. Sci Technol. 16 (2003) 1195-1201.

 1. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
2. Horvat J.: Applied Phys. Lett. 87 (2005) 102503.
3. Alamgir, A.K.M.: Physica C 432 (2005) 153.
4. Stenvall A.: Supercond. Sci Technol. 19 (2006) 581.
5. Majoros, M.: J. Phys.: Conf. Series 43 (2006) 564.
6. Gu, C.: Supercond. Sci Technol. 20 (2007) 133.
7. Aladyshkin, A.Y.: Supercond. Sci Technol. 22 (2009) 053001.
8. Lousberg, G.P.: IEEE Trans. Applied Supercond. 20 (2010) 33.
9. Ainslie, M.D.: IEEE Trans. Applied Supercond. 23 (2013) 4700104.
#  10. Cicek, A.: In Progress in Exergy, Energy, and the Environment. Springer 2014. ISBN: 978-3-319-04680-8. P. 453.
11. Ainslie, M. D.: Supercond. Sci Technol. 28 (2015) 053002.
12. Philippe, M. P.: Supercond. Sci Technol. 28 (2015) 095008.
13. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705.
14. Ainslie, M.D.: Supercond. Sci Technol. 32 (2019) 030501.
15. Ainslie, M.: Numer. Modell. Bulk Supercond. Magnet. IoP Publ. 2020. ISBN: 978-0-7503-1333-9.

Kováč, P., Hušek, I., Grovenor, C., Salter, C., : Properties of as-deformed and post-annealed MgB2/Fe(Fe-alloy) composite wires. Supercond. Sci Technol. 16 (2003) 292-296.

*      1. Horvath, J.: Horizonts in Supercond. Res. Ed. F. Columbus. Nova Sci Publ. 2003.
*      2 . Goodsir, L.: PhD Thesis. Oxford: Oxford Materials 2003.
3. Wang, X.L.: Supercond. Sci Technol. 17 (2004) L21.
*      4. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
5. Xu, X.L.: Physica C 419 (2005) 94.
6. Lezza, P.: IEEE Trans. Applied Supercond. 15 (2005) 3196.
7. Lezza, P.: Supercond. Sci Technol. 18 (2005) 753.
*      8. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005.
*      9. Goldacker, W.: Fronties in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
10. Lezza, P.: Supercond. Sci Technol. 19 (2006) 286.
11. Suo, H.: Acta Metallurgica Sinica 42 (2006) 1121.
12. Xu, H.L.: Physica C 443 (2006) 5.
13. Lezza, P.: Supercond. Sci Technol. 19 (2006) 1030.
*    14. Goldacker, W.: Adv. Sci Technol. 47 (2006) 143.
15. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
16. Xu, H.L.: J. Supercond. Novel Magnetism 20 (2007) 255.
17. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
18. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
19. Schlachter, S.I.: IEEE Trans. Applied Supercond. 17 (2007) 2842.
*    20. van Weeren, H.: PhD Thesis. Enschede: 2007.
*    21. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
22. Jung, A.: Supercond. Sci Technol. 23 (2010) 095006.

Kováč, P., Ahoranta, M., Melišek, T., Lehtonen, J., Hušek, I., : The effect of Fe-magnetization on Ic(B) and Ic(α) characteristics of iron-sheathed MgB2 composite wires. Supercond. Sci Technol. 16 (2003) 793-798.

       1. Balamurugan, S.: Modern Phys. Lett. B 18 (2004) 791.
2. Horvat J.: Applied Phys. Lett. 87 (2005) 102503.
3. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
4. Balamurugan, S.: Modern Phys. Lett. B 19 (2005) 793.
*     5. Dou, S.X.: Frontiers in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
6. Stenvall A.: Supercond. Sci Technol. 19 (2006) 581.
7. Gu, C.: Supercond. Sci Technol. 20 (2007) 133.
8. Du, X.J.: IEEE Trans. Applied Supercond. 20 (2010) 2102.

Kováč, P., Ahoranta, M., Lehtonen, J., Hušek, I., : The Ic(B) behavior of MgB2 composite with ferromagnetic sheath. Physica C 397 (2003) 14-18.

       1. Gomory, F.: Applied Phys. Lett. 89 (2006) 072506.
2. Gomory, F.: J. Phys.: Conf. Series 97 (2008).

Diantoro, M., Loeksmanto, W., Tjia, M., Gömöry, F., Šouc, J., Hušek, I., Kováč, P., : AC loss and critical current density in Bi-2223 tapes with oxide additives and reinforced Ag sheaths. Physica C 378-381 (2002) 1143-1147.

        1. Zhu, Q.: Supercond. Sci Technol. 17 (2004) 756.
2. Azman, N.J.: Adv. Cond. Matter Phys. (2014) 498747.

Pardo, E., Sanchez, A., Navau, C., Gömöry, F., Hušek, I., Strýček, F., Tebano, R., Kováč, P., : Critical current and ac susceptibility in superconducting tapes with elliptical cross-section. Physica C 372-376 (2002) 1788-1791.

    1.Chen, D.X.: Measurement Sci Technol. 15 (2004) 1195.
2. Seiler, E.: J. Phys.: Conf. Series 97 (2008) 012028.

Gömöry, F., Tebano, R., Sanchez, A., Pardo, E., Navau, C., Hušek, I., Strýček, F., and Kováč, P.: Current profiles and ac losses of a superconducting strip with an elliptic cross-section in a perpendicular magnetic field, Supercond. Sci Technol. 15 (2002) 1311-1315.

*    1. Kajikawa, K.: IoP Conf. Ser. No 181 (2004)  2021.
2. Kajikawa, K.: Physica C 412-14 (2004) 1045.
3. Kajikawa, K.: Supercond. Sci Technol. 17 (2004) 555.
4. Kajikawa, K.: Cryogenics 45 (2005) 289.
5. Yampolskii, S.V.: J. Phys.: Conf. Series 43 (2006) 576.
6. Seiler, E.: Acta Physica Polonica 113 (2008) 379.
7. Seiler, E.: J. Phys.: Conf. Series 97 (2008) 012028.
8. Zhang, X.W.: Applied Phys. Lett. 92 (2008) 181101.
9. Campbell, A.M. : Supercond. Sci Technol. 22 (2009) 034005.
10. Vanderbemden, P.: Supercond. Sci Technol. 23 (2010) 075006.
11. Mawatari, Y.: Phys. Rev. B 83 (2011) 134512.
12. Rostila, L.: J. Supercond. Novel Magnetism 24 (2011) 313.
13. Ruiz, H. S.: Applied Phys. Lett. 100 (2012) 112602.
14. Ruiz, H. S.: IEEE Trans. Applied Supercond. 23 (2013) 8000404.
15. Ruiz, H. S.: J. Applied Phys. 113 (2013) 193906.
*  16.  Kovac, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 419.
17. Farinon, S.: Cryogenics 81 (2017) 107.
18. Robert, B.C.: IEEE Trans. Applied Supercond. 28 (2018) 8200805.
19. Robert, B. C.: Supercond. Sci Technol. 31 (2018) 035006.
20. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705.

Korpela, A., Kalliohaka, T., Lehtonen, J., Mikkonen, R., Pitel, J., Kováč, P., : Current-voltage characteristics of an HTS coil having a hot spot. IEEE Trans. Applied Supercond. 12 (2002) 1438-1441.

1. Romanovskii, V.R.: IEEE Trans. Applied Supercond. 17 (2007) 3133.
2. Belguerras, L.: Supercond. Sci Technol. 28 (2015) 095003.
3. Lai, L.: IEEE Trans. Applied Supercond. 26 (2016) 4701805.
4. Messina, G.: IEEE Trans. Applied Supercond. 31 (2021) ‏ 1.

Kováč, P., Hušek, I., Kopera, Ľ., Melišek, T., van Eck, H., Metz, B., ten Haken, B., : Electrical and mechanical properties of Bi-2223/Ag tapes made by TIRT technique. Physica C 372-376 (2002) 891-894.

     1. Ahoranta, M.: Supercond. Sci Technol. 22 (2009) 015012.

Kováč, P., Hense, K., Melišek, T., Hušek, I., Kirchmayr, H., : Ic anisotropy and Ic hysteresis in MgB2/Fe/Cu tape. Supercond. Sci Technol. 15 (2002) 1037-1039.

     1. Chen, L.P.: Chinese Phys. Lett. 24 (2007) 2074.
2. Chen, L.P.: Supercond.  Sci Techn. 24 (2011) 015002.

Gömöry, F., Šouc, J., Fabbricatore, P., Farinon, S., Strýček, F., Kováč, P., Hušek, I., : Magnetic hysteresis loss in Bi-2223/Ag tapes with different filament arrangement. Physica C 371 (2002) 229-236.

      1. Pardo, E.: Phys. Rev. B 67 (2003) 104517.
2. Chen, D.: Supercond. Sci Technol. 17 (2004) 1477.
3. Pardo, E.: Supercond. Sci Technol. 17 (2004) 537.
4. Gencer, A.: Physica C 445 (2006) 772.
5. Odintsov, D.S.: J. Experimen. Theoret. Phys. 103 (2006) 66.
6. Oku, T.: Nanotechnol. Rev. 3 (2014) SI413.

Pitel, J., Korpela, A., Lehtonen, J., Kováč, P., : Mathematical model of voltage–current characteristics of Bi(2223)/Ag magnets under an external magnetic field. Supercond. Sci Technol. 15 (2002) 1499-1506.

      1. Wolfus, Y.: Physica C 401 (2004) 222.
*    2. Abe, S.: IoP Conf. Ser. No 181 (2004) 519.
3. Ishiguri, S.: IEEE Trans. Applied Supercond. 14 (2004) 1858.
4. Abe, S.: Physica C  412-414 (2004) 1230.
5. Higashikawa, K.: Physica C 419 (2005) 129.
6. Ishiguri, S.: Physica C 426 (2005) 1390.
7. Wang, Y.: Supercond. Sci Technol. 19 (2006) 1278.
8. Adanny, Y: J. Phys.: Conf. Series 43 (2006) 1068.
9. Nayak, P.K.: Physica C 469 (2009) 211.
10. Altin, S.: J. Supercond. Novel Magnetism 24 (2011) 223.
11. Goemoery, F.: In: High Temperature Superconductors (HTS) for Energy Applications. Woodhead Publ. 2012. P. 216.
12. Grilli, F.: IEEE Trans. Applied Supercond. 24 (2014) 6648727.
13. Grilli, F.: IEEE Trans. Applied Supercond. 24 (2014) 8200433.

Jirsa, M., Yurchenko, V., Novák, V., Kováč, P., Hušek, I., : Peculiarities of induced inter-granular currents in Bi-2223/Ag tapes. Physica C 372-376 (2002) 1855-1858.

     1. Ding, Y.: J. Alloys Compounds 509 (2011) 1424.

Kováč, P., Hušek, I., : Reactivity and oxygen diffusion property of resistive barriers for Bi-2223/Ag tapes. Physica C 383 (2002) 55-58.

     1. Ayai, N.: Physica C 392 (2003) 1003.
2. Terzioglu, C.: Physica C 434 (2006) 153.

Korpela, A., Kalliohaka, T., Lehtonen, J., Mikkonen, R., Pitel, J., Kováč, P., : Relation between different critical current criteria and quench current in HTS magnets. Physica C 372-376 (2002) 1360-1363.

      1. Polak, M.: Supercond. Sci Technol. 19 (2006) 256.
2. Romanovskii, V.R.: J. Applied Phys. 100 (2006) 063905.
#    3. Koo, M.: Trans. Korean Inst. Electrical Engn. 57 (2008) 1970.
4. Liu, H.W.: IEEE Trans. Applied Supercond. 20 (2010) 2176.
5. Nagasaki, Y.: IEEE Trans. Applied Supercond. 23 (2013) 4603405.
6. Haro, E.: IEEE Trans. Applied Supercond. 25 (2015) 4901107.

Pachla, W., Diduszko, R., Kováč, P., Hušek, I., and Presz, A.: Spatial structure and composition homogeneity in Bi-2223 TIRT tapes, Physica C 371 (2002) 291-300.

*     1. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
2. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.

Pachla, W., Presz, A., Diduszko, R., Kováč, P., Hušek, I., : Structural inhomogeneity of superconducting ex situ MgB2/Cu wires made by the powder-in-tube technique. Supercond. Sci Technol. 15 (2002) 1281-1287.

      1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Wang, Q.Y.: Rare Metal Mater. Engn. 36 (2007) 977.
3. Liu G: Rare Metal Mater. Engn. 42 (2013) 396.
4. Xu, D.: Supercond. Sci Technol. 29 (2016) 045009.
5. Xu, D.: Supercond. Sci Technol. 29 (2016) 105019.

Kováč, P., Hušek, I., Pachla, W., Melišek, T., Diduszko, R., Fröhlich, K., Morawski, A., Presz, A., Machajdík, D., : Structure, grain connectivity and pinning of as-deformed commercial MgB2 powder in Cu and Fe/Cu sheaths. Supercond. Sci Technol. 15 (2002) 1127-1132.

      1. Feng, Y.: Supercond.  Sci Techn. 16 (2003) 682.
2. Feng, Y.: Physica C 386 (2003) 598.
3. Yamamoto, K.: Supercond.  Sci Techn. 16 (2003) 1052.
4. Feng, Y.: J. Physics-Cond. Matt. 15 (2003) 6395.
#    5. Feng, Y.: Tsinghua Sci Technol. 8 (2003) 316.
#    6. Nesterenko, V.F.: Process. Fabrication Advanced Mater. XII (2003) 40.
*    7. Horvath, J.: Horizonts in Supercond. Res. Nova Sci Publ. 2003.
*    8. Goodsir, L.: PhD Thesis. Oxford: Oxford Materials 2003.
9. Feng, Y.: J. Physics-Cond. Matt. 16 (2004) 1803.
*    10. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
11. Feng, Y.: Physica C 426 (2005) 1216.
*    12. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
*    13. Goldacker, W.: Fronties in Supercond. Matreials. Berlin: Springer 2005.
14. Liang, G.: Physica C 442 (2006) 113.
15. Liang, G.: J. Alloys Compounds 422 (2006) 73.
*    16. Goldacker, W.: Adv. Sci Technol. 47 (2006) 143.
17. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
18. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
19. Wang, Q.Y.: Rare Metal Mater. Engn. 36 (2007) 977.
20. Yan, G.: Beijing Inter. Materials Week 2006. 546-549 (2007) 1913.
21. Aldica, G.: J. Phys.: Conf. Series 150 (2009) 052006.
22. Yang, H.: Applied Surface Sci 261 (2012) 364.
23. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
      24. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
#    25. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.

Pitel, J., Kováč, P., Hense, K., Kirchmayr, H., : Theoretical analysis of HTS windings made of Bi(2223)/Ag tapes prepared by a tape-in-rectangular tube technique. IEEE Trans. Applied Supercond. 12 (2002) 1475-1478.

#    1. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
#     2. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.

Kováč, P., Hušek, I., Melišek, T., Metz, B., van Eck, H., ten Haken, B., : Transport currents in Bi-2223/Ag tapes made using the tape-in-rectangular tube process, current distribution and Ic stress degradation. Supercond. Sci Technol. 15 (2002) 624-629.

     1. Usak, P.: Physica C 384 (2003) 93.
2. Inada, R.: Physica C 392 (2003) 1091.
3. Inada, R.: IEEE Trans. Appl. Supercond. 13 (2003) 3618.
4. Yang, B.: J. Modern Optic 51 (2004) 619.
*    5. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
6.  Demencik, E.: Supercond. Sci Technol. 19 (2006) 848.
7. Usak, P.: J. Phys.: Conf. Series 43 (2006) 55.

Kováč, P., Hušek, I., Melišek, T., : Transport currents of two-axially rolled and post-annealed MgB2/Fe wires at 4.2 K. Supercond. Sci Technol. 15 (2002) 1340-1344.

     1. DeFouw, J.D.: Applied Phys. Lett. 83 (2003) 120.
2. Yan, G.: Chinese Sci Bulletin 48 (2003) 1331.
*   3. Senatore, C.: IoP Conf. Ser. No 181 (2004) 2494.
4. Horvat, J.: Applied Phys. Lett. 84 (2004) 3109.
5. Wang, X.L .: Supercond. Sci Technol. 17 (2004) L21.
*   6. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
7. Sumption, M.D.: Supercond. Sci Technol. 18 (2005) 730.
*   8. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
9. Sumption, M.D.: Supercond. Sci Technol. 19 (2006) 155.
10.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
11. Yan, S.C.: Physica C 466 (2007) 96.
12. Haessler, W.: IEEE Trans. Applied Supercond. 17 (2007) 2919.
* 13. van Weeren, H.: PhD Thesis. Enschede: 2007.
14. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817.
15. DeFouw, J.D.: Acta Materialia 57 (2009) 4745.
16. Dancer, C.E.J.: Supercond. Sci Technol. 23 (2010) 065015.
17. Dancer, C.E.J.: Ceramic Engn. Sci Proc. 32 (2011) 111.
18. Lyly, M.: IEEE Trans. Applied Supercond. 23 (2013) 8200909.
19. Ishmael, S.A.: IEEE Trans. Applied Supercond. 25 (2015) 6200908.
20. Ulgen, A.T.: J. Supercond. Novel Magnetism 30 (2017) 3367.

Kováč, P., Hušek, I., Kopera, Ľ., van der Meer, O., Metz, B., ten Haken, B., Kvitkovič, J., and Polák, M.: Transversal and longitudinal current distribution in Bi-2223/Ag tapes with high filament aspect ratio, Physica C 372-376 (2002) 916-918.

1. Takacs, S.: Supercond. Sci Technol.  15 (2002) 1377.
2. Talantsev, E.F.: AIP Adv. 7 (2017) 125230.
3. Talantsev, E.F.: Sci Rep. 8 (2018) 14463.
4. Talantsev, E.F.: Mater. Res. Express 6 (2019) 026002.
5. Talantsev, E.F.: Modern Phys. Lett. B 35 (2021) 2150226.

Kováč, P., Hušek, I., Melišek, T., Kawano, K., Abell, S., : BSCCO/Ag tapes made by a tape-in-rectangular tube process. Supercond. Sci Technol. 14 (2001) 139-144.

      1. Farinon, S.: IEEE Trans. Applied Supercond. 11 (2001) 2776.
2. Stavrev, S.: Physica C 378 (2002)  1091.
3. Gomory, F.: Physica C 372 (2002)  1028.
*    4. Stavrev, S.: PhD Thesis. Lausanne: EPFL 2002.
5. Inada, R.: Physica C 392 (2003) 1091.
6. Inada, R.: IEEE Trans. Applied Supercond. 13 (2003) 3618.
7. Fedor, J.: Rev. Scientific Instrum. 74 (2003) 5105.
8. Inada, R.: Frontiers Supercond. Materials 3 (2004) 113.
#    9. Guo, R.-C.: Dongbei Daxue Xuebao/J. Northeastern Univ. 25 (2004) 863.
*    10. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
11. Ahoranta, M.: Supercond.  Sci Technol. 22 (2009) 015012.

Kováč, P., Bukva, P., : Differences in applied axial strain and Ic degradation of Bi(2223)/Ag tapes. Supercond. Sci Technol. 14 (2001) L8-L11.

    1. Shin, H.S.: Supercond. Sci Technol. 16 (2003) 1012.
2. Sugano, M.: Physica C 402 (2004) 341.
3. Ha, H.S. : Physica C  412-414 (2004) 1096.
4. Zhang, G.M.: IEEE Trans. Applied Supercond. 15 (2005) 2835.
5. Huang, X.: Materials Sci Forum 546-549 (2007) 1971.
6. Sugano, M.: IEEE Trans. Applied Supercond. 18 (2008) 1143.
7. van der Laan, D.C.: Supercond. Sci Technol. 23 (2010) 014004.
8. van der Laan, D.C.: Supercond. Sci Technol. 24 (2011) 115010.
9. van der Laan, D. C.: IEEE Trans. Applied Supercond. 22 (2012) 8400707.
  10. Guan, M.: J. Supercond. Novel Magnetism 27 (2014) 2257.
11. Kazazi, M.: IEEE Trans. Applied Supercond. 28 (2018) 9500405.

Diantoro, M., Tjia, M.O., Kováč, P., and Hušek, I.: Pinning mechanism in Bi-2223 tapes with reinforced Ag sheath and oxide additives in the core, Physica C 357-360 (2001) 1182-1185.

1. Hendrik, S.P.: IOP Conf. Ser. 202 (2017) 012025.
2. Awad, M.A.: Mater. Lett.‏ 268 (2020) 127626.

Pachla, W., Kováč, P., Hušek, I., Diduszko, R., Presz, A., : Effect of starting precursor on Ic anisotropy in powder-in-tube (Bi, Pb)2223/Ag tapes. Supercond. Sci Technol. 14 (2001) 631-636.

        1. Yakinci, Z.D.: Physica C 408-410 (2004) 900.

Pitel, J., Kováč, P., Lehtonen, J., Paasi, J., : Energy and critical current considerations of Bi(2223)/Ag coils for micro-superconducting magnetic energy storage: influence of operating temperature and winding geometry within the same overall tape length. Supercond. Sci Technol. 14 (2001) 173-183.

     1. Friedman, A.: J. Materials Process. Technol. 161 (2005) 28.
2. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
3. Pardo, E.: Supercond. Sci Technol. 24 (2011) 065007.
4. Pardo, E.: Supercond. Sci Technol. 25 (2012) 035003.
5. Nagasaki, Y.: Physica C 492 (2013) 96.

Kováč, P., Hušek, I., Melišek, T., Pachla, W., Diduszko, R., : Filament aspect ratio and transport currents of Bi(2223)/Ag at 77 K. Physica C 349 (2001) 179-188.

     1. Majoros, M.: Supercond. Sci Technol. 14 (2001) 353.
2. Seiler, E.: Physica C 372 (2002) 1797.

Kováč, P., Hušek, I., Pachla, W., Diantoro, M., Bonfait, G., Maria, J., Fröhlich, K., Kopera, Ľ., Diduszko, R., and Presz, A.: Material for resistive barriers in Bi-2223/Ag tapes, Supercond. Sci Technol. 14 (2001) 966-972.

1. Nakamura, Y.: Physica C 445 (2006) 726.
2. Machida, T.: Physica C 468 (2008) 1764
3. Nakamura, Y.: Physica C 469 (2009) 1496.
4. Nakamura, Y.: Physica C 470 (2010) 1369.
5. Paramarta, I. B.A.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012022.
6. Suardana, P.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012066.
7. Suharta, W.G.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012037.
8. Awad, M.A.: Mater. Lett.‏ 268 (2020) 127626.

Pitel, J., Kováč, P., Kasztler, A., Kirchmayr, H., : Optimization of winding geometry of Bi(2223)Ag coils with respect to external magnetic field. IEEE Trans. Applied Supercond. 11 (2001) 2324-2327.

1. Sumiyoshi, F.: Physica C 372 (2002) 1402.
*   2. Sumiyoshi, F.: IoP Conf. Ser. No 181 (2004) 2420.
3. Higashikawa, K.: IEEE Trans. Applied Supercond. 15 (2005) 1895.
4. Kawagoe, A.: Electrical Engn. in Japan 153 (2005) 12.
5. Polak, M.: Supercond. Sci Technol. 19 (2006) 256.
6. Mseddi, A.: J. Renewab. Sustainab. Energy 13 (2021) 013501.

Gömöry, F., Frolek, L., Šouc, J., Laudis, A., Kováč, P., Hušek, I., : Partitioning of transport AC loss in a superconducting tape into magnetic and resistive components. IEEE Trans. Applied Supercond. 11 (2001) 2967-2930.

*    1. Rabbers,, J.J.: PhD Thesis. Enschede, Twente Univ. 2001.
*    2. Schönborg, N.: PhD Thesis. Stockholm: Royal Inst. Technol. 2001.
3. Schonborg, N.: IEEE Trans. on Appl. Supercond. 11 (2001) 4078.
*    4. Stavrev, S.: PhD Thesis. Lausanne: EPFL 2002.
5. Sjostrom, M.: IEEE Trans. Appl. Supercond. 13 (2003) 1890.
6. Zhang, G.M.: Chinese Physics 12 (2003) 553.
7. Takács, S.: Physica C 401 (2004) 187.
8. Baldan, C.: IEEE Trans. Applied Supercond. 14 (2004) 863.
9. Suarez P.: J. Phys.: Conf. Series 97 (2008).
10. Suarez, P.: IEEE Trans. Applied Supercond. 19 (2009) 2395.
11. Ceballos, J.M: Emerging Trends Technol. Innov. 314 (2010) 487.
12. Suarez, P.: IEEE Trans. Applied Supercond. 21 (2011) 1267.
13. Dai, J.S.: IEEE ASEMD 2013 6780723, pp. 124.
14. Dai, J.S.: IEEE Trans. Applied Supercond. 24 (2014) 9002104.
15. Demencik, E.: IEEE Trans. Applied Supercond. 26 (2016) 9001004.
16. Rangaiah, P.K.B.: Proc. European Conf. Antennas Propagation – EUCAP 2020.

Kováč, P., Huang, Y., Hušek, I., Spiller, D., Bukva, P., : The effect of intermediate deformation by eccentric rolling on the Jc(B) performance of multicore Bi-2223/Ag tapes. Physica C 356 (2001) 53-61.

      1. Feng, R.B.: Physica C 386 (2003) 182.
2. Bourgault, D.: Supercond. Sci Technol. 17 (2004) 463.
3. Yuan, G.: Frontiers Supercond. Materials 3 (2004) 121.

Skov-Hansen, P., Koblishka, M., Vase, P., Kováč, P., Marti, F., : The effect of intermediate pressure in the OPIT fabrication on the current paths and the current carrying capability of Bi-2223 tapes. IEEE Trans. Applied Supercond. 11 (2001) 3740-3743.

      1. Yi, H.P.: Physica C 419 (2005) 109.

Lehtonen, J., Paasi, J., Korpela, A., Pitel, J., Kováč, P., : AC losses in magnets wound of HTS tape conductors In: Advanced in Cryogenic Engn. Ed. U.B.Balachandran. Vol. 46, Part B – ICMC-99 Montreal. New York, Kluwer Acad. 2000, P. 839-846.

       1.  Nah, W.: Cryogenics 41 (2001) 631.
2. Kang, J.: IEEE Trans. Applied Supercond. 13 (2003) 2218.
3. Park, I.H.: IEEE Trans. Applied Supercond. 13 (2003) 1836.
4. Byun, J.K.: IEEE Trans. Magnetics 39 (2003) 2137.
5. Byun, J.K.: IEEE Trans. Applied Supercond. 14 (2004) 1842.

Gömöry, F., Hušek, I., Kováč, P., Kopera, Ľ., : AC susceptibility, critical densities and AC losses of Bi-2223/Ag tapes in perpendicular AC magnetic field. In: Studies in High-Temperature Phys. Vol. 32. Ed. A.Narlikar. New York: Nova Sci. Publ. 2000. P. 63.

      1. Hu, L.: Physica C 392 (2003) 1102.
*    2. Diantoro, M.: PhD Thesis. Bandung: IT 2004.

Pitel, J., Kováč, P., Hušek, I., : Calculation of the critical currents of Bi(2223)/Ag tapes and coils with reduced anisotropy in Ic(B) characteristic — effect of different proportional representations of the filaments oriented parallel and perpendicularly to the tape surface. Physica C 330 (2000) 130-140.

       1. Usak, P.: Sixth Cryogenics 2000. P. 60.
2. Yamaguchi, M.: IEEE Trans. Applied Supercond. 13 (2003) 1848-1851.
3. Ahn, M.C.: IEEE Trans. Appl. Supercond. 13 (2003) 2080-2083.
4. Usak, P.: Supercond. Sci. Technol. 16 (2003) 459-463.
5. Higashikawa, K.: Physica C 419 (2005) 129.
6. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
7. Watanabe, M.: IEEE Trans. Appl. Supercond. 17 (2007) 2002.
#     8. Koo, M.: Trans. Korean Inst. Electrical Engn. 57 (2008) 1970.
#     9. Kang, M.: Trans. Korean Inst. Electrical Engn. 58 (2009) 502.
10. Kang, M.: IEEE Trans. Applied Supercond. 19 (2009) 1257.
11. Tsuzuki, K.: IEEE Trans. Applied Supercond. 23 (2013) 4603304.

Cesnak, L., Kováč, P., Gömöry, F., : Current and voltage distribution in composite superconductors with resistive barriers – symmetric case. Supercond. Sci Technol. 13 (2000) 1450-1460.

      1. Levin, G.A.: Supercond. Sci Technol. 20 (2007) 757.

Pachla, W., Diduszko, R., Kováč, P., Hušek, I., : Distribution of inhomogeneities across the ceramic core in monocore (Bi,Pb)-2223/Ag tapes. Supercond. Sci Technol. 13 (2000) 373-377.

       1. Warmont, F.: Supercond. Sci Technol. 14 (2001) 145.
2. Yang, B.: J. Modern Optic 51 (2004) 619.

Kováč, P., Hušek, I., Gömöry, F., Oduleye, O., Pachla, W., Diduszko, R., McN Alford, N., : Electrical and mechanical properties of Bi-2223/Ag/barrier/Ag composite tapes. Supercond. Sci Technol. 13 (2000) 378-384.

      1. Eckelmann, H.: Physica C 355 (2001) 278.
2. Hassler, W.: IEEE Trans. Applied Supercond. 11 (2001) 2951.
3. Takacs, S.: Supercond. Sci Technol. 15 (2002) 1377.
4. Goldstein, R.J.: Int. J. Heat & Mass Transfer 45 (2002) 2853.
5. Hu, L.: Physica C 392 (2003) 1102.
#    6. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
7. Nakamura, Y.: Physica C 470 (2010) 1369.
#     8. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.

Hušek, I. and Kováč, P.Evaluation of core density during the two-axial rolling of BSCCO/Ag composite, Supercond. Sci Technol. 13 (2000) 385-390.

1. Witz, G.: IEEE Trans. Applied Supercond. 11 (2001) 3744.
2. Ha, H.S.: IEEE Trans. Applied Supercond. 11 (2001) 3748.
3. Witz, G.: Physica C 357-360 (2001) 1119.
4. Chen, W.M.: J. Supercond. 14 (2001) 539.
5. Beneduce, C.: Physica C 372 (2002)  980.
6. Lu, Y.J.: Chinese J. Mechanical Engn. 22 (2009) 890.
7. Lu, Y.J.: J. Materials Sci 45 (2010) 3514.
8. Lu, Y.: Rare Metal Mater. Engn.42 (2013) 536.
9. Ma, X.: J. Supercond. Novel Magnetism 31 (2018) 3105.

Gömöry, F., Šouc, J., Laudis, A., Kováč, P., Hušek, I., : Experimental study of the effect of filament orientation on transport and magnetic ac loss in Bi-2223/Ag multifilamentary tapes. Supercond. Sci Technol. 13 (2000) 1580-1586.

    1. Inada, R.: Physica C 382 (2002) 117.
2. Inada, R.: Physica C 378 (2002) 1133.
3. Inada, R.: Proc. Mater. Research Soc. Symp. 689 (2002) 193.
4. Pardo, E.: IEEE Trans. Applied Supercond. 13 (2003) 3566.
5. Pardo, E.: Phys. Rev. B 67 (2003) 104517.
6. Inada, R.: Proc. Mater. Research Soc. Symp. (2004) 113.
7. Pardo, E.: Phys. Rev. B 71 (2005)  134517.
8. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.
9. Huang, C.-G.: J. Low Temp. Phys. 172 (2013) 59.
10. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.

Pitel, J., Kováč, P., Melišek, T., Kasztler, A., Kirchmayr, H., : Influence of the winding geometry on the critical currents and magnetic fields of cylindrical coils made of Bi(2223)Ag anisotropic tapes. IEEE Trans. Applied Supercond. 10 (2000) 478-481.

*   1. Lehtonen, J.: Doctor Thesis. Tampere University of Technology, (2000).
2. Noguchi, S.: IEEE Trans. Applied Supercond. 11 (2001) 2308.
3. Noguchi, S.: IEEE Trans. Applied Supercond. 12 (2002) 1459.
4. Noguchi, S.: IEEE Trans. Applied Supercond. 13 (2003) 1856..
5. Korpela, A.: Supercond. Sci Technol. 16 (2003) 833.
6. Cai, J.-J.: Proc. IEEE Inter. Conf. on Mechatronics, ICM ’05 (2005) art. no. 1529324. P. 587.
7. Wang, C.: ICEC 20 2005. P. 713.
8. Cai, J.J.: ICEC 20 2005. P. 549.
#   9. Cai, J.-J.: Proc. Chinese Soc. Electrical Engn. 28 (2008) 138.
10. Kang, M.: ICEMS 2008: Proc. 11th Inter. Conf. Electr. Machines Systems. IEEE 2008. 1- 8. P. 704.
11. Kang, M.: IEEE Trans. Applied Supercond. 19 (2009) 1253.
12. Chen, X.Y.: IEEE Trans. Applied Supercond. 24 (2014) 4603404.
13. Chen, X.Y.: IEEE Trans. Applied Supercond. 26 (2016) 4902507.
14. Zheng, Z.-X.: IEEE Trans. Applied Supercond. 27 (2017) 5700911.
15. Jin, J.-X.: IEEE Trans. Applied Supercond. 28 (2018) 5700905.
16. Chen, X.Y.: Supercond. Sci Technol. 34 (2021) 095008.

Lehtonen, J., Paasi, J., Pitel, J., Kováč, P., : Magnetization losses in magnets wound from anisotropic HTS tape conductors. Physica C 336 (2000) 261-270.

     1. Kiss, T.: IEEE Trans. Applied Supercond. 11 (2001) 3900.
*   2. Rabbers,, J.J.: PhD Thesis. Enschede, Twente Univ. 2001.
3. Rabbers, J. J.: Cryogenics 42 (2002) 771.
4. Rabbers, J.J.: IEEE Trans. Appl. Supercond. 13 (2003) 1731.
*   5. Wass, T.: IoP Conf. Ser. No 181 (2004) 2005.
6. Polak, M.: IEEE Trans. Applied Supercond. 18 (2008) 1240
7. Kvitkovic, J.: IEEE Trans. Applied Supercond. 18 (2008) 1621.
8. Alex, F.: J. Phys.: Conf. Series 234 (2010) 032014.
9. Zhou, W.: J. Supercond. Novel Magnet. 31 (2018) 951.

Kováč, P., Cambel, V., Kopera, Ľ., Melišek, T., Pitel, J., Bukva, P., : Quality measurement of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Ser. No. 167 (2000) 531-534.

      1. Kvitkovic, J.: Physica C 370 (2002) 187.

Kováč, P., Melišek, T., Kasztler, A., Pachla, W., Diduszko, R., Pitel, J., Kirchmayr, H., : Transport current and texture of Bi-2223 grains in multicore Ag sheathed tapes IoP Conf. Ser. No. 167 (2000) 535-538.

       1. Huang, Y. B. : Supercond. Sci Technol. 13 (2000)  1011.
2. Bourgault, D.: Supercond. Sci Technol. 17 (2004) 463.
*     3. Seiler, E.: PhD Thesis. Bratislava: ElÚ SAV 2005.

Kováč, P., Richens, P., Bukva, P., Jones, H., Hušek, I., : Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress Supercond. Sci Technol. 12 (1999) 168-171.

*    1.  Rabara M.: Doctoral disertation. Univ. Tokyo, 1999.
2. Sobha, : Supercond. Sci Technol. 13 (2000) 1487.
3. Witz, G.: Inst. Phys. Conf. Ser. No 167 (2000)  863.
4. Kvitkovič, J.: Inst. Phys. Conf. Ser. No 167 (2000)  523.
5. Beilin, V.: Inst. Phys. Conf. Ser. 167 (2000) 665.
6. Chen, W.M.: J. Supercond. 14 (2001) 539.
7. Kitaguchi, H.: Physica C  357 (2001) 1193.
8. Kitaguchi, H.: IEEE Trans. Applied Supercond. 11 (2001) 3058.
9. Chen, W.M.: IEEE Trans. Applied Supercond. 11 (2001)  3752.
10.  Kitaguchi, H.: IEEE Trans. Applied Supercond. 12 (2002) 1141.
11. Chen, W.M.: Advances Cryogenic Engn. 48a, B 614 (2002) 748.
12. Shin, H.S.: Supercond. Sci Technol. 16 (2003) 1012.
13. Oh, S.S.: Supercond. Sci Technol. 17 (2004) 130.
#    14. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
#     15. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440.

Lehtonen, J., Korpela, A., Paasi, J., Pitel, J., Kováč, P., : Computational comparison of magnetization losses in HTS solenoids wound of tape conductors having different aspect ratios Supercond. Sci Technol. 12 (1999) 450-455.

     1. Hofmann, C.: Supercond. Sci Technol. 14 (2001) 34.
2. Hofmann, C.: Supercond. Sci Technol. 14 (2001) 41.

Kováč, P., Cesnak, L., Melišek, T., Hušek, I., Bukva, P., Pitel, J., Kopera, Ľ., Pachla, W., Bucholtz, W., : Currents in series and parallel connections of small inner bore coils wound from Bi(2223)/Ag tapes and treated by the wind and react technique Supercond. Sci Technol. 12 (1999) 507-513.

     1. Sneary, A.B.: Supercond. Sci  Technol. 14 (2001) 433.
2. Belenli, I. : Supercond. Sci. Technol. 16 (2003) 39.
3. Yuan, J.: Medical Engn. Phys. 29 (2007) 442.

Cesnak, L., Melišek, T., Kováč, P., Hušek, I., : Equivalent scheme for the V-I characteristics of Bi-2223/Ag tapes at 77 K Supercond. Sci Technol. 12 (1999) 491-498.

     1. Spal, R.D.: Applied Phys. Lett. 80 (2002) 1412.
2. Lau, K.T.: J. Materials Sci 16 (2005) 17.
3. Lau, K.T.: J. Applied Phys. 99 (2006) 123904.

Kováč, P., Cambel, V., and Bukva, P.: Measuring the homogeneity of Bi(2223)/Ag tapes by four probe method and Hall probe array Supercond. Sci Technol. 12 (1999) 465-471.

1. Kawano, K.: Supercond. Sci Technol. 13 (2000) 1373.
2. Takacs, S.: Supercond. Sci Technol.  15 (2002) 1377.
3. Gandini, A.: IEEE Trans. Applied Supercond. 13 (2003) 3332.
*    4. González-Jorge, H.: Revista Matéria 10 (2005) 250.
5. Giordanengo, S.: Nuclear Instrum. Methods Phys. Res. A 613 (2010) 317.
6. Talantsev, E.F.: AIP Adv. 7 (2017) 125230.
7. Talantsev, E.F.: AIP Adv. 8 (2018) 075213.
8. Talantsev, E.F.: Mater. Res. Express 6 (2019) 026002.
9. Talantsev, E.F.: Modern Phys. Lett. B 35 (2021) 2150226.

Rábara, M., Sekimura, N., Kitaguchi, H., Kováč, P., Demachi, K., and Miya, K.: Tensile properties and probability of filament fracture in Bi-2223 superconducting tapes, Supercond. Sci Technol. 12 (1999) 1129-1133.

1. Sobha, A.: Supercond. Sci Technol. 13 (2000) 1487.
2. Aloysius, RP.: Supercond. Sci Technol. 14 (2001) 85.
3. Skov-Hansen, P.: Physica C 372 (2002)  927.
4. Nyilas, A.: Supercond. Sci Technol. 16 (2003) 1036.
5. Ha, H.S.: Physica C  412-414 (2004) 1096.
6. Yuan, J.: J. Magnetic Resonance 182 (2006) 298.
#    7. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
#     8. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
9. Zhang, Z.: J. Supercond. Novel Magnetism 27 (2014) 1387.
10. Gao, P.-F.: Chinese Phys. Lett. 31 (2014) 047401.
11. Gao, P.: Supercond. Sci Technol. 32 (2019) 034003.

Kováč, P., Hušek, I., Rosová, A., Pachla, W., : Thermomechanical treatment, structure and transport currents in multicore Bi(2223)/Ag tapes Physica C 312 (1999) 179-190.

     1. Fabbricattore, P.: Supercond. Sci Technol. 13 (2000) 1327.
2. Tjia, M. O.: Advances in Supercond. XII. Ed. T. Yamashita. Tokyo: Springer-Verlag Tokyo 2000. P. 679.
3. Kasztler, A.: Inst. Phys. Conf. Ser. No 167 (2000) 519.
4. Fabbricatore, P.: Physical Rev. B 61 (2000) 6413
5. Tjia MO.: Adv. Supercond. XII  (2000) 679.
6. Sneary, A.B.: Supercond. Sci Technol. 14 (2001) 433.
7. Farinon, S.: IEEE Trans. on Applied Supercond. 11 (2001) 2776-2779.
*    8. Stavrev, S.: PhD Thesis. Lausanne: EPFL 2002.
9. Yakinci, Z.D.: Physica C 408-410 (2004) 900.
10. Seiler, E.: Supercond. Sci Technol. 17 (2004) 549.
11. Grivel, J.C.: Supercond. Sci Technol. 18 (2005) 583.
*   12. Seiler, E.: PhD Thesis. Bratislava: ElÚ SAV 2005.
13. Gomory F.: Supercond. Sci. Technol. 20 (2007)  S271.
14. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
15. Farinon, S.: Supercond. Sci Technol. 23 (2010) 115004.

Pitel, J., Kováč, P., Hušek, I., : Upper limit of the critical currents and magnetic fields of cylindrical coils made of Bi(2223)/Ag tapes with reduced Ic-anisotropy Supercond. Sci Technol. 12 (1999) 62-68.

       1. Evetts, J.E.: IoP Conf. Ser. 167 (2000) 1.
2. Evetts, J.E.: Supercond. Sci Technol. 13 (2000) 443.
3. Nakamura, T.: Supercond. Sci Technol. 13 (2000) 1521.
*     4. Lehtonen, J.: Doctor Thesis. Tampere University of Technology, (2000).
5. Usak, P.: Sixth Cryogenics 2000. P. 60.
6. Usak, P.: Supercond. Sci. Technol. 16 (2003) 459.
*      7. Xu, B.: PhD Thesis. Florida State Univ. College Engn. 2004.
8. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
9. Adanny, Y: J. Phys.: Conf. Series 43 (2006) 1068.

Fabbricatore, P., Priano, C., Testa, M., Musenich, R., Kováč, P., Matrone, A., Pertillo, E., Ariante, M., : Field distribution effect on the performance of coil wound with Ag/Bi2223 tape Supercond. Sci Technol. 11 (1998) 304.

     1. Sasaki-Y.: Adv. Supercond. XII. Ed. T. Yamashita. Tokyo: Springer-Verlag Tokyo 2000. P. 751.
2. Oh, S. S.: IoP Conf. Ser. No 167 (2000) 491.
*    3. Lehtonen, J.: Doctor Thesis. Tampere Univ. Technol. (2000).
*    4. Paasi, J.: Studies High Temp. Supercond.. Ed. A.V. Narlikar 32 (2000) 125.
*    5. Richens, P.E.: PhD Thesis. Univ. Oxford, 2000.
6. Sneary, A.B.: Supercond. Sci Technol. 14 (2001) 433.
7. Mikkonen, R.: IEEE Trans. Applied Supercond. (2001) 11 1757.
8. Ahoranta, M.: Supercond. Sci Technol. 15 (2002) 1421.
9. Korpela, A.: Supercond. Sci Technol. 16 (2003) 833.
10. Korpela A.: Supercond. Sci Technol. 16 (2003) 355.
11. Gu, C.: Physica C 423 (2005) 37.
12. Cai, J.-J.: Proc. IEEE Inter. Conf. on Mechatronics, ICM ’05 (2005) art. no. 1529324. P. 587.
13. Cai, J.J.: ICEC 20 (2005). P. 549.
14. Gu, C.: Supercond. Sci Technol. 20 (2007) 133.
15. Kvitkovic, J.: IEEE Trans. Applied Supercond. 18 (2008) 1621.
16. Hiltunen, I.: Physica C 468 (2008) 903.
#   17. Cai, J.-J.: Proc. Chinese Soc. Electr. Engn. 28 (2008) 138.
18. Wang, X.: IEEE Trans. Applied Supercond. 20 (2010) 368.
19. Wang, X .: Supercond. Sci Technol. 29 (2016) 065007.
20. Shi, Y.: Physica C 550 (2018) 10.

Pitel, J., Kováč, P., : Influence of an axial current density stepping on the critical currents and magnetic field of cylindrical magnets wound with Bi(2223)/Ag anisotropic tapes Physica C 305 (1998) 26.

*    1. Lehtonen, J.: Doctor Thesis. Tampere Univ. Technology, (2000).
2. Ahn, M.C.: IEEE Trans. Applied Supercond. 13 (2003) 2080.
3. Ahn, M.C.: Cryogenics 43 (2003) 555.
4. Bae, D.K.: IEEE Trans. Applied Supercond. 15 (2005) 1965.

Prester, P., Kováč, P., Hušek, I., : Initial dissipation and a finite size effect in inhomogeneous superconductors: the case of BPSCCO/Ag tapes, Proc. SPIE 3481 (1998) 60-67.

      1. Kuzmin, Y.I.: Phys. Rev. B 64 (2001) 094519.
2. Kuzmin, Y.I.: Technical Phys. Lett. 30 (2004) 457.

Kopera, Ľ., Kováč, P., Hušek, I., : New rolling technique for texturing of Bi(2223)/Ag tapes Supercond. Sci Technol. 11 (1998) 433.

      1. Marti, F.: Supercond. Sci Technol. 11 (1998) 1251.
*    2. Marti, F.: Adv. Supercond. XI. Eds.: N.Kashizuka, S.Tajima. Tokyo, Springer Verlag 1999, p.939.
3. Marti, F.: IEEE Trans. Applied Supercond. 9 (1999) 2521.
4. Anderson, J.W.: Supercond. Sci Technol. 12 (1999) 617.
*    5. Kasztler, A.: PhD Thesis. Technical Univ. Wien (2000).
#    6. Dou, S.X.: Materials Forum 24 (2002) 183.
7. Feng, R.B.: Physica C 386 (2003) 182.
*    8. Dou, S.X.: In: Handbook of Supercond. Materials. Vol. I. Bristol: IoP 2003. P. 421.
9. Yuan, G.: Frontiers Supercond. Materials 3 (2004) 121.
*   10. Masti M.: PhD Thesis. Tampere Univ. Technol. (2006).
#   11. Parinov, I.A.: Microstructure and Properties of High-Temperature Superconductors. Springer: 2007. ISBN: 978-3-540-70976-3.
#     12. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
13. Togano, K.: Supercond. Sci Technol. 26 (2013) 115007.
14. Gao, Z.: Sci Reports 4 (2014) 4065.
15. Kumakura, H.: J. Japan Inst. Metals 78 (2014) 287.
16. Hosono, H.: Sci Technol. Adv. Mater. 16 (2015) 033503.

Cesnak, L., Kováč, P., : Self-sheath magnetoresistence anisotropy in Bi(2223)/Ag tapes at 4.2K Supercond. Sci Technol. 11 (1998) 659.

    1. Lehtonen, J.: Supercond.  Sci Technol. 13 (2000) 251.
*   2. Lehtonen, J.: Doctor Thesis. Tampere Univ. Technol. (2000).

Kováč, P., Hušek, I., Kopera, Ľ., : Application oftwo-axial rolling for multicore Bi(2223)/Ag tapes Supercond. Sci Technol. 10 (1997) 982.

      1. Glowacki, B.A.: Supercond. Sci Technol. 11 (1998) 989
2. Grasso, G.: Cryogenics 39 (1999) 267.
3. Grasso, G.: Trans. Applied Supercond. 9 (1999) 2589.
4. Evetts, J.E.: IoP Conf. Ser. 167 (2000) 1.
5. Takács, S.: IoP Conf. Ser. 167 (2000) 611.
6. Eriksen, M.: IoP Conf. Ser. 167 (2000) 615.
7. Bech, J.I.: IoP Conf. Ser. 167 (2000) 643.
8. Fabbricattore, P.: Supercond. Sci Technol. 13 (2000) 1327.
9. Fabbricattore, P.: Phys. Rev. B 61 (2000) 6413.
10. Vase, P.: Supercond. Sci Technol. 13 (2000) R71.
11. Evetts, J.C.: Supercond. Sci Technol. 13 (2000) 443.
12. Seifi, B.: CIRP Annals 2000: Manufacturing Techn. Cirp  Bern: Hallwag Publ.,  2000. P. 185.
*    13. Kasztler, A.: PhD Thesis. Technical Univ. Wien (2000).
14. Bech, J.I.: CIRP Ann-Manufct. Techn. 50 (2001) 201.
15. Farinon, S.: IEEE Trans. Applied Supercond. 11 (2001) 2776-2779.
16. Inada, R.: Physica C 392 (2003) 1091.
17. Oota, A.: IEEE Trans. Applied Supercond. 13 (2003) 3022.
18. Oota, A.: Physica C 386 (2003) 100.
*    19. Oota, A.: IoP Conf. Ser. No 181 (2004) 1898.
20. Oota, A.: Supercond. Sci Technol. 17 (2004) S440.
21. Bay, N.: J. Materials Processing Technol. 151 (2004) 18.
*    22. Seiler, E.: PhD Thesis. Bratislava: ElÚ SAV 2006.
*    23. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
24. Inada, R.: Supercond. Sci Technol. 20 (2007) 138.
25. Inada, R.: Physica C 463 (2007) 846.
26. Farinon, S.: Supercond. Sci Technol. 23 (2010) 115004.
27. Stenvall, A.: Supercond. Sci Technol. 24 (2011) 085016.
28. Jiang, J.: IEEE Trans. on Applied Supercond. 23 (2013) 6400206.

Kováč, P., Hušek, I., and Pachla, W.: Ceramic core dencity and homogenity in BSCCO/Ag tapes IEEE Trans. Applied Supercond. 7 (1997) 2098.

1. Jiang, J.: Supercond. Sci Technol. 11 (1998) 705.
2. Zeng, R.: Supercond. Sci Technol. 11 (1998) 299.
*    3. Eastell, Ch.J: PhD Thesis. Univ. Oxford (1998) 8-26.
4. Iyer, A.N.: Supercond. Sci Technol. 12 (1999) 436.
5. Iyer, A.N.: Supercond. Sci Technol. 13 (2000) 187.
6. Tundidor, J.: IoP Conf. Ser. 167 (2000) 543-546
7. Pandheeradi, M.: J. Manufact. Sci Engn.-Trans. ASME 123 (2001) 665.
8. Aloysius, R.P.: Physica C 384 (2003) 369.
#    9. Lei, L.: Chinese J. Mechanical Engn. 20 (2007) 75.
10. Yao, C.: Applied Physics Lett. 102 (2013) 082602.
11. Yao, C.: J. Applied Phys. 118 (2015) 203909.
#      12. Ma, X.: J. Phys.: Conf. Ser. 1054 (2018)  012041.

Pitel, J. and Kováč, P.: Compensation of the radial magnetic field component of solenoids wound with the anisotropic Bi(2223)Ag tape Supercond. Sci Technol. 10 (1997) 847.

1. Usak, P.: Refrigeration Sci Technol. 1998 (1998) 108.
*     2. Lehtonen, J. .: Doctor Thesis. Tampere Univ. Technol. 2000.
3. Sneary, A.B.: Supercond. Sci Technol. 14 (2001) 433.
4. Polak, M.: IEEE Trans. Applied Supercond. 12 (2002) 1632.
*     5. Abe, S.: IoP Conf. Ser. No 181 (2004) 519.
6. Abe, S.: Physica C  412-414 (2004) 1230.
7. Ishiguri, S.: IEEE Trans. Applied Supercond. 14 (2004) 1858.
8. Ishiguri, S.: Physica C 426 (2005) 1390.
9. Alamgir, A.K.M.: Physica C 440 (2006) 35.
10. Ishiguri, S.: IEEE Trans. Applied Supercond. 17 (2007) 2386.
11. Ishiguri, S.: Cryogenics 47 (2007) 31.
12. Ishiguri, S.: Physica C 468 (2008) 2152.
13. Ishiguri, S.: Physica C 468 (2008) 1028.
14. Kitaguchi, H.: Supercond. Sci Technol. 22 (2009)  045005.
15. Kitaguchi, H.: IEEE Trans. Applied Supercond. 20 (2010) 710.
16. Ishiguri, S.: Physica C 471 (2011) 333.
17. Kitaguchi, H.: IEEE Trans. Applied Supercond. 21 (2011) 1624.
18. Zhang, M.: J. Applied Phys. 111 (2012) 083902.
19. Ishiguri, S.: Cryogenics 52 (2012) 416.
20. Tomobuchi, Y.: IEEE Trans. Applied Supercond. 22 (2012) 3900606.
21. Chudy, M.: Supercond. Sci Technol. 26 (2013) 075012.
22. Nagai, M.: Physica C 495 (2013) 213.
23. Ishiguri, S.: IEEE Trans. Applied Supercond. 24 (2014) 4901104.
24. Chudy, M.: IEEE Trans. Applied Supercond. 24 (2014) 8200606.
25. Uchiyama, N.: Results in Phys. 6 (2016) 515.

Kováč, P., Cesnak, L., Melišek, T., Hušek, I., Fröhlich, K., : Critical current to n-exponent relation in Bi(2223)/Ag tapes Supercond. Sci Technol. 10 (1997) 605.

      1. Ramsbottom, H.D.: Applied Supercond. 5 (1997) 162.
2. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 843
3. Marti, F.: Supercond. Sci Technol. 11 (1998) 485
4. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 392
5. Prester, M.: Supercond. Sci Technol. 11 (1998) 333
*     6. Eastell, C.J: PhD Thesis. Univ. Oxford (1998) 8-26
7. Ciszek, M.: IEEE Trans. Applied Supercond. 9 (1999) 817.
8. Paasi, J.: IEEE Trans. on Applied Supercond. 9 (1999) 2215.
9. Marti, F.: IEEE Trans. Applied Supercond. 9 (1999) 2766.
10. Paasi, J.: IEEE Trans. Applied Supercond. 10 (2000) 1212.
*    11. Lehtonen, J.: Doctor Thesis. Tampere Univ. Technol. (2000).
12. Shaked, N.: Physica C 354 (2001) 237.
13.  Lau, K.T.: Supercond. Sci Technol. 15 (2002) 351.
14. Spal, R.D.: Applied Phys. Lett. 80 (2002) 1412.
15. Richens, P.E.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
16. Aloysius, R.P.: Physica C 384 (2003) 369.
17. Shin, HS.: Supercond. Sci Technol. 16 (2003) 1012.
18. Kim, K.T.: IEEE Trans. Applied Supercond. 13 (2003) 2996.
19. Yakinci, Z.D.: Physica C 408-410 (2004) 900.
20. Lau, K.T.: J. Materials Sci 16 (2005) 17.
21. Qu, T.M.: Physica C 426 (2005) 1159.
22. Lau, K.T.: J. Applied Phys. 99 (2006) Art. No. 123904.
23. Qu, T.M.: Physica C 444 (2006) 71.
24. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
25. Kang, M.: IEEE Trans. Applied Supercond. 19 (2009) 1257.
#  26. Ku, M.: J. Korea Inst. Applied Supercond. Cryogenics 12 (2010) 12.
27. Yoo, B.: IEEE Trans. Applied Supercond. 28 (2018) 8400806.

Pitel, J., Kováč, P., : Influence of external magnetic fields on critical currents of solenoids wound with anisotropic HTS tapes – theoretical analysis Supercond. Sci Technol. 10 (1997) 7.

     1. Ušák, P.: Applied Supercond  4 (1996) 577.
2. Paasi, J.: IoP Conf. Ser. 158 (1997) 1659.
3. Shevchenko, O.A.: IoP Conf. Ser. 158 (1997) 1555.
4. Bolt, L.: Supercond. Sci Technol. 11 (1998) 154
5. Takács, S.: Supercond. Sci Technol. 11 (1998) 1209.
6. Ušák, P.: Physica C 316 (1999) 229.
7. Oh, S.S.: IoP Conf. Ser. 167 (2000) 491.
8. Nakamura, T.: Supercond. Sci. Technol. 13 (2000) 1521.
*    9. Lehtonen, J. : Doctor Thesis. Tampere Univ. Technol. 2000.
*   10. Paasi, J.: Studies of High Temp. Supercond. 32 (2000) 125.
*   11. Richens, P.E.: Doctor Thesis. Trinity College, Oxford Univ. 2000.
12. Richens, P.E.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
13. Usak, P.: Physica C 384 (2003) 93.
14. Usak, P.: Supercond. Sci. Technol. 16 (2003) 459.
*   15 . Korpela, A. : PhD Thesis. Tampere Univ. Technol. 2003.
16. Kvitkovic, J.: Physica C 401 (2004) 146.
*   17. Xu, B.: PhD Thesis. Florida State Univ. College Engn. 2004.
18. Gu, C.: Physica C 423 (2005) 37.
19. Stenvall A.: Supercond. Sci Technol. 19 (2006) 581.
20. Polak, M.: Applied Phys. Lett. 88 (2006) 232501.
21. Polak, M E.: IEEE Trans. Applied Supercond. 16 (2006) 1423.
22. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
23. Hiltunen, I.: Physica C 468 (2008) 903.
24. Pardo, E.: Supercond. Sci Technol. 24 (2011) 065007.
25. Polak, M.: IEEE Trans. Applied Supercond. 22 (2012) 6600204.
26. Parkinson, B. .: IEEE Trans. Applied Supercond. 23 (2013) 4400405.
27. Chudy, M.: Supercond. Sci Technol. 26 (2013) 075012.
28. Chudy, M.: IEEE Trans. Applied Supercond. 24 (2014) 8200606.
29. Wimbush, S.C.: Phys. Procedia 81 (2016) 81.

Pachla, W., Marciniak, H., Szulc, A., Wroblevski, M., Kováč, P., Hušek, I., Melišek, T., : Investigation of texture formation and phase transition, CIP- and roll-sintered Ag-sheathed Bi(2223) tapes IEEE Trans. Applied Supercond. 7 (1997) 2090.

#    1. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
#     2. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
3. Yao, C.: Supercond. Sci Technol. 26 (2013) 075003.
4. Xie, P.: Mater. Express 4 (2014) 105.
5. Yao, C.: IEEE Trans. Applied Supercond. 25 (2015) 6937118.

Cesnak, L., Melišek, T., Kováč, P., Hušek, I., : Magnetic field hysteresis of critical currents in Bi(2223)/Ag tapes and the way to overcome it Cryogenic 37 (1997) 823.

      1. Koblischka, M.R.: Phys. Rev. B 59 (1999) 12114.
2. Koblischka, M.R.: Supercond. Sci Technol. 12 (1999) 113.
3. Hua, L.: Supercond. Sci Technol. 12 (1999)153.
4. Zhu, Q.: Supercond. Sci Technol. 17 (2004) 756.
#    5. Wesche, R.:  Physical Properties of High-Temperature Superconductors. Wiley & Sons, Ltd: 2015. ISBN: 978-9971-5-0683-4.

Kováč, P., Hušek, I., Kopera, Ľ., Pachla, W., : Optimalization of rolling process for multicore Bi(2223)/Ag tapes made by OPIT technique IoP Conf. Series No. 158 (1997) 1343.

    1. Anderson, J.W.: Supercond. Sci Technol. 12 (1999) 617.

Kopera, Ľ., Kováč, P., Cesnak, L., : Sample holder for measuring of Ic-anisotropy in high magnetic fields Supercond. Sci Technol. 10 (1997) 995.

      1. Richens PE.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
2. Luan, W.Z.: Physica C 386 (2003) 179.
3. Pitel, J.: Supercond. Sci Technol. 26 (2013) 125002.

Kováč, P., Eastell, C., Pachla, W., Hušek, I., Marciniak, H., Grovenor, C., Goringe, M., : Structure and the current transport mechanism in Bi(2223)/Ag tape Physica C 292 (1997) 322.

     1. Marti, F.: Supercond. Sci Technol. 11 (1998) 1251.
*    2. Marti, F.: Adv. Supercond. XI. Tokyo: Springer Verlag 1999. P. 939.
3. Marti, F.: IEEE Trans. on Applied Supercond. 9 (1999) 2521.
4. Prabhakaran, D.: Mater. Sci Engn. B 58 (1999) 199.
5. Polak, M.: Supercond. Sci Technol. 15 (2002) 1628.
6. Bruneel, E.: Supercond. Sci Technol. 17 (2004) 750.
7. Li, J.: Rare Metals 25 (2006) 400.
8. Li, J.: Rare Metal Mater. Engn. 35 (2006) 1896.
9. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
10. Oku, T.: Nanotechnol. Rev. 3 (2014) SI413.

Kováč, P., Cambel, V., Gregušová, D., Eliáš, P., Hušek, I., Kúdela, R., Hasenöhrl, S., Ďurica, M., : Testing of homogenity of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Series No. 158 (1997) 1311.

     1. Gomory, F.: Physica C 308 (1998) 203.
2. Schauer, W.: Proc. 9th CIMTEC. Florence 1998. P. 436
3. Herrmann, J.:  IEEE Trans. Applied Supercond. 9 (1999) 1824.
4. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
5. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.

Kováč, P., Melišek, T., Hušek, I., : Transport Ic measurement technique with non-soldered contacts for Ag-sheated high Tc superconductors, Cryogenics 37 (1997) 177.

*     1. Kasztler, A.: PhD Thesis. Wien: TU 2000.
*     2. Richens, P.E.: PhD Thesis. Oxford: Univ. Oxford 2000.
3. Richens, P.E.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
4. Wang YS.: Cryogenics 43 (2003) 71.
5. Qu, T.M.: Physica C 426 (2005) 1159.
6. Zhang, Z.C.: IEEE Trans. Applied Supercond. 20 (2010) 1585.
7. Pitel, J.: Supercond. Sci Technol. 26 (2013) 125002.

Kováč, P., Kopera, Ľ., Hušek, I., Cesnak, L., : Bending of Bi(2223)/Ag tapes at 77K and 300K Supercond. Sci Technol. 9 (1996) 792.

     1. Almosani, M.K.: Physica C 289 (1997) 63.
2. Koblishka, M.R.: Supercond. Sci Technol. 10 (1997)693
3. Han, Z.: Supercond. Sci Technol. 10 (1997) 371.
4. Xiao, L.Y.: Cryogenics 37 (1997) 837.
5. Koblishka, M.R.: IoP Conf. Ser. 158 (1997) 1065
6. Horvat, J.: Physica C 297 (1998) 10.
*    7. Han, Z.: Proc. 15th Int. Conf. Magnet Technol. Beijing, Sci Press 1998. P. 956.
8. Sobha, : Supercond. Sci Technol. 13 (2000) 1487.
9. Passerini, R.: IoP Conf. Ser. 167 (2000) 607.
10. Hu, X.: Proc. SPIE 4537 (2002) 237.
11. Passerini, R.: Physica C 371 (2002) 173.
12. Katagiri, K.: Physica C  412-414 (2004) 1101.
13. Ha, H.S. : Physica C  412-414 (2004) 1096.
14. Koblischka, M.R.: European Phys. J. B 44 (2005) 277.
15. Katagiri, K.: Physica C 426 (2005) 1200.
16. Ahoranta, M.: Supercond. Sci Technol. 22 (2009) 015012.
17. Chen, Z.F.: ASEMD 2013. Beijing; China 2013, Art. no. 6780802, Pp 391.

Pachla, W., Kováč, P., Hušek, I., Kozlowski, R., Mazur, A., Marciniak, H., Wroblevski, M., : Effect of hydrostatic pressure on BSCCO compound for OPIT procedure Supercond. Sci Technol. 9 (1996) 957.

     1. Navarro, R.: Supercond. Sci Technol. 11 (2000) R147-R170.

Kováč, P., Hušek, I., Pachla, W., Marciniak, H., Melišek, T., : Improvement in core density of BSCCO/Ag tapes by cold isostatic pressing Physica C 261 (1996) 131.

      1. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
2. Han, Z.:  Supercond. Sci Technol. 10 (1997) 371.
3. Jiang, J.: Supercond. Sci Technol. 11 (1998) 705.
4. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 392.
5. Zeng, R.: Advances Cryog. Engn. Mat. 44B (1998) 631.
6. Xie, P.: Mater. Express 4 (2014) 105.

Cesnak, L., Gömöry, F., Kováč, P., : Pinning potential its relativity and dependence on temperature and magnetic field studied on the basis of I-V charecteristics of multifilamentary Nb3Sn superconductors Supercond. Sci. Technol. 9 (1996) 184-191.

     1. Prester, M.: Supercond. Sci Technol. 11 (1998) 333.
2. Hense, K.: Physica C 401 (2004) 214.
*    3. Müller, M.: PhD Thesis. Wien: TU 2004.
4. Berger, K.: IEEE Trans. Applied Supercond. 15 (2005) 1508.
5. Berger, K.: IEEE Trans. Applied Supercond. 17 (2007) 3028.

Hušek, I., Kováč, P., and Kopera, Ľ.: Study of BSCCO-core density in multicore Ag sheathed tapes by microhardnees profiles, Supercond. Sci Technol. 9 (1996) 1066.

1. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
2. Han, Z.: Supercond. Sci Technol. 10 (1997)371.
3. Oduleye, O.O.: Supercond. Sci Technol. 11 (1998) 858.
4. Zeng, R.: Supercond. Sci Technol. 11 (1998) 299.
5.  Zeng, R.: Advances in Cryog. Engn. Mat.  44B (1998) 631.
6. Lanagan, M.T.: IEEE Trans. Applied Supercond. 9 (1999) 1900.
7. Oduleye, O.O.: IEEE Trans. Applied Supercond. 9 (1999) 2621.
8. Iyer, A.N.: Supercond. Sci Technol. 12 (1999) 436.
9. Tundidor, J.: IoP Conf. Ser. 167 (2000) 543.
10. Eriksen, M.: IoP Conf. Ser. 167 (2000) 615.
11. Bech, J.I.: IoP Conf. Ser. 167 (2000) 643.
12. Iyer, A.N.: Supercond. Sci Technol. 13 (2000) 187.
13. Seifi, B.: CIRP Annals 2000: Manufacturing Techn. Cirp  Bern: Hallwag Publ.,  2000. P. 185.
14. Navarro, R.: Supercond. Sci Technol. 11 (2000) R147-R170
15. Shao, H.M.: Rare Metal Materials & Engn. 32 (2003) 832.
16. Bay, N.: J. Mater. Processing Technol. 151 (2004) 18.
#  17.  Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3. 583 s.
#  18. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4 779 s.
19. Yao, C.: J. Applied Phys. 118 (2015) 203909.
#    20. Ma, X.: J. Phys.: Conf. Ser. 1054 (2018) 012041.

Kováč, P., Melišek, T., Hušek, I., : Transport Ic measurements technique with not soldere contacts for Ag-sheathed high-Tc superconductors Cryogenics 36 (1996) 1053.

*    1. Kasztler, A.: PhD Thesis. Technical Univ. Wien (2000).

Cesnak, L., Gömöry, F., Kováč, P., Šouc, J., Fröhlich, K., Melišek, T., Hilscher, G., Puttner, M., Holubar, T., : Treating the I-V characteristics of low as well high Tc superconductors in context with the pinning potential Applied Supercond. 4 (1996) 277.

      1. Meerovich, V.: Supercond. Sci Technol. 20 (2007) 457.
2. Sokolovsky, V.: Supercond. Sci Technol. 20 (2007) 189.
3. Meerovich, V.: Supercond. Sci Technol. 20 (2007) 1046.
4. Fagnard, J.F.: Supercond. Sci Technol. 22 (2009) 105002.
5. Chandra, J.: J. Low Temp. Phys. 186 (2017) 21.

Kováč, P., Cesnak, L., Kopera, Ľ., Fikis, H., and Hilscher, G.: Ic-anisotropy in flettened Nb3Sn superconductors and possible ways for overcoming it, Cryogenics 35 (1995) 83.

      1. Hense, K.: Physica C 401 (2004) 214.
*     2. Müller, M.: PhD Thesis. Wien: TU 2004.

Kováč, P., Hušek, I., and Pachla, W.: Ceramic core density and transport current density of Bi(2223)Ag superconductors IoP Conf. Ser. No. 148 (1995) 367.

1. Wolf, B.: Supercond. Sci Technol. 9 (1996) 589.
2. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
3. Zeng, R.: Adv. Cryog. Engn. Mat.  44B (1998) 631.
4. Navarro, R.: Supercond. Sci Technol. 11 (2000) R147-R170.

Hušek, I., Kováč, P., and Pachla, W.: Microhardness profiles in BSCCO/Ag composites made by various technological steps Supercond. Sci Technol. 8 (1995) 617.

1. Wolf, B.: Supercond. Sci. Technol. 9 (1996) 589.
2. Parrell, J.A.: Supercond. Sci. Technol. 9 (1996) 393.
3. Mamalis, A.G.: Applied Supercond. 4 (1996) 213.
4. Fisher, S.J.: Cryogenics 37 (1997) 593.
5. Zeng, R.: Supercond. Sci. Technol. 10 (1997) 342.
6. Han, Z.: Supercond. Sci. Technol. 10 (1997)371.
7. Martini, L.: IoP Conf. Ser. 158 (1997) 1335
8. Dao, M.: Philos. Magazine A 78 (1998) 857.
9. Zeng, R.: Supercond. Sci. Technol. 11 (1998) 299.
10. Martini, L.: Supercond. Sci. Technol. 11 (1998) 231.
11. Lee, H.G.: Supercond. Sci. Technol. 11 (1998) 122.
12. Zeng, R.: Adv. Cryog. Engn. Mat.  44B (1998) 631.
*   13. Eastell, Ch.J: PhD Thesis. Univ. Oxford 1998.
14. Malberg, M.: IEEE Trans. Applied Supercond. 9 (1999) 2577.
15. Iyer, A.N.: Supercond. Sci. Technol. 12 (1999) 436.
16. Freltoft T.: NATO Adv. Sci Inst. Series E 365 (1999) 523.
17. Iyer, A.N.: Supercond. Sci. Technol. 13 (2000) 187.
18. Thagara, J.: Supercond. Sci. Technol. 13 (2000) 1035.
19. Navarro, R..: Supercond. Sci. Technol. 11 (2000) R147-R170
*   20. Trautner, A.: PhD Thesis.
21. Ha, H.S.: IEEE Trans. Applied Supercond. 11 (2001) 3748.
22. Hassan, M.K.: Physica C 372 (2002) 1036.
23. Beilin, V.: Physica C 377 (2002) 15.
24. Shao, H.M.: Rare Metal Mater. Engn. 32 (2003) 832.
25. Beilin, V.: Physica C 405 (2004) 70.
26. Lubenets, S.V.: Low Temperat. Phys. 30 (2004) 345.
#   27. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3. 583 s.
#   28. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4 779 s.
29. Li, H .: J. Alloys Compounds 691 (2017) 482.
30. Ma, X.: J. Supercond. Novel Magnetism 31 (2018) 3105.
#    31. Ma, X.: J. Phys.: Conf. Ser. 1054 (2018) 012041.

Pachla, W., Kováč, P., Marciniak, H., Gömöry, F., Hušek, I., Pochaba, I., : Structural and electrical properties of Bi(Pb)-Sr-Ca-Cu-O obtained by hot pressing Physica C 248 (1995) 29.

     1. Wolf, B.: Supercond. Sci Technol. 9 (1996) 589.
2. Rouessac, V.: Physica C 268 (1996) 225.
3. Prabhakaran, D.: Supercond. Sci Technol. 11 (1998) 788
4. Tampieri, A.: J. Mater. Sci 34 (1999) 6177.
5. Caillard, R.: Physica C 340 (2000) 101.
6. Caillard, R.: Supercond. Sci Technol. 14 (2001) 712.
7. Fu, X.K.: Supercond. Sci Technol. 16 (2003) 804.
8. Aloysius, R.P.: Mater. Lett. 58 (2004) 2969.
9. Kumar, R.R.: Supercond. Sci Technol. 18 (2005) 689.
#   10. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3. 583 s.
#   11. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4 779 s.

Kováč, P., Hušek, I., Pachla, W., Melišek, T., Kliment, V., : The effect of fabrication pressure on critical transport current density in press-sinter processing of Bi(2223)Ag tapes Supercond. Sci Technol. 8 (1995) 341-346.

1. Wolf,  B.: Supercond. Sci. Technol. 9 (1996) 589.
2. Parrell, J.A.: Supercond. Sci and Techn. 9 (1996) 393.
3. Parrell, J.A.: J. Mater. Research 12 (1997) 2997.
4. Han, Z.:  Superconduct. Sci. Technol. 10 (1997)371
5. Ma, Y.W.: J. Mater. Sci Technol. 14 (1998) 374.
6. Jiang, J.: Supercond. Sci. Technol. 11 (1998) 705.
*    7. Ma, Y.: Proc. 15th Int. Conf. on Magnet Technology – MT-15. Beijing, Sci Press 1998. P. 1083.
*    8. Eastell, Ch.J: PhD Thesis. Univ. Oxford 1998.
9. Aloysius, R.P.: Physica C 309 (1998) 203
10. Strano, G.: Supercond. Sci. Technol. 13 (2000)1470.
11. Strano, G.: Inter. J. Modern Phys. 14 (2000) 2896.
12. Yuan, Y.: IEEE Trans. Applied Supercond. 13 (2003) 2921.
13. Lubenets, S.V.: Low Temperat. Phys. 30 (2004) 345.
14. Kuzmin, Y.I.: Techn. Phys. Lett. 30 (2004) 457.

Kováč, P., Hušek, I., and Cesnak, L.: Critical current recovery in Ag-sheathed Bi(2223) tapes after bending and streightening Supercond. Sci Technol. 7 (1994) 583.

1. Polak, M.: Applied Phys. Lett. 70 (1997) 1034.
2. Koblishka, M.R.:  Supercond. Sci Technol. 10 (1997)693
3. Sobha, A.: Supercond. Sci Technol. 13 (2000) 1487.
4. Aloysius, RP.: Supercond. Sci Technol. 14 (2001) 85.
5. Hu, L.F.: Acta Phys. Sinica 51 (2002) 1826.
6. Passerini, R.: Physica C 371 (2002) 173.
7. Shin, H.S.: Supercond. Sci Technol. 16 (2003) 1012.
8. Li, Ch.: Rare Metal Mater. Engn. 35 (2006) 1691.
9. Lu, Z.Y.: Materials Sci Forum 546-549 (2007) 1975.
#   10. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
#   11. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
12. Gao, P.: Supercond. Sci Technol. 32 (2019) 034003.

Marciniak, H., Pachla, W., Molinski, R., Kováč, P., Morawski, A., : Evoluation of the degree of texturing and relative plose content in hot-pressed Bi(Pb)-Sr-Ce-Cu-O superconductors Physica C 235-240 (1994) 941.

     1. Caillard, R.: Supercond. Sci Technol. 14 (2001) 712.

Pachla, W., Marciniak, H., Kováč, P., Hušek, I., : Hot pressing of Bi(Pb)-Sr-Ca-Cu-O superconducting pellets Supercond. Sci Technol. 7 (1994) 820.

     1. Perin, A.: IoP Conf. Ser. 148 (1995) 391.
2. Liu, H.K.: Physica C 259 (1996) 187.
3. Ma, Y.W.:  Supercond. Sci Technol. 7 (1996) 796.
4. Noudem, J.G.: Physica C 281 (1997) 339.
5. Ma, Y.W.: Supercond. Sci Technol. 10 (1997) 778.
6. Horvat, J.: Physica C 281 (1997)183
#    7. Dou, S.X.: Annual Reports Progress Chem. – Sec. C 93 (1997) 363.
8. Dou, S.X.: Supercond. Sci Technol. 10 (1997) A52.
9. Ma, Y.W.: Trans. Nonferrous Metals Soc China 8 (1998) 88
#   10. Ma, Y.W.: Chinese J. Mechanical Engn. 34 (1998) 51.
11. Ma, Y.W.: J. Mater. Sci Lett. 17 (1998) 415
12. Dou, S.X.: Supercond. Sci Technol. 11 (1998) 781
13. Rouessac, V.: Supercond. Sci Technol. 11 (1998)1160
14. Zhu, Y.Y.: Supercond. Sci Technol. 12 (1999) 640.
15. Garnier, V.: Supercond. Sci Technol. 14 (2001) 717.
*   16. Zhu, Y.T.: US Patent 6,195,870, 2001.
17. Garnier, V.: Physica C 372 (2002) 1107.
18. Fu, X.K.: Supercond. Sci Technol. 16 (2003) 804.
19. Ignatov, H.: J. Supercond. Novel Magnetism 21 (2008) 69.

Polák, M., Majoros, M., Kvitkovič, J., Kottman, P., Kováč, P., Melišek, T., : Magnetic field in the vicinity of BSCCO tapes carrying transport current Cryogenics 34 (1994) S805.

     1. Lahtinen, M.: Physica C 244 (1995) 115.
2. Komarkov, D.: Applied Supercond. 1. 148 (1995) 959.
3. Grasso, G.: Physica C 253 (1995) 292.
4. Oota, A.: Physica C 291 (1997) 188.
5. Ušák, P.: IEEE Trans. Applied Supercond. 7 (1997) 1343.
6. Crisan, A.: Supercond. Sci Technol. 10 (1997) 298.
7. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
8. Zeng, R.: Adv. Cryogenic Engn. 44 (1998) 631.
9. Ušák, P.: Physica C 316 (1999) 229.
10. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
11. Shaked, N.: Physica C 354 (2001) 237.
12. Gandini, A.: IEEE Trans. Applied Supercond. 13 (2003) 3332.
13. Frolek, L.: IEEE Trans. Applied Supercond. 15 (2005) 3660.
14. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
15. Higashikawa, K.: Physica C 504 (2014) 62.
16. Higashikawa, K.: IEEE Trans. Applied Supercond. 26 (2016) 6200804.

Kováč, P., Cesnak, L., Melišek, T., : Anisotropic properties of rectengular shaped Nb3Sn superconductors made by bronze method. In: EUCAS 93. Ed. H.C.Freyhardt. Oberursel: DGM, 1993. P. 15.

     1. Fillunger, H.: Physica C 357 (2001) 1289.

Kováč, P., Cesnak, L., Fikis, H., Hilscher, G., : Time-variable resistive voltage in superconductors with imperfect Nb3Sn structure Cryogenics 33 (1993) 1174.

#    1. Bendjemil, B.: Inter. J. Self-Propagating High-Temp. Synthesis 20 (2011) 229.

Kováč, P., Cesnak, L., : Monolithic multifilamentary Nb3Sn conductor for tested in small coils wound after heat treatment Cryogenics 32 (1992) 675.

     1. Frolek, L.: Supercond. Sci Technol. 24 (2011) 105016.
#   2. Bendjemil, B.: Inter. J. Self-Propagating High-Temp. Synthesis 20 (2011) 229.

Kováč, P., Gömöry, F., Cesnak, L., : Influence of conductor temperature on the real voltage-current characteristics of composite superconductors Supercond. Sci Technol. 4 (1991) 172.

     1. Fabbricatore, P.: IEEE Trans. Magnetics 30 (1994) Part 2, 2336.
*    2. Fabbricatore, P:  Handbook Applied Supercond. Vol. 1. Bristol: IOP 1998. P. 325.

Huťka, P., Kováč, P., : Multifilamentary conductors for AC use prepared in the IEE SAS. In: Inter. Symp. AC Superconductors. Ed. I.Hlásnik. Bratislava: IEE SAS 1991. P. 78.

*    1. Gömöry, F.: Inter. Symp. AC Supercond. Bratislava: EÚ SAV 1991. P. 53.

Kováč, P., : Prúdové hustoty MF Nb3Sn supravodičov z hľadiska ich použitia vo vinutí laboratórnych magnetov s B 10T. In: Kryogenika 86. Bratislava: EÚ SAV 1986. S. 145.

*     1. Cesnak, L.: Kryogenika 88. Ústí n. Labem: ČSVTS 1988. S. 66.

Kopera, Ľ., Kováč, P., Jergel, M., Huťka, P., : Multifilamentary Nb3Sn superconductor with graphite diffusion barrier. In: Conf. Magnet Technol. Zürich: 1985. P. 497.

*     1. Cesnak, L.: Kryogenika 88. Ústí n. Labem: ČSVTS 1988. S. 66.
*     2. Flükinger, R.: Superconductors Transition Temper. and Characterization of Elements,  Alloys and Compounds. Springer: 1993. ISBN 978-3540555223.

Huťka, P., Kováč, P., Šetina, P., Chlebáková, K., Kopera, Ľ., Jergel, M., : Vývoj stabilizovaných Nb3Sn supravodičov na ElÚ SAV, Elektrotechn. časopis 36 (1985) 870.

*     1. Cesnak, L.: Kryogenika 88. Ústí n. Labem: ČSVTS 1988. S. 66.

Sitek, J., Hucl, M., Kružliak, J., Beňačka, Š., Huťka, P., Kováč, P., : The influence of thermal regime of multifilamentary wires preparation to the creation of the Nb3Sn phase J. Mater. Sci Lett. 3 (1984) 489.

*    1. Flükinger, R.: Superconductors Transition Temper. and Characterization of Elements,  Alloys and Compounds. Springer: 1993. ISBN 978-3540555223.

Kováč, P., Kružliak, J., Šetina, P., Huťka, P., Chlebáková, K., : Základné vlastnosti mnohovláknitých Nb3Sn supravodičov. In: Kryogenika 84. Bratislava: EÚ CEFV SAV 1984. S. 144.

*     1. Cesnak, L.: Kryogenika 88. Ústí n. Labem: ČSVTS 1988. S. 66.

Kružliak, J., Huťka, P., Kováč, P., Šetina, P., : Some physical properties of multifilamentary Nb3Sn superconductors prepared by bronze technology Acta Phys. Hungarica 53 (1982) 425.

*    1. Flükinger, R.: Superconductors Transition Temper. and Characterization of Elements,  Alloys and Compounds. Springer: 1993. ISBN 978-3540555223.

Kružliak, J., Huťka, P., Kováč, P., Michajlov, B., : New possibilities in diffusion fabrication of Nb/Sub3/Sn tapes with high critical currents Sov. Techn. Phys. Lett. 7 (1981) 569.

*    1. Flükinger, R.: Superconductors Transition Temper. and Characterization of Elements,  Alloys and Compounds. Springer: 1993. ISBN 978-3540555223.

Kružliak, J., Huťka, P., Kováč, P., Michajlov, B., : Novyje vozmožnosti prigotovlenija difuzionnych Nb3Sn lent s vysokimi kritičeskimi tokami, Pisma ŽETF 21 (1981) 1328.

*    1. Flükinger, R.: Superconductors Transition Temper. and Characterization of Elements,  Alloys and Compounds. Springer: 1993. ISBN 978-3540555223.