Ing. Kuzmík Ján, DrSc.

Šichman, P., Hasenöhrl, S., Stoklas, R., Priesol, J., Dobročka, E., Haščík, Š., Gucmann, F., Vincze, A., Chvála, A., Marek, J., Šatka, A., and Kuzmík, J.: Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure, Mater. Sci Semicond. Process. 118 (2020) 105203.

1. Mochizuki, K.: Japan. J. Applied Phys. 60 (2021) 018002.

Pohorelec, O., Ťapajna, M., Gregušová, D., Gucmann, F., Hasenöhrl, S., Haščík, Š., Stoklas, R., Seifertová, A., Pécz, B., Tóth, L., and Kuzmík, J.: Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs, Applied Surface Sci 528 (2020) 146824.

1. Tian, Y.: Inter. J. Electrochem. Sci 15 (2020) 12682.

Adikimenakis, A., Chatzopoulou, P., Dimitrakopulos, G. P., Kehagias, Th., Tsagaraki, K., Androulidaki, M., Doundoulakis, G., Kuzmík, J., and Georgakilas, A.: Correlation of threading dislocations with the electron concentration and mobility in InN heteroepitaxial layers grown by MBE, ECS J. Solid State Sci Technol. 9 (2020)  015006.

1. Wang, S.: Coatings 10 (2020) 1185.
2. Pérez-Caro, M. .: J. Applied Phys. 128 (2020) 215304.

Kučera, M., Adikimenakis, A., Dobročka, E., Kúdela, R., Ťapajna, M., Laurenčíková, A., Georgakilas, A., and Kuzmík, J.: Structural, electrical, and optical properties of annealed InN films grown on sapphire and silicon substrates, Thin Solid Films 672 (2019) 114-119.

1. Andreev, B.A.: Semiconductors 53 (2019) 1357.
2. Cross, G. B.: J. Crystal Growth 536 (2020) 125574.
3. Wang, S.: Coatings 10 (2020) 1185.

Hasenöhrl, S., Chauhan, P., Dobročka, E., Stoklas, R., Vančo, Ľ., Veselý, M., Bouazzaoui, F., Chauvat, M.-P., Reterana, P., and Kuzmík, J.: Generation of hole gas in non-inverted InAl(Ga)N/GaN heterostructures, Applied Phys. Express 12 (2019) 014001.

1. Murugapandiyan, P.: J. Electronic Mater. ‏49 (2020) SI524.

Ťapajna, M., Drobný, J., Gucmann, F., Hušeková, K., Gregušová, D., Hashizume, T., and Kuzmík, J.: Impact of oxide/barrier charge on threshold voltage instabilities in AlGaN/GaN metal-oxide-semiconductor heterostructures, Mater. Sci in Semicond Process.  91 (2019) 356-361.

1. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.

Chauhan, P., Hasenöhrl, S., Dobročka, E., Chauvat, M.-P., Minj, A., Gucmann, F., Vančo, Ľ., Kováč, J.jr., Kret, S., Ruterana, P., Kuball, M., Šiffalovič, P., and Kuzmík, J.: Evidence of relationship between strain and In-incorporation: growth of N-polar In-rich InAlN buffer layer by OMCVD, J. Applied Phys. 125 (2019) 105304.

1. Biswas, D.: J. Applied Phys. 125 (2019) 225707.

Gucmann, F., Ťapajna, M., Pohorelec, O., Haščík, Š., Hušeková, K., and Kuzmík, J.: Creation of two-dimesional electron gas and role of surface donors in III-N metal-oxide-semiconductor high-electron mobility transistors, Phys. Status Solidi A  215 (2018) 1800090.

1. Song, K.: J. Phys. D 53 (2020) 345107.
2. Shi, Y.: IEEE Trans. Electron Dev. 67 (2020) 2290.
3. Duong D.N.: J. Applied Phys. 127 (2020) 094501.

Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.

1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 (‏ 127101(2020.

Chvála, A., Nagy, L., Marek, J., Priesol, J., Donoval, D., Blaho, M., Gregušová, D., Kuzmík, J., and Šatka, A.: Characterization of monolithic InAlN/GaN NAND logic cell supported by circuit and device simulations, IEEE Trans. Electron Devices 65 (2018) 2666-2669.

1. Guan, H.: Coatings 9 (2019) 318.
2. Liao, B.: Electronics 8 (2019) 406.
3. Hwang, I.-T.: Applied Sci-Basel 9 (2019) 3610.

Chvála, A., Nagy, L., Marek, J., Priesol, J., Donoval, D., Vilhan, M., Blaho, M., Gregušová, D., Kuzmík, J., and Šatka, A.: Simulation analysis of InAlN/GaN monolithic NAND logic cell. In: ASDAM 2018. Eds. J. Breza et al. IEEE 2018. ISBN 978-1-5386-7488-8. P. 167-171.

1. Ding, Y.: Applied Sci-Basel 9 (2019) 5196.
2. Palacios Rodriguez, S.: Revista De La Construc. 18 (2019) 398.
3. Gralow, M.: J. Laser Appl.‏ 32 (2020) 021201.

Hashizume, T., Nishiguchi, K., Kaneki, S., Kuzmik, J., and Yatabe, Z.: State of the art on gate insulation and surface passivation for GaN-based power HEMTs, Mater. Sci in Semicond. Process. 78 (2018) 85-95.

1. Hentschel, R.: J. Crystal Growth 500 (2018) 1.
2. Gao, Z.: IEEE Trans. Electron Dev. 65 (2018) 3142.
3. Roccaforte, F.: Microelectron. Engn. 187 (2018) 66.
4. Touati, Z.: J. New Technol. Mater. 8  (2018) 16.
5. Roccaforte, F.: Rivista Del Nuovo Cimento 41  (2018) 625.
6. Zeng, F.: Electronics 7  (2018) 377.
7. Liu, Z.: IEEE Electron Device Lett. 39 (2018) 1896.
8. Roccaforte, F.: Proc. Inter. Semicond. Conf. – CAS 2018, pp. 7-16.
#      9. Fiorenza, P.: Japan. J. Applied Phys. 57 (2018) 050307.
10. Horng, R.-H.: Crystals 9  (2019) 1.
11. Chun, J.: Adv. Electronic Mater. 5 (2019) 1800689.
12. Nabatame, T.: Applied Phys. Express 12  (2019) 011009.
13. Hartmann, J.: Phys. Status Solidi B 256 (2019) SI1800477.
14. Lin, Y.-S.: IEICE Electron. Express 16 (2019) 20181046.
15. Gulseren, M.E.: Mater. Research Express 6 (2019) 095052.
16. Sabaghi, M.: HOLOS 35 (2019) UNSP e8192.
17. Kumar, S.: ACS Applied Electron. Mater. 1 (2019) 340.
18. Hosoi, T.: Japan. J. Applied Phys. 58 (2018) C SCCD16.
19. Nozaki, M.: Japan. J. Applied Phys. 58 (2018) C SCCD08.
20. Ajayan, J.: Microelectron. J. 92 (2019) 104604.
21. Hwang, I.-T.: Applied Sci-Basel 9 (2019) 3610.
22. Kumar, S.: J. Theoret. Applied Phys. 13 (2019) 299.
23. Susanto, I.: Applied Surface Sci 496 (2019) UNSP 143616.
24. del Alamo, J.A.: IEEE Trans. Electron Dev. 66 (2019) 4578.
25. Kubo, T.: Physica B 571 (2019) 210.
#   26. Susanto, I.: J. Phys.: Conf. Ser. 1364 (2019) 012067.
27. Uedono, A.: J. Applied Phys. 127 (2020) 054503.
28. Choi, U.: Phys. Status Solidi A 217 (2020) SI1900695.
29. Heuken, L.: Phys. Status Solidi A 217 (2020) SI1900697.
30. Zhang, Y.: IEEE Trans. Electron Dev. 67 (2020) 3960.
31. Zhao, Yao-P.: Chinese Phys. B 29 (2020) 087304.
32. Kotani, J.: J. Applied Phys. 127 (2020) Iss.‏ 23.
33. Khrapovitskaya, Yu. V.: Nanotechnol. in Russia 15 (2020) 169.
34. Matys, M.: AIP Adv.‏ 10 (2020) 105232.
35. Schiliro, E.: AIP Adv.‏ 10 (2020) 125017.
36. Tapajna, M.: Crystals 10 (2020) 1153.
#   37. Božanić, M.: Lecture Notes in Electr. Engn. 658 (2020) 1-40.
#   38. Lin, C.-Y.: IEEE Inter. Integrated Reliab. Workshop Final Rep. Vol. 2020, (2020) Art. no. 9312857.
39. Calzolaro, A.: Phys. Status Solidi A 218 (2021) 2000585.

Gregušová, D., Blaho, M., Haščík, Š., Šichman, P., Laurenčíková, A., Seifertová, A., Dérer, J., Brunner, F., Wurfl, J., and Kuzmík, J.: Polarization-engineered n+GaN/InGaN/AlGaN/GaN normally-off MOS HEMTs, Physica Status Solidi a 214 (2017) 1700407.

1. Tokuda, H.: Japan. J. Applied Phys. 59 (2020) 084002.
2. Tapajna, M.: Crystals 10 (2020) 1153.

Graff, A., Simon-Najasek, M., Altmann, F., Kuzmík, J., Gregušová, D., Haščík, Š., Jung, J., Baur, T., Grunenputt, J., and Blanck, H.: High resolution physical analysis of ohmic contact formation at GaN-HEMT devices, Microelectr. Reliab. 76-77 (2017)  338.

1. Zeng, F.: Electronics 7 (2018) 377.
2. Rackauskas, B.: IEEE Electron Device Lett. 39 (2018) 1580.
3. Hou, M.: Chinese Phys. B 28 (2019) 037302.
4. Zhang, X.: 20th Inter. Conf. Electronic Packaging Technol. – ICEPT 2019.
5. Wang, X.: J. Vacuum Sci Technol. B‏ 38 (2020) 062206.

Kuzmík, J., Fleury, C., Adikimenakis, A., Gregušová, D., Ťapajna, M., Dobročka, E., Haščík, Š., Kučera, M., Kúdela, R., Androulidaki, M., Pogany, D., and Georgakilas, A.: Current conduction mechanism and electrical break-down in InN grown on GaN, Applied Phys. Lett. 110 (2017) 232103.

1. Shen, L.: Applied Surface Sci 476 (2019) 418.

Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.

1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) ‏ 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.

Ťapajna, M., Válik, L., Gucmann, F., Gregušová, D., Fröhlich, K., Haščík, Š., Dobročka, E., Tóth, L., Pécz, B., and Kuzmík, J.: Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density, J. Vacuum Sci Technol. B 35 (2017) 01A107.

1. Meer, M.: Semicond. Sci Technol. 32 (2017) 04LT02.
2. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
3. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Takhar, K.: Applied Surface Sci 481 (2019) 219.
6. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
7. Schiliro, E.: AIP Adv. 10 (2020) 125017.

Blaho, M., Gregušová, D.,  Haščík, Š., Ťapajna, M., Fröhlich, K., Šatka, A., and Kuzmík, J.: Annealing, temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs, Applied Phys. Lett. 111 (2017) 033506.

1. Lee, C.-T.: AIP Adv. 4(2018) 045014.
2. Cui, P.: Sci Rep. 8 (2018) 9036.
3. Yahyazadeh, R.: J. Non-Oxide Glass. 11 (2019) 19.
4. Zhu, Q.: Chinese Phys. B 29 (2020) 047304.

Gucmann, F., Gregušová, D., Válik, L., Ťapajna, M., Haščík, Š., Hušeková, K., Fröhlich, K., Pohorelec, O., and Kuzmík, J.: DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric prepared by various techniques. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 9-12.

1. Hasan, Md. R.: J. Vacuum Sci Technol. B 35 (2017) 052202.
2. Pan, T.: Materiali in Tehnologije 52 (2018) 795.

Ťapajna, M., Válik, L., Gregušová, D., Fröhlich, K., Gucmann, F., Hashizume, T., and Kuzmík, J.: Treshold voltage instabilities in AlGaN/GaN MOS-HEMTs with ALD-grown Al2O3 gate dielectrics: relation to distribution of oxide/semiconductor interface state density. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 1-4.

1. Ding, L.: IEEE Conf. Computer Vision Pattern Recogn. 2018, pp. 6508-6516.

Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.

1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.

Ťapajna, M., Hilt, O., Bahat-Triedel, E., Würfl, H., and Kuzmík, J.: Gate reliability investigation in normally-off p-type-gan cap/AlGaN/GaN HEMTs under forward bias stress, IEEE Electron Device Lett. 37 (2016) 385 – 388.

1. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
2. Bahl, S.R.: IEEE Inter. Reliab. Phys. Symp. 2016. Art. No. 7574528, p. 4A31.
3. Meneghesso, G.: Proc. SPIE 10104 (2017) UNSP 1010419.
4. Tallarico, A.N.: IEEE Electron Device Lett. 38 (2017) 99.
5. Efthymiou, L.: Applied Phys. Lett. 110 (2017) 123502.
6. Meneghini, M.: IRPS 2017.
7. Meneghini, M.: IRPS 2017.
8. Zhou, Y.: IEEE J. Electron Dev. Soc 5 (2017) 340.
9. Rossetto, I.: Microelectr. Reliab. 76 (2017) SI298.
10. Tallarico, A.N.: IEEE Trans. Electron Dev. 65 (2018) 38.
11. Tsao, J.Y.: Adv. Electron. Mater. 4 (2018) 1600501.
12. Ge, M.: Physica Status Solidi A 215 (2018) 1700368.
13. Roccaforte, F.: Microelectron. Engn.187 (2018) 66.
14. Hao, R.: IEEE Trans. Electron Dev. 65 (2018) 1314.
15. Greco, G.: Mater. Sci Semicond. Process. 78 (2018) 96.
16. Mohanbabu, A.: Inter. J. Numer. Modell. 31 (2018) e2276.
17. Sayadi, L.: IEEE Trans. Electron Dev. 65 (2018) 2454.
18. Zhang, L.: IEEE Electron Device Lett. 39 (2018) 1026.
19. Wang, L.: 9th Inter. Conf. Electron. Packaging Technol. (ICEPT) 2018, pp. 961-964.
20. Longobardi, G.: IEEE Inter. Conf. Electr. Systems For Aircraft, Railway, Ship Propulsion Road Vehicles & Inter. Transport. Electrif. Conf. (ESARS-ITEC) 2018.
21. Stockman, A.: IEEE Trans. Electron Dev. 65 (2018) 5365.
22. Tajalli, A.: Microelectron. Reliab. 88-90 (2018) SI572.
23. Luekens, G.: IEEE Trans. Electron Dev. 65 (2018) 3732.
24. Zeng, F.: Electronics 7 (2018) 377.
#   25. Bisi, D.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 367-430.
26. Mukherjee, K.: IEEE Inter. Reliab. Phys. Symp. Proc. (2018) pp. 4B.41-4B.49.
27. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 876.
28. Moens, P.: IEEE Inter. Reliab. Phys. Symp. – IRPS 2019.
29. Stoffels, S.: IEEE Inter. Reliab. Phys. Symp. – IRPS 2019.
30. Tallarico, A.N.: IEEE Electron Device Lett. 40 (2019) 518.
31. Jiang, H.: IEEE Electron Device Lett. 40 (2019) 530.
32. Wang, Z.: IEEE Trans. Electron Dev. 66 (2019) 1917.
33. Ge, M.: IEEE Electron Device Lett. 40 (2019) 379.
34. Li, B.: Applied Phys. Express 12 (2019) 064001.
35. Roccaforte, F.: Materials 12 (2019) 1599.
36. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
37. He, J.: IEEE Trans. Electron Dev. 66 (2019) 3453.
38. Masin, F.: Applied Phys. Lett. 115 (2019) 052103.
39. Shi, Y.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2019, p. 423.
40. Yao, Y.: ICICDT 2019.
41. Zeng, C.: Applied Phys. Express 12 (2019) 121005.
42. del Alamo, J.A.: IEEE Trans. Electron Dev. 66 (2019) 4578.
43. Tallarico, A.N.: IEEE Trans. Electron Dev. 66 (2019) 4829.
44. Cui, P.: Applied Phys. Express 12 (2019) 104001.
45. Ge, M.: Chinese Phys. B 28 (2019) 107301.
46. Li, B.: IEEE Electron Device Lett. 40 (2019) 1389.
47. Wang, Z.: Proc. ISNE 2019, pp. 1-2.
#        48. Moens, P.: CS MANTECH 2019, Code 148134.
#        49. Meneghesso, G.: EDTM 2019, pp. 68-70.
#        50. Roy, C.: WiPDA 2019, pp. 181-186.
#        51. Longobardi, G.: ESARS-ITEC 2018 (2019) 8607788.
52. Wan, L.: Applied Phys. Lett. 116 (2020) 023504.
53. Wang, J.: IEEE Trans. Electron Dev. 67 (2020) 3564.
54. Tang, X.: Applied Phys. Lett. 117 (2020) 043501.
55. He, J.: Applied Phys. Lett. 116 (2020) Iss. 22.
56. Wang, C.: IEEE Electron Device Lett. 41 (2020) ‏ 545.
57. Wang, W.-F.: Chinese Phys. B 29 (2020) 047305.
58. Zhou, G.: IEEE Trans. Electron Dev. 67 (2020) 875.
59. Hamza, H.K.: Proc. ICDCS‘ 20‏ 2020, pp. 290-293.
60. Kini, R.L.: IEEE Access 8 (2020) 137312.
61. Subramanian, B.: J. Electronic Mater.‏ 49 (2020)‏ 4091.
62. Chen, T.: IEEE Applied Power Electron. Conf. Expos. – APEC 2020, pp. 2455-2461.
#     63. Zhang, X.: 21st Inter. Conf. Electronic Pack. Technol. – ICEPT 2020, Art. no. 9202882.
#     64. Cheng, W.-C.: IEEE 15th Intern. Conf. Solid-State Integrated Circuit Technol. – ICSICT 2020, Art. no. 9278368.
#   65. Husna Hamza, K.: 5th Inter. Conf. Devices, Circuits Systems – ICDCS 2020, pp. 290.
66. Zhang, L.: IEEE Electron Device Lett. 42 (2021) ‏ 22.
67. Sun, S.: Phys. Status Solidi A 218 (2021) SI2000565.
68. Jiang, H.: Semicond. Sci Technol. 36 (2021) 034001.

Blaho, M., Gregušová, D., Haščík, Š., Seifertová, A., Ťapajna, M., Šoltýs, J., Šatka, A., Nagy, L., Chvála, A., Marek, J., Carlin, J.-F., Grandjean, N., Konstantinidis, G., and Kuzmík, J.: Technology of integrated self-aligned E/Dmode n++GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics, Semicond. Sci Technol. 31 (2016) 065011.

1. Kumar, S.: IEEE Calcutta Conf. – CALCON 2020, pp.‏ 378. ‏.

Matys, M., Stoklas, R., Kuzmík, J., Adamowicz, J., Yatabe, Z., and Hashizume, T.: Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures, J. Applied Phys. 119 (2016) 205304.

 1. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
2. Kumar, S.: IEEE Trans. Electron Dev. 64 (2017) 4868.
3. Liu, X.: ACS Applied Mater. Interfaces 10 (2018) 21721.
4. Verma, M.: Trans. Electric. Electron. Mater.‏ 21 (2020) 427.
5. Tapajna, M.: Crystals 10 (2020) 1153.
6. Deng, K.: Applied Surface Sci ‏ 542 (2021) 148530.

Ťapajna, M., Hilt, O., Bahat-Triedel, E., Würfl, H., and Kuzmík, J.Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors, Applied Phys. Lett. 107 (2015) 193506.

1. De Santi, C.: IEEE Electron Device Lett. 37 (2016) 611.
2. Meneghini, M.: Electronics 5 (2016) 14.
3. Marek, J.: ASDAM 2016. P. 173.
4. Zhang, K.: Applied Phys. Express 9 (2016) 121002.
5. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
6. Dong, B.: AIP Adv. 6 (2016) 095021.
7. De Santi, C.: Proc. SPIE 10124  (2017) UNSP 101240F.
8. Xie, R.: IEEE Trans. Power Electron. 32 (2017) 6416.
9. Efthymiou, L.: Applied Phys. Lett. 110 (2017) 123502.
10. Meneghini, M.: IRPS 2017.
11. Saito, W.: Microelectron. Reliab. 76 (2017) SI309.
12. Bai, Z.: J. Comput. Electron. 16 (2017) 748.
13. Zhong, Y.: Applied Surface Sci 420 (2017) 817.
14. Kim, K.S.: Japan. J. Applied Phys. 56 (2017) 091002.
15. Rossetto, I.: Microelectron. Reliab. 76 (2017) SI298.
#     16. Dong, B.: ICSICT 2016 – Proc.  2017, Art. no. 7998648.
#     17. Bisi, D.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 367-430.
18. De Santi, C.: Solid State Lighting Technol. Appl. Ser. 3 (2018) 15.
19. Chiu, H.-C.: IEEE Trans. Electron Dev. 65 (2018) 4820.
20. Pu, T.: Superlatt. Microstr. 120 (2018) 448.
21. Tang, X.: IEEE Electron Device Lett. 39 (2018) 1145.
22. Stockman, A.: IEEE Trans. Electron Dev. 65 (2018) 5365.
23. Bai, Z.: Superlatt. Microstr. 123 (2018) 257.
24. Sang, L.: J. Applied Phys. 123 (2018) 161423.
25. Li, B.: Applied Phys. Express 12 (2019) 064001.
26. Matsuura, H.: Applied Sci-Basel 9 (2019) 1746.
27. Xie, R.: IEEE Trans. Power Electron. 34 (2019) 3711.
28. He, J.: IEEE Trans. Electron Dev. 66 (2019) 3453.
29. Masin, F.: Applied Phys. Lett. 115 (2019) 052103.
30. Zhong, Y.: IEEE Electron Device Lett. 40 (2019) 1495.
#     31. Meneghesso, G.: EDTM 2019, pp. 68-70.
#     32. Franke, J.: PCIM Europe Conf. Proc. 2019, pp. 473-478.
33. Wang, F.: J. Phys. D 53 (2020) 305106.
34. He, J.: Applied Phys. Lett. 116 (2020) Iss.‏ 22.
35. Kato, D.: Japan. J. Applied Phys. 59 (2020) SGGD13.
36. Kim, K.: Japan. J. Applied Phys. 59 (2020) 030908.
37. Xu, H.: IEEE Trans. Power Electron. 36 (2021) 5904.

Kuzmík, J., Haščík, Š., Kučera, M., Kúdela, M., Dobročka, E., Adikimenakis, A., Mičušík, M., Gregor, M., Plecenik, A., and Georgakilas, A.: Elimination of surface band bending on N-polar InN with thin GaN capping, Applied Phys. Lett. 107 (2015) 191605.

1. Lund, C.: J. Applied Phys. 123 (2018) 055702.
2. Pfusterschmied, G.: Proc. IEEE Micro Electro Mechan. Systems 2019, pp. 735-738.
3. Park, B.-G.: Nanotechnol.‏ 31 (2020) 335503.

Blaho, M., Gregušová, D., Haščík, Š., Jurkovič, M., Ťapajna, M., Fröhlich, K., Dérer, J., Carlin, J., Grandjean, N., and Kuzmík, J.Self-aligned normally-off metal-oxide-semiconductor n+++GaN/InAlN/GaN high-electron mobility transistors. Phys. Status Solidi A 112 (2015) 1086-1090.

1. Yeh, P.-C.: Applied Phys. Express 8 (2015) 084101.
2. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
3. Freedsman, J.: IEEE Electron Device Lett. 38 (2017) 497.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
6. Meneghini, M.: Mater. Sci Semicond. Process. 78 (2018) 118.
7. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.

Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., and Kuzmík, J. : Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506.

1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
7. Zhang, K.: IEEE SSLChina – IFWS 2016. P. 64.
8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.
9. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
10. Zhou, X. J.: Superlatt. Microstr. 112 (2017) 1.
#    12. Zhang, K.: Inter. Forum on Wide Bandgap Semiconductors China, IFWS 2016. Conf. Proc. (2017) 7803758, pp. 64-67.
#     13. Singh, P.: Comm. Computer Inf. Sci 892 (2019) 380.
14. Supardan, S. N.: J. Phys. D 53(2020) 075303.

Kuzmík, J., Jurkovič, M., Gregušová, D., Ťapajna, M., Brunner, F., Cho, E., Meneghesso, G., and Würfl, H.:Degradation of AlGaN/GaN high-electron mobility transistors in the current-controlled off-state breakdown, J. Applied Phys. 115 (2014) 164504.

#        1. Jang, S.Y.: New Phys. 65 (2015) 1-13.
#        2. Ren, F.: Advances in Photonics Engn., Nanophoton. Biophotonics. Nova Sci Publ., Inc. 2016 ISBN: 978-163484530-4. P. 57-117.

Ťapajna, M., Killat, N., Palankovski, V., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Kuball, M., and Kuzmík, J.: Hot-electron-related degradation in InAlN/GaN high-electron-mobility transistors,. IEEE Trans. Electron Dev. 61 (2014) 2793-2801.

1. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
2. Petitdidier, S.: Microelectron. Reliab. 55 (2015) 1719.
3. Bisi, D.: IEEE Electron Device Lett. 36 (2015) 1011.
4. Dyson, A.: IEEE Trans. Electron Dev. 62 (2015) 3613.
5. Downey, B.P.: IEEE Trans. Device Mater. Reliab. 15 (2015) 474.
6. Berthet, F.: IEEE RADECS 2015.
7. Chiu, H.-C.: Japan. J. Applied Phys. 55 (2016) 056502.
8. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
9. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
10. Guo, L.: Sci Reports 6 (2016) 37415.
11. Lang, A.C.: Applied Phys. Lett. 109 (2016) 133509.
12. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
13. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
14. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
15. Berthet, F.: Solid-State Electr. 127 (2017) 13.
16. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.
17. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
#      18. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
#      19. Mu, W.: Res. Progress Solid State Electron. 37 (2017) 168+181.
20. Hilton, A.M.: IEEE Trans. Electron Dev. 65 (2018) 59.
21. Duffy, S.J.: IEEE Access 6 (2018) 42721.
22. Cha, S.: IEEE Trans. Electron Dev. 66 (2019) 3740.
23. Ray, A.: J. Electronic Mater.‏ 49 (2020)‏ 2018.
24. Wang, Y.: IEEE J. Electron Dev. Soc 8 (2020)‏ 850.
25. Chen, Y.-C.: IEEE Trans. Nanotechnol. 19 (2020)‏ 415.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., Hashizume, T., and Kuzmík, J.Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations. J. Applied Phys. 116 (2014) 104501.

1. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
2. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
3. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Liu, X.: J. Applied Phys. 119 (2016) 015303.
6. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
7. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
8. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
9. Son, P.L.: J. Applied Phys. 119 (2016) 204503.
10. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
11. Colon, A.: J. Vacuum Sci Technol. A 34 (2016) 06K901.
12. Colon, A.: J. Vacuum Sci Technol. A 35 (2017) 01B132.
13. Panda, D.K.: AEU-Inter. J. Electron. Comm. 82 (2017) 467.
14. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902 .
15. Kim, T.-S.: J. Phys. D 50 (2017) 39LT03.
16. Le, S.P.: J. Applied Phys. 123(2018) 034504.
17. Upadhyay, B.B.: Solid-State Electr. 141 (2018) 1.
18. Kim, Tae-S.: J. Korean Phys. Soc. 72 (2018)1332.
19. Verma, S.: Superlatt. Microstr. 119 (2018) 181.
20. Anvari, R.: Applied Surface Sci 452 (2018) 75.
21. Anvari, R.: Sensors Actuators B 269 (2018) 62.
22. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
23. Zhu, J.: IEEE Inter. Reliab. Phys. Symp. Proc. 2018. PWB.11-PWB.14.
24. Acurio, E.: IEEE Trans. Electron Dev. 66 (2019) 883.
25. Miyamoto, H.: Japan. J. Applied Phys. 59 (2020) 044002.
26. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
27. Duong, D.N.: J. Applied Phys. 127 (2020) 094501. ‏

Ťapajna, M., Válik, L., Kotara, P., Zhytnytska, R., Brunner, F., Hilt, O., Bahat-Triedel, E., Würfl, H., and Kuzmík, J.: Impact of the buffer structure on trapping characteristics of normally-off p-GaN/AlGaN/GaN HEMTs for power switching applications In: ASDAM 2014. Eds. J. Breza et al. IEEE 2014. ISBN 978-1-4799-5474-2. P. 121-124.

1. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
#    2. Bisi, D.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 367-430.

Kuzmík, J.Proposal of normally-off InN-channel high-electron mobility transistors, Semicond. Sci Technol. 29 (2014) 035015.

1. Miao, M.-S.: Applied Phys. Express 8 (2015) 024302.
2. Zervos, Ch.: Applied Phys. Lett. 108 (2016) 142102.
3. Mohanbabu, A.: Physica E 92 (2017) 23.
4. Prete, M.S.: Phys. Rev. B 98 (2018) 235431.

Kuzmík, J., Ťapajna, M., Válik, L., Molnár, M., Donoval, D., Fleury, C., Pogany, D., Strasser, G., Hilt, O., Brunner, F., and Würfl, H.: Self-heating in GaN transistors designed for high-power operation, IEEE Trans. Electron Dev. 61 (2014) 3429-3434.

1. Rodriguez, R.: Phys. Status Solidi A 212 (2015) SI1130.
2. Nazari, M.: IEEE Trans. Electron Dev. 62 (2015) 1467.
3. Zhao, X.: IEEE ICCP 2015. P. 261.
4. Nagahisa, T.: Japan. J. Applied Phys. 55 (2016) SI04EG01.
5. Nazari, M.: Applied Phys. Lett. 108 (2016) 031901.
6. Guo, H.: Diamond Related Mater. 73 (2017) 260.
7. Ahmeda, K.: IEEE ACCESS 5 (2017) 20946.
8. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
#      9. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
10. Piotrowicz, S.: Inter. J. Microwave Wireless Technol. 10 (2018) SI39.
11. Feghhi, R.: Inter. J. RF Microwave Comp.-Aided Engn. 28 (2018) e21513.
#    12. Kumar, P.: In Proc. 8th Inter. Conf. Confluence 2018 on Cloud Computing, Data Sci Engn. – Confluence 2018, pp. 880-883.
13. Jarndal, A.: IEEE Access 7 (2019) 94205.
14. Rehman, S.-U.: IEEE Access 7 (2019) 49702.
15. Jarndal, A.: Inter. J. RF Microwave Comput.-Aided Engn. 29 (2019) e21764.
16. Khan, M.N.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields (2019) e2648.
17. Guo, H.: Electron. Comp.Technol. Conf. 2019, p. 1842.
18. Jarndal, A.: ICECTA 2019, pp. 8959622.
19. Zhang, H.: IEEE Trans. Electron Dev. 67 (2020) 47.
20. Wang, L.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 33 (2020) SIe2599.
21. Yan, X.: IEEE Trans. Instrum. Measurem.‏ 69 (2020)‏ 995.
22. Gonzalez, B.: IEEE Trans. Electron Dev. 67 (2020) 5408.
23. Jarndal, A.: Inter. J. Rf Microwave Comp.-Aided Engn. 31 (2021) SIe22542.

Molnár, M., Donoval, D., Kuzmík, J., Marek, J., Chvála, A., Príbytný, P., Mikolášek, M., Rendek, K., and Palankovski, V.: Simulation study of interface traps and bulk traps in n++GaN/InAlN/AlN/GaN high electron mobility transistors, Applied Surface Sci 312 (2014) 157-161.

1. Huang, H.: Solid-State Electr. 114 (2015) 148.
2. Adak, S.: Superlatt. Microstr. 100 (2016) 306.
3. Huang, H.: J. Phys. D 51 (2018) 345102.
4. Babaya, A.: 2018 Inter. Symp. Adv. Electr. Comm. Technol. (ISAECT) 2018.
#      5. Ge, Z.: Hongwai yu Jiguang Gongcheng/Infrared Laser Engn. 47 (2018) 0920003.
#      6. Sun, S.X.: ICREED 2018, pp.8905090.
7. Li, X.: Semicond. Sci Technol. 34 (2019) 115011.
8. Liu, H.: IEEE Inter. Conf. Electron Dev. Solid-State Circuits 2019.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., and Kuzmík, J.: Bulk and interface trapping in the gate dielectric of GaN based metal–oxide–semiconductor high-electron mobility transistors, Applied Phys. Lett. 102 (2013) 243509.

1. Hori, Y.: J. Applied Phys.114 (2013) 244503.
2. Liao, W. C.: Applied Phys. Lett. 104 (2014) 033503.
3. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
4. Ye, D.: J. Phys. D 47 (2014) 255101.
5. Meneghesso, G.: IEEE Inter. Reliab. Phys. Symp. 2014.
6. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
7. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
8. Wu, T.-L.: Solid-State Electron. 103 (2015) 127.
9. Wang, Y.-H.: Applied Phys. Lett. 108 (2016) 233507.
10. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
11. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
12. Colon, A.: J. Vacuum Sci Technol. B 34 (2016) 06K901.
13. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
14. Curatola, G.: Power Electron. Power Systems (2017) 165.
15. Zhou, W.: ASME, Proc. 25th Inter. Conf. Nuclear Engn. 2017, Vol. 9, Art. No. V009T15A036-1.
16. Panda, D. K.: AEU-Inter. J. Electron.Comm. 82 (2017) 467.
17. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
18. Hua, M.: IEEE Electron Device Lett. 39 (2018) 413.
19. Le, S.P.: J. Applied Phys. 123(2018) 034504.
20. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI 04FG05.
21. Hua, M.: Physica Status Solidi A 215 (2018) SI 1700641.
22. Hwang, Il-H.: Physica Status Solidi A 215 (2018) 1700650.
23. He, J.: IEEE Trans. Electron Dev. 65 (2018) 3185.
#   24. He, J.: CS MANTECH 2018.
25. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
26. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
27. Khadar, R.A.: IEEE Electron Dev. Lett. 40 (2019) 443.
28. Huang, S.: J. Applied Phys. 12 (2019) 164505.
29. Hua, M.: Proc. Inter. Conf. ASIC 2019, pp.8983535.
#    30. Bao, S.: Chinese Physics B 28 (2019) 067304
31. Liu, W.: Applied Phys. Lett. 116 (2020) 022104.
32. Liu, W.: J. Applied Phys. 128 (2019) 074101.
33. Elangovan, S.: Energies 13 (2020) 2628.
34. Krukovskyi, R.: Functional Mater.‏ 27 (2020) 482.

Ťapajna, M. and Kuzmík, J.Control of threshold voltage in GaN based metal–oxide–semiconductor high-electron mobility transistors towards the normally-off operation, Japan. J. Applied Phys. 52 (2013) 08JN08.

 1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-
2. Swain, R.: Superlatt. Microstr. 84 (2015) 54.
3. Osvald, J.: Physica Status Solidi B 252 (2015) SI996.
4. Kim, J.-J.: Japan. J. Applied Phys. 54 (2015) 038003.
5. Swain, R.: J. Comput. Electron. 14 (2015) 754.
6. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
#    7. Nagy, L.: IEEE 18th Inter. Symp. Design Diagnostics of Electron. Circuits and Systems – DDECS 2015. Art. no. 7195673, p. 83.
8. Jena, K.: Inter. J. Numerical Modell. 29 (2016) 83.
9. Du, J.: Japan. J. Applied Phys. 55 (2016) 054301.
#    10. Nagy, L.: ICETA 2015. IEEE 2016. Art. No. 7558501.
11. Jena, K.: IET Circuits, Devices and Systems 10 (2016) 423.
12. Swain, R.: Pramana-J. Phys.88 (2017) 3.
13. Lee, J.-M.: J. Korean Phys. Soc. 71 (2017)365.
14. Du, J.: Superlatt. Microstr. 111 (2017) 656.
15. Huang, H.: J. Phys. D 51(2018) 345102.
16. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.

Blaho, M., Gregušová, D., Jurkovič, M., Haščík, Š., Fedor, J., Kordoš, P., Fröhlich, K., Brunner, F., Cho, E., Hilt, O., Würfl, H., and Kuzmík, J.Ni/Au-Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOSHEMTs. Microelectr. Engn. 112 (2013) 204-207.

1. Moon, S.-W.: Japan. J. Applied Phys. 53 (2014) 08NH02.
2. Zhang, Z.: Electron. Lett. 51 (2015) 1201.
3. Zhang, Z.: IEEE Trans. Electron Dev. 63 (2016) 731.
4. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
5. Fisichella, G.: Beilstein J. Nanotechnol. 8 (2017) 467.

Jurkovič, M., Gregušová, D., Palankovski, V., Haščík, Š., Blaho, M., Čičo, K., Fröhlich, K., Carlin, J., Grandjean, N., and Kuzmík, J.Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region,. IEEE Electron Dev. Lett. 34 (2013) 432-434.

1. Ahmadi, E.: Applied Phys. Lett. 104 (2014) 072107.
#       2. Marek, J.: ASDAM 2014. P. 153.
3. Dimitrijev, S.: MRS Bull. 40 (2015) 399.
4. Lee, K.B.: Applied Phys. Express 8 (2015) 036502.
5. Jebalin, B.K.: Superlatt. Microstr. 78 (2015) 210.
6. Chiu, H.-C.: Microelectron. Reliab. 55 (2015) 48.
7. Huang, H.: Solid-State Electr. 114 (2015) 148.
8. Zaidi, Z. H.: Semicond. Sci Technol. 30 (2015) 105007.
9. Nagy, L.: Inter. Conf. Applied Electron. 2015. 7011707, p. 225.
10. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
#      11. Nagy, L.: IEEE 18th DDECS 2015. 7195673, p. 83.
12. Smith, M. D.: Semicond. Sci Technol. 31 (2016) 025008.
13. Chen, P.-G.: Solid-State Electr. 129 (2017) 206.
14. Jena, K.: Region 10 Annual Inter. Conf. TENCON. IEEE 2017. Art.no. 7848652, p. 3253.
15. Freedsman, J.J.: IEEE Electron Device Lett. 38 (2017) 497.
16. Chander, S.: IEEE ICIEEIMT 2017. P.293.
17. Tiwari, N.: IEMENTECH 2017.
#      18. Gupta, S.: SCOPES 2016. Proc. 2017. Art.no. 7955748, pp. 1777.
19. Wei, L.-C.: J. Nanosci Nanotechnol. 18 (2018) 7400.
20. Chen, P.-G.: Sensors 18 (2018) 2795.
21. Smith, M.D.: Applied Surface Sci 521 (2020) 146297.

Ťapajna, M. and Kuzmík, J.: A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors, Applied Phys. Lett. 100 (2012) 113509.

1. Osvald, J.: ASDAM 2012. (2012) art. no. 6418555, pp. 59.
#      2.  Stafmiak, A.: ASDAM 2012. (2012) art. no. 6418226, pp. 271.
#      3. Sagatova, A.: ASDAM 2012. (2012) art. no. 6418581, pp. 147.
4. Chou, B.-Y.: Semicond. Sci Technol. 28 (2013) SI3UNSP074005.
5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
6. Osvald, J.: Phys. Status Solidi A 210  (2013) 1340.
7. Zhang, Y.: Applied Phys. Lett. 103 (2013) 033524.
8. Osvald, J.: Japan. J. Applied Phys. 52 (2013) 08JN09.
9. Gregusová, D.: Japan. J. Applied Phys. 52 (2013) 08JN07.
10. Akazawa, M.: Japan. J. Applied Phys. 52 (2013) 08JN23.
11. Johnson, D.W.: IEEE Trans. Electron Dev. 60 (2013) 3197.
12. Van Hove, M.: IEEE Trans. Electron Dev. 60 (2013) 3071.
13. Wang, Y.-H.: Semicond. Sci Technol. 28 (2013) 125010.
14. Wang, Y.-H.: IEEE ECCE Asia Downunder 2013, Art. no. 6579124.
15. Stoklas, R.: Semicond. Sci Technol.  29 (2014) 045003.
16. Capriotti, M.: Applied Phys. Lett. 104 (2014) 113502.
17. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
18. Tang, C.: Semicond. Sci Technol. 29 (2014) 125004.
19. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
20. Chou, B.-Y.: Semicond. Sci Technol.  30 (2015) 015009.
21. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
22. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
23. Capriotti, M.: J. Applied Phys. 117 (2015) 024506.
24. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
25. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
26. Yatabe, Z.: Physica Status Solidi A 212 (2015) 1075.
27. Downey, B. P.: Solid-State Electr. 106 (2015) 12.
28. Raj, B.: In Fakhfakh, M. et al.: Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design.  IGI Global 2015.  ISBN-13: 978-1466666276. P. 399-418.
29. Winzer, A.: J. Applied Phys. 118 (2015) 124106.
30. Swain, R.: TENCON IEEE Region 10 Conf. Proc. (2015).
31. Swain, R.: J. Comput. Electron. 14 (2015) 754.
32. Capriotti, M.: European Solid-State Device Research Conf. 2015. Art. no. 7324713, p. 60.
33. Swain, R.: IEEE EDSSC 2015. P. 399.
34. Swain, R.: IEEE EDSSC 2015. P. 567.
35. Du, J .: Japan. J. Applied Phys. 55 (2016) 054301.
36. Zhu, J.-J .: Japan. J. Applied Phys. 55 (2016) SI05FH01.
37. Zervos, Ch .: Applied Phys. Lett. 108 (2016) 142102.
38. Jena, K .: J. Electron. Mater. 45 (2016) 2172.
39. Swain, R.: Semiconductors 50 (2016) 384.
40. Hahn, H .: IEEE Trans. Electron Dev. 63 (2016) 606.
41. Swain, R .: IEEE Trans. Electron Dev. 63 (2016) 2346.
42. Li, L .: Chinese Phys. B 25 (2016) 038503.
43. Swain, R.: Mater. Sci in Semicond. Process. 53 (2016) 66.
44. Sun, R.: IEEE J. Emerging Selec Topics in Power Electron. 4 (2016) SI720.
45. Matys, M.: J. Applied Phys. 120 (2016) 225305.
46. Capriotti, M.: Solid-State Electron. 125 (2016) 118.
47. Reddy, M.S.P.: J. Electron. Mater. 45 (2016) 5655.
#      48. Swain, R.: IEEE TENCON 2016. Art. No. 7373087.
49. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2017) Q284.
50. Florovic, M.: Semicond. Sci Technol. 32 (2017) 025017.
51. Stoklas, R.: Semicond. Sci Technol. 32 (2017) 045018.
52. Matys, M.: Applied Phys. Lett. 110 (2017) 243505.
53. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
54. Wang, H.: Chinese Phys. B 26 (2017) 047305.
55. Lee, C.-S.: Mater. Sci in Semicond. Process. 66 (2017) 39.
56. Chapin, C.A.: TRANSDUCERS 2017. P. 786.
57. Wang, H.: Chinese Phys. B 26 (2017) 047305.
58. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.
59. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
60. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
61. Hadamek, T.: Applied Phys. Lett. 111 (2017) 142901.
62. Wang, H.: Solid-State Electr. 137 (2017) 52.
63. Du, J.: Superlatt. Microstr. 111 (2017) 656.
64. Amarnath, G.: Inter. J. Electron. Telecomm. 63 (2017) 363.
65. Amarnath, G.: Inter. J. Numer. Model. 31 (2018) e2268.
66. Tang, F.: J. Applied Phys. 123 (2018) 024902.
67. Le, S.P.: J. Applied Phys. 123 (2018) 034504.
68. Hou, B.: IEEE Electron Dev. Lett. 39 (2018) 397.
69. Ostermaier, C.: Microelectron. Reliab. 82 (2018) 62.
70. Zaidi, Z.H.: J. Applied Phys. 123 (2018) 184503.
71. Chang, S.-J.: ECS J. Solid State Sci Technol. 7 (2018) N86.
72. Zaki, F.: J. Computat. Electron. 17 (2018) 1220.
73. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
74. Huang, T.: Applied Phys. Lett. 113 (2018) 232102.
#     75. Wang, H.: Mater. Sci Forum 913 (2018) 870.
76. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
77. Nakazawa, S.: Japan. J. Applied Phys. 58 (2019) 030902.
78. Shin, D.: Phys. Rev. Mater. 3 (2019) 044607.
79. Hou, B.: WIPDA Asia 2018, p. 212-+.
80. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
#        81. Raj Kumar, J.S.: ICSPC 2019 – Proc. 8976802, pp. 380.
82. Sandeep, V.: IEEE Trans. Electron Dev. 67 (2020) 3558.
83. Zhao, Y.-P.: Chinese Phys. B 29 (2020) 087304.
84. Zhu, J.: Semicond. Sci Technol. 35 (2020) 065017.
85. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) 693.
86. Miyamoto, H.: Japan. J. Applied Phys. 59 (2020) 044002.
87. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
88. Zhao, Y.: Phys. Status Solidi A 217 (2020) 1900981.
89. Zhao, Y.: Solid-State Electr. 163 (2020) 107649.
90. Yoon, Y.J.: Electronics 9 (2020) 1402.
#       91. Sandeep, V.: Proc. 4th Inter. Conf. Electron., Comm. Aerospace Technol. – ICECA 2020, 9297448, pp. 471-478.
92. Pinchbeck, J.: J. Phys. D 54 (2021) 105104.
93. Mazumder, S.: Crystals 11 (2021) 136.

Palankovski, V., Kuzmík, J., : A Promising new n++-GaN/InAlN/GaN HEMT concept for high-frequency applications ECS Transactions 50 (2012) 291-296.

          1. Bhattacharjee, A.: Inter. Conf. Electron. Comm. Systems-ICECS 2014 6892645.

Kuzmík, J., Vitanov, S., Dua, C., Carlin, J., Ostermaier, C., Alexewicz, A., Strasser, G., Pogany, D., Gornik, E., Grandjean, N., Delage, S., Palankovski, V., : Buffer-related degradation aspects of single and double-heterostructure quantum well InAlN/GaN high-electron-mobility transistors. Japan. J. Applied Phys. 51 (2012) 054102.

#        1. Tang, C.: ICCCAS 2013 2, 6765355, pp. 353.
2. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
3. Guo, L.: Sci Rep. 6 (2016) 37415.
4. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
5. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.
6. Pevtsov, E. Ph.: IOP Conf. Ser.-Mater. Sci Engn. 498 (2019) 012040.

Palankovski, V., Donnarumma, G., Kuzmík, J., : Degradation study of single and double-heterojunction InAlN/GaN HEMTs by two-dimensional simulation ECS Transactions 50 (2012) 223-228.

        1. He, Y.: Applied Phys. Lett. 107 (2015) 063501.

Ťapajna, M., Gregušová, D., Čičo, K., Fedor, J., Carlin, J., Grandjean, N., Killat, N., Kuball, M., Kuzmík, J., : Early stage degradation of InAlN/GaN HEMTs during electrical stress. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 7-10.

1. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
2. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.

Jurkovič, M., Gregušová, D., Haščík, Š., Blaho, M., Molnár, M., Palankovski, V., Donoval, D., Carlin, J., Grandjean, N., Kuzmík, J., : GaN/InAlN/AlN/GaN normally-off HEMT with etched access region. In: WOCSDICE-EXMATEC 2012.Eds. Y. Cordier and J.-Y. Duboz. Island of Porquerolles: CRHEA & CNRS 2012.

     1. Mizutani, T.: J. Applied Phys. 113 (2013) 034502.

Čičo, K., Gregušová, D., Kuzmík, J., Jurkovič, M., Alexewicz, A., di Forte Poisson, M., Pogany, D., Strasser, G., Delage, S., and Fröhlich, K.: Influence of processing and annealing steps on electrical properties of InAlN/GaN high electron mobility transistor with Al2O3 gate insulation and passivation, Solid-State Electr. 67 (2012) 74-78.

1. Liu, X.: J. Electron. Mater. 42 (2013) 33.
2. Singh, S.P.: J. Phys. D 48 (2015) 365104.
3. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
4. Lin, C.-C.: Thin Solid Films 618 (2016) SI118.
5. Xiao, L.: CSTIC 2016.
6. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
7. Wang, H.: Japan. J. Applied Phys. 57 (2018) 04FG05.
8. Murugapandiyan, P.: J. Nanoelectron. Optoel. 13 (2018) 183.
9. Kanaga, S.: IEEE Inter.Conf. on Electronics Comput.Comm. Technol. 2018.
10. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020) 13.
11. Ozaki, S.: Semicond. Sci Technol.35 (2020) 035027.
12. Supardan, S. N.: J. Phys. D 53(2020) 075303.

Kuzmík, J.: Material and device issues of InAlN/GaN heterostructures. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 45-50.

1. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
2. Jardel, O.: Inter. J. Microwave Wireless Technol. 6 (2014) SI565.
3. Rossetto, I.: Microelectron. Reliab. 54 (2014) SI2248.
4. Zhou, Y.: Semicond. Sci Technol.  29 (2014) 095011.
5. Wang, Y.: IEEE Electron Device Lett. 38 (2017) 604.

 Kuzmík, J.N-polarity InN/GaN/InAlN high-electron-mobility transistors, Applied Phys. Express 5 (2012) 044101.

1. Wong, M.H.: Semicond. Sci Technol. 28 (2013) SI074009.
2. Xia, H.: J. Applied Phys. 113 (2013) 164304.
3. Colakerol, L.: Surface Sci 632 (2015) 154.
4. Zervos, Ch.: Applied Phys. Lett. 108 (2016) 142102.
5. Guerrero-Sanchez, J .: Superlatt. Microstr. 96 (2016) 67.
6. Mohanbabu, A.: Physica E 92 (2017) 23.
7. Zervos, C.: J. Vacuum Sci Technol. B 35 (2017) 021210.
8. Bai, D.: Solid State Comm. 265 (2017) 19.
9. Moreno, J. C.: J. Crystal Growth 507(2019) 370.
10. Wong, M.H.: Semicond. Semimet. 102 (2019) 329.

Jurkovič, M., Gregušová, D., Haščík, Š., Blaho, M., Čičo, K., Palankovski, V., Carlin, J., Grandjean, N., Kuzmík, J., : Polarization engineered normally-off GaN/InAlN/AlN/GaN HEMT In: Inter. Workshop on Nitride Semicond. 2012 – IWN. Sapporo 2012..

      1. Mizutani, T.: J. Applied Phys. 113 (2013) 034502.

Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vacuum Sci Technol. B 29 (2011) 01A808.

1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
4. Bera, M.K.: ECS Trans. 53 (2013) 65.
5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
10. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
#   15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280.
#   16. Schäfer, A.:  J. Alloys Comp. 651 (2015) 514.
17. Tromm, T. C. U.: ECS Trans. 72 (2016) 307.
18. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
19. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 1-20.
20. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.
21. Terkhi, S.: Indian J. Phys. 92 (2018) 847.
22. Adak, S.: Nano 14 (2019) 1950060.
23. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
24. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
25. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020)‏ 613.
26. Cui, X.: Nano Energy 68 (2020) 104361.
27. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Ostermaier, C., Pozzovivo, G., Carlin, J., Basnar, B., Schrenk, W., Ahn, S., Detz, H., Klang, P., Andrews, A., Douvry, Y., Gaquiere, C., De Jaeger, J., Tóth, L., Pecz, B., Gonschorek, M., Feltin, E., Grandjean, N., Strasser, G., Pogany, D., Kuzmík, J., : Improvements of high performance 2-nm-thin InAlN/AlN barrier devices by interface engineering, AIP Conf. Proc. 1399 (2011) 905-906.

       1. Du, J.: Nanosci Nanotechnol. Lett. 6 (2014) 830.

Kuzmík, J. and Georgakilas, A.: Proposal of InN channel high electron-mobility transistors. IEEE Trans. Electron Dev. 58 (2011) 720.

1. Lee, C.-T.: Applied Surface Sci 258 (2012) 8590.
2. Lenka, T. R.: Phys. Procedia 25 (2012) 36.
3. Ikeda, K.: Phys. Status Solidi c 9 (2012) 942.
4. Hadi, W.A.: J. Applied Phys. 113 (2013) 113709.
#    5. Ghosh, K.: Device Res. Conf. – Conf. Digest, DRC 2013, Art. no. 6633803.
6. Hao, Y.: Chinese Sci Bull. 59 (2014) 1228.
7. Oseki, M.: Sci Reports 4 (2014) 3951.
8. Pandey, D.: Environment. Sci Engn. 2014. P. 67.
9. Simek, P.: J. Nanoparticle Research 16 (2014) 2805.
10. Hadi, W.A.: J. Mater. Sci-Mater. Electron. 25 (2014) 5524.
11. Jung, H.S.: J. Nanosci Nanotechnol. 14 (2014) 8215.
12. Zhao, Y.: Semicond. Sci Technol.  30 (2015) 075005.
13. Miao, M.-S.: Applied Phys. Express 8 (2015) 024302.
#  14. Ohta, J.: In Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer Japan 2016. ISBN: 978-443156429-4. P. 249-275.
15. Haq, Md.R.: ICEEICT 2016.
16. Takai, S.: Japan. J. Applied Phys. 56 (2017) 06HE08.
17. Islam, Md. S.: 10th Inter. Conf. Electric. Computer Engn. – ICECE 2018, p. 141.
*   18. Dobročka, E.:  Mater. Struct. 26 (2019) 148-150.
19. Hsu, C.-W.: Applied Phys. Lett. 117 (2020) 093101.
20. Singh, V.K.: AIP Conf. Proc.‏ 2220 (2020) 090026.
#   21. Mouri, S.: Zairyo/J. Soc Mater. Sci, Japan 69 (2020) 701.
22. Oda, O.: Phys. Status Solidi A 218 (2021) ‏ SI2000462.

Vitanov, S., Kuzmík, J., Palankovski, V., : Study of the conduction properties of the n++ GaN cap layer in GaN/InAlN/GaN E-HEMTs Annual J. Electronics (2011) 113-116. (APVV 0104-10).

      1. Guo, H.: Applied Mechan. Mater. 217-219 (2012) 2393.

Kuzmík, J., Bychikhin, S., Pogany, D., Pichonat, E., Lancry, O., Gaquiere, C., Tsiakatouras, G., Deligeorgis, G., Georgakilas, A., : Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond. J. Applied Phys. 109 (2011) 086106.

 1. Hirama, K.: IEEE Electron Dev. Lett. 33 (2012) 513.
 2. Cho, J.: 13th IEEE InterSoc Conf. Thermal Thermomechan. Phenomena in Electron. Systems (2012) 435.
3. Cho, J.: IEEE Trans. Components Packag. Manufact. Technol. 3 (2013) 79.
4. Won, Y.: Technical Digest – IEEE CSIC 2013, Art. no. 6659222 2013.
5. Cahill, D.G.: Applied Phys. Rev. 1 (2014) 011305.
6. Won, Y.: IEEE Trans. Comp. Packaging Manufact. Technol. 5 (2015) 737.
7. Sun, H.: Applied Phys. Lett. 106 (2015) 111906.
8. Wang, W.: CRYSTENGCOMM 18 (2016) 4688.
9. Kuball, M.: IEEE Trans.Device Mater. Reliab. 16 (2016) 667.
10. Zhou, Y.: Applied Phys. Lett. 111 (2017) 041901.
11. Tawfik, W.Z.: J. Mater. Sci 53 (2018) 8878.
12. Minoura, Y.: Japan. J. Applied Phys. 59 (2020) SGGD03.

Donoval, D., Chvála, A., Šramatý, R., Kováč, J., Carlin, J., Grandjean, N., Pozzovivo, G., Kuzmík, J., Pogany, D., Strasser, G., and Kordoš, P.: Current transport and barrier height evaluation in Ni/InAlN/GaN Schottky diodes. Applied Phys. Lett. 96 (2010) 223501.

1. Song, J.: Applied Phys. Lett. 97 (2010) 232106.
2. Mao, W.: Chinese Phys. B 20 (2011) 017203.
3. Chen, Z.T.: IEEE Electron Dev. Lett. 32 (2011) 620.
4. Ejderha, K.: Materials Sci Semicond. Process. 14 (2011) 5.
#  5. Rafei, A.E.: EuMW 2011, art. no. 6102856, p. 5.
6. Minj, A.: Nanotechnol. 23 (2012) 115701.
7. Xue, J.S.: J. Applied Phys. 111 (2012) 114513.
8. Ganguly, S.: Applied Phys. Lett. 101 (2012) 253519.
9. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
10. Hahn, H.: Semicond. Sci Technol. 28 (2013) SI074017.
11. Mao, W.: Chinese Phys. Lett. 30 (2013) 058502.
12. Kyaw, L.M.: ECS Trans. 53 (2013) 75.
13. Kyaw, L.M.: ECS Solid State Lett. 3 (2014) Q5.
14. Ren, J.: J. Applied Phys. 117 (2015) 154503.
15. Geum, D.-M.: IEEE Electron Device Lett. 36 (2015) 306.
16. Mahala, P.: Applied Phys. A 118 (2015) 1459.
17. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
18. Mudusu, D.: RSC Adv. 7 (2017) 11111.
19. Polyakov, A.Y.: ECS J. Solid State Sci Technol. 7 (2018) Q1.
20. Sasangka, W.A.: Microelectron. Reliab. 88-90 (2018) SI393.
21. Mojaver, H.R.: IEEE Trans. Electron Dev. 65 (2018) 3156.
22. Wu, M.: WIPDA Asia 2018, p. 79-+.
23. Bellamkonda, V.S.: Mater. Research Express 6 (2019) 105917.

Ostermaier, C., Pozzovivo, G., Basnar, B., Schrenk, W., Carlin, J., Gonschorek, M., Grandjean, N., Vincze, A., Tóth, L., Pecz, B., Strasser, G., Pogany, D., Kuzmík, J., : Characterization of Plasma-Induced Damage of Selectively Recessed GaN/InAlN/AlN/GaN Heterostructures Using SiCl4 and SF6 Japan. J. Applied Phys. 49 (2010) 116506.

1. Lee, D.S.: IEEE Electron Dev. Lett. 32 (2011) 755.
#      2. Zhang, J.: Semicond. Sci Technol. 31 (2016) 035015.
3. Wang, L.: Chinese Phys. B 26 (2017) 037201.
4. Smith, M.D.: Applied Surface Sci 521 (2020)146297.
5. Filippov, I. A.: Russian Phys. J. 63 (2020) 94.

Ostermaier, C., Pozzovivo, G., Basnar, B., Schrenk, W., Schmid, M., Tóth, L., Pecz, B., Carlin, J., Gonschorek, M., Grandjean, N., Strasser, G., Pogany, D., Kuzmík, J., : Metal-related gate sinking due to interfacial oxygen layer in Ir/InAlN high electron mobility transistors. Applied Phys. Lett. 96 (2010) 263515.

1. Wang, R.H.: IEEE Electron Device Lett. 32 (2011) 309.
2. Vallo, M.: Applied Surface Sci 267 (2013) 159.
3. Li, L.: Japan. J. Applied Phys. 52 (2013) SI11NH01.
4. Wu, Y.: IEEE Trans. Electron Dev. 64 (2017) 4435.

Čičo, K., Gregušová, D., Gaži, Š., Šoltýs, J., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Optimization of the ohmic contact processing in InAlN/GaN high electron mobility transistors for lower temprerature of annealing, Phys. Status Solidi c 7 (2010) 108-111.

1. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
2. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
3. Bergsten, J.: Semicond. Sci Technol. 30 (2015) 105034.
4. Li, Q.: AIP Adv. 7 (2017) 125103.
5. Li, Q.: Acta Phys. Sinica 67 (2018) 027303.
6. Yoshida, T.: Japan. J. Applied Phys. 57 (2018) 110302.
7. Lin, Y.-K.: Semicond. Sci Technol.33 (2018) 095019.

Kuzmík, J., Ostermaier, C., Pozzovivo, G., Basnar, B., Schrenk, W., Carlin, J., Gonschorek, M., Feltin, E., Grandjean, N., Douvry, Y., Gaquiere, C., DeJaeger, J., Čičo, K., Fröhlich, K., Škriniarová, J., Kováč, J., Strasser, G., Pogany, D., and Gornik, E.: Proposal and performance analysis of normally off GaN/InAlN/AlN/GaN HEMTs with 1-nm-thick InAlN barrier, IEEE Trans. Electron Dev. 57 (2010) 2144-2154.

1. Chen, P.-G.: IEEE Electron Device Lett. 36 (2015) 259.
2. Yan, J.-D.: Chinese Phys. Lett. 32 (2015) 127301.
*     3. Marek, J.: ADEPT 2015. P. 45.
4. Goyal, N.: IEEE Trans. Electron Dev. 63 (2016) 881.
5. Xue, J.S.: Applied Phys. Lett. 108 (2016) 013508.
6. Adak, S.: IEEE Proc. Inter. Conf. on Devices, Circuits and Systems 2016. P.  89.
7. Adak, S.: Superlatt. Microstr. 100 (2016) 306.
8. Wang, Y.-G.: Chinese Phys. B 25 (2016) 107106.
9. Murugapandiyan, P.: Superlatt. Microstr. 109 (2017) 725.
10. Ahmeda, K.: EUMIC Proc. 2017. P. 37.
11. Ahmeda, K.: IEEE ACCESS 5 (2017) 20946.
12. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
#   13. Adak, S.: In Nanotechnology: Synthesis to Applications. CRC Press 2017, ISBN 978-113803274-3, pp. 285-295.
#    14. Nasser, C.: MIKON 2018, pp. 271-273.
15. Thi Huong, N.: Semicond. Sci Technol. 36 (2020) 024001.
#   16. Murugapandiyan, P.: Inter. J. Electron. Lett. 8 (2020) 472.
17. Cozette, F.: Semicond. Sci Technol. 36 (2021) 034002.

Ostermaier, C., Ahn, S., Potzger, K., Helm, M., Kuzmík, J., Pogany, D., Strasser, G., Hahn, S., Lee, J., : Study of Si implantation into Mg-doped GaN for MOSFETs, Phys. Status Solidi C 7 (2010) 1964–1966.

        1. Zhang, Y.: IEEE Electron Dev. Lett. 38 (2017) 1097.

Kuzmík, J., Pozzovivo, G., Ostermaier, C., Strasser, G., Pogany, D., Gornik, E., Carlin, J., Gonschorek, M., Feltin, E., and Grandjean, N.: Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors, J. Applied Phys. 106 (2009) 124503.

1. Tapajna, M.: Applied Phys. Lett. 97 (2010) 023503.
*   2. Wang, H.: Phys. Status Solidi c 7 (2010) 2440.
3. Chang, Ch-Y.: J. Vacuum Sci Technol. B 28 (2010) 1044.
4. Chiou, Y.L.: J. Electrochem. Soc 158 (2011) H156.
5. Ardaravicius, L.: Acta Phys. Polonica A 119 (2011) 231.
6. Lee, D.S.: IEEE Electron Dev. Lett. 32 (2011) 617.
7. Lo, C-F.: J. Vacuum Sci Technol. B 29 (2011) 021002.
8. Lee, D.S.: IEEE Electron Dev. Lett. 32 (2011) 755.
9. Huang Y., IEEE Electron Dev. Lett. 32 (2011) 1071.
10. Tirelli, S.: IEEE Electron Dev. Lett. 32 (2011) 1364.
11. Lo, C. F.: J. Vacuum Sci Technol. B 29 (2011) 061201.
12. Wang P.-Y.: Acta Physica Sinica 60 (2011) 117304.
13. Zhang J.-F.: Acta Physica Sinica 60 (2011)117305.
14. Hasan, T.: Applied Phys. Lett. 99 (2011) 132102.
15. Lee, H.-S.: IEEE Electron Dev. Lett. 33 (2012) 982.
16. Xu, W.: Applied Phys. Lett. 100 (2012) 223504.
17. Wang, X.-D.: IEEE Trans. Electron Dev. 59 (2012) 1393.
18. Kayis, C.: Phys. Status Solidi R 6 (2012) 163.
19. Zhu, C.: Proc. SPIE 8262 (2012) 826225.
20. Lo, C.-F.: J. Vacuum Sci Technol. B 30 (2012) 041206.
21. Zhu, C.Y.: Applied Phys. Lett. 101 (2012) 103502.
22. Piotrowicz, S.: Technical Digest – IEEE CSIC (2012) 6340059.
23. Chen, H.: J. Applied Phys. 113 (2013) 194509.
24. Hiroki, M.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF02.
25. Nsele, S.D.: IEEE Trans. Electron Dev. 60 (2013) 1372.
26. Zhou, Q.: IEEE Trans. Electron Dev. 60 (2013) 1075.
27.  Lecourt, F.: IEEE Electron Dev. Lett. 34 (2013) 6544248.
28. Geum, D. M.: Electron. Lett. 49 (2013) 1536.
29. Zhou, Q.: ECS Trans. 58 (2013) 351.
30. Liu, L.: Proc. SPIE 8625 (2013) 86250W.
#  31. Liu, B.: J. Semicond. 34 (2013) 044006.
32. Kyaw, L.M.: ECS Trans. 53 (2013) 75.
33. Benyahya, N.: Optical Quantum Electr. 46 (2014) 209.
34. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
35. Kawanago, T.: IEEE Trans. Electron Dev.  61 (2014) 785.
36. Chyi, J.-I. ECS Trans. 61 (2014) 3.
37. Jardel, O.: Inter. J. Microwave Wireless Technol. 6 (2014) SI565.
38. Tang, C.: Semicond. Sci Technol. 29 (2014) 125004.
39. Nsele, S.D.: Applied Phys. Lett. 105 (2014) 192105.
40. Adak, S.: Superlatt. Microstruct. 75 (2014) 347.
41. Kyaw, L.M.: Phys. Status Solidi C 11 (2014) 883.
42. Piotrowicz, S.: IEEE MTT-S Inter. Microwave Symp. IMS 2014. Code 106625.
 43. Zhao, S.L.: Applied Phys. Express 7 (2014) 071002.
44. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
45. Petitdidier, S.: Microelectron. Reliab. 55 (2015) 1719.
46. Kyaw, L.M.: J.Vacuum Sci Technol. B 33 (2015) 051203.
47. Kang, T.-S.: J.Vacuum Sci Technol. B 33 (2015) 061202.
48. Adak, S.: Proc. 1st Inter. Conf. on Computing, Comm., Control and Automat. – ICCUBEA 2015. Art. no. 7155977, p. 902.
#    49. Wang, H.: Gongneng Cailiao/J. Functional Mater. 46 (2015) 01051and 01060.
50. Kyaw, L.M.: ECS J. Solid State Sci Technol. 5 (2016) Q17.
51. Jia, X.L.: IEEE Electron Device Lett. 37 (2016) 913.
52. Adak, S.: IEEE Proc. Inter. Conf. on Devices, Circuits and Systems 2016. P.  89.
53. Han, T.: J. Semicond. 37 (2016) 024007.
54. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
55. Afzal, N.: Mater. Research Express 3 (2016) 085904.
56. Ahn, S.: J. Vacuum Sci Technol. B 34 (2016) 051202.
57. Swain, S.K.: Superlatt. Microstr. 97 (2016) 258.
58. Adak, S.: Superlatt. Microstr. 100 (2016) 306.
59. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
60. Joglekar, S.: IEEE Trans. Semiconductor Manufact. 29 (2016) 349.
61. Berthet, F.: Solid-State Electr. 127 (2017) 13.
62. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.
63. Adak, S.: NANO 12 (2017) 1750009.
64. Chander, S.: ICIEEIMT 2017. P. 293.
65. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
#    66. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
67. Wang, L.: Phys. Rev. Applied 9 (2018) 024006.
68. Dong, Y.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 31 (2018) e2299.
69. Huang, Y.-P.: IEEE Electron Dev. Lett. 40 (2019) 929.
70. Adak, S.: Nano 14 (2019) 1950060.
71. Petitdidier, S.: IEEE Trans. Nuclear Sci 66 (2019) 810.
#    72. Adak, S.: DevIC 2019, pp. 156-160.
73. Green, A.J.: IEEE Electron Dev. Lett. 41 (2020) 1181.
74. Sugie, R.: J. Electron. Mater. 49 (2020) SI5085.
75. Cui, P.: J. Phys. D‏ 53 (2020) 065103.
76. Lee, C.-S.: ECS J. Solid State Sci Technol.‏ 9 (2020) 105002.
#  77. Jin, N.: Guti Dianzixue Yanjiu Yu Jinzhan/Research Progress Solid State Electron. 40 (2020) 300.
78. Yang, W.-L.: Semicond. Sci Technol. 36 (2021) 015018.

Abermann, S., Pozzovivo, G., Kuzmík, J., Ostermaier, C., Henkel, C., Bethge, O., Strasser, G., Pogany, D., Carlin, J., Grandjean, N., Bertagnolli, E., : Current collapse reduction in InAIM/GaN MOS hemtHEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics. Electronics Lett. 45 (2009) 570-572.

1. Wu, M.: J. Vacuum Sci Technol. B 28 (2010) 908.
2. Lee, K.W.: Electrochem. Solid State Lett. 14 (2011) H73.
3. Tian B.-L.: Chinese Phys. B 21 (2012) 126102.
4. Tian Ben-L.: Chinese Phys. Lett. 30 (2013) 026101.
5. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
6. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
7. Hatano, M.: Applied Phys. Express 7 (2014) 044101.
8. Ye, G.: Applied Phys. Lett. 105 (2014) 152104.
9. Ye, G.: Applied Phys. Lett. 105 (2014) 022106.
10. Ye, G.: Applied Phys. Lett. 106 (2015) 091603.
11. Ye, G.: J. Vacuum Sci Technol. A 33 (2015) 05E117.
#    12. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
13. Chakroun, A.: IEEE Electron Device Lett. 38 (2017) 779.
14. Chen, F.: J. Electron. Mater. 48 (2019) Iss.SI 11.
15. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Čičo, K., Kuzmík, J., Liday, J., Hušeková, K., Pozzovivo, G., Carlin, J., Grandjean, N., Pogany, D., Vogrinčič, P., and Fröhlich, K.: InAlN/GaN metal-oxide-semiconductor high electron mobility transistor with Al2O3 insulating films grown by metal organic chemical vapor deposition using Ar and NH3 carrier gases, J. Vacuum Sci Technol. B 27 (2009) 218-222.

1. Pang, L.: J. Phys. D 45 (2012) 045105.
2. Bera, M.K.: ECS Trans. 53 (2013) 65.
3. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
4. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
5. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
6. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
7. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.

Ťapajna, M., Kuzmík, J., Čičo, K., Pogany, D., Pozzovivo, G., Strasser, G., Abermann, S., Bertagnolli, E., Carlin, J., Grandjean, N., and Fröhlich, K.: Interface states and trapping effects in Al2O3- and ZrO2/InAlN/AlN/GaN metal-oxide-semiconductor heterostructures, Japan. J. Applied Phys. 48 (2009) 090201.

1. Simoen, E.: J. Phys. D 44 (2011) 475104.
2. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
3. Wang, C.: Semicond. Sci Technol. 32 (2017) 105002.
4. Kumar, S.: Solid-State Electr. 137 (2017) 117.
#    5. Akram, M.: Applied Phys. A 124 (2018) 180.
6. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
7. Chen, F.: J. Electron. Mater. 48 (2019) Iss.SI 11.
8. Huang, S.: J. Applied Phys. 126 (2019) 164505.
9. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Pozzovivo, G., Kuzmík, J., Giesen, C., Heuken, M., Liday, J., Strasser, G., and Pogany, D.: Low resistance ohmic contacts annealed at 600°C on a InAlN/GaN heterostructure with SiCl4-reactive ion etching surface treatment, Phys. Status Solidi C 6 (2009) S999–S1002.

1. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
2. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI10MA07.
3. Liu, Y.: J. Vacuum Sci Technol. B 32 (2014) 032201.
4. Geum, D.-M.: Electron. Lett. 50 (2014) 1545.
5. Arulkumaran, S.: Japan. J. Applied Phys. 54 (2015) SI04DF12.
6. Watanabe, A.: J. Applied Phys. 118 (2015) 235705.
7. Arulkumaran, S.: Devices Circuits and Systems 47 (2016) 63.
8. Chou, L.-I.: IEEE CSICS 2017.
9. Zeng, F.: Electronics 7 (2018) 377.
10. Yoshida, T.: Japan. J. Applied Phys. 57 (2018) 110302.
11. Bourlier, Y.: ECS J. Solid State Sci Technol. 7 (2018) P329.
12. Wang, X.: J. Vacuum Sci Technol. B 38 (2020) 062206.

Kuzmík, J., Pozzovivo, G., Carlin, J., Gonschorek, M., Feltin, E., Grandjean, N., Strasser, G., Pogany, D., Gornik, E., : Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors Phys. Status Solidi C 6 (2009) S925–S928.

1. Zhou, Q.: IEEE Electron. Devices Lett. 33 (2012) 38.
2. Lee, H.-S.: IEEE Electron. Devices Lett. 33 (2012) 982.
3. Zhou, Q.: IEEE Trans. Electron Dev. 60 (2013) 1075.
4. Saito, H.: Phys. Status Solidi C10 (2013) 824.
5. Ohi, K.: IEEE Trans. Electron Dev. 60 (2013) 6555829.
6. Zhou, Q.: ECS Trans. 58 (2013) 351.
7. Zhou, Q.: Solid-State Electron. 91 (2014) 19.
8. Zhou, Q.: Proc. Inter. Symp. Power Semicond. Devices & ICs (2013) 195.
9. Watanabe, A.: Applied Phys. Express 7 (2014) 041002.
10. Tang, C.: Semicond. Sci Technol. 29 (2014) 125004.
11. Meneghesso, G.: Japan. J. Applied Phys. 53 (2014) 100211.
12. Lee, K.B.: Applied Phys. Express 8 (2015) 036502.
13. Miyoshi, M.: Applied Phys. Express 8 (2015) 021001.
14. Freedsman, J.J.: IEEE Electron Device Lett. 38 (2017) 497.
15. Biswas, D.: J. Applied Phys. 125 (2019) 225707.

Kuzmík, J., Bychikhin, S., Pichonat, E., Gaquiere, C., Morwan, E., Kohn, E., Teyssier, J., Pogany, D., : Self-heating phenomana in high-power III-N transistors and new thermal characterization methods developed within EU project TARGET Inter. J. Microwave and Wireless Technol. 1 (2009) 153-160.

1. Magerl, G. Inter. J. Microwave Wireless Technol. 1 (2009) 89.
2. Yan, Z.: Nature Comm. 3 (2012) 827.
#    3. Woo, H.: Current Applied Phys. 14 (2014) S98.
4. Schleeh, J.: Nature Mater. 14 (2015) 187.
5. Renteria, J.: Mater. Design 88 (2015) 214.
6. Rafi-Ul-Islam, S.M.: IEEE EICT 2015. P. 441.
7. Perpina, X.: RSC Nanosci Nanotechnol. 38 (2016) 383.
8. Tao, L.: ACS Applied Mater. & Interf. 9 (2017) 989.

Ťapajna, M., Čičo, K., Kuzmík, J., Pogany, D., Pozzovivo, G., Strasser, G., Carlin, J., Grandjean, N., and Fröhlich, K.: Thermally induced voltage shift in capacitance–voltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al2O3/InAlN/GaN heterostructures, Semicond. Sci Technol. 24 (2009) 035008.

1. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
2. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
3. Pandey, S.: J. Applied Phys. 112 (2012) 123721.
4. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
6. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
7. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
8. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
9. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
10. Charfeddine, M.: J. Optoelectron. Adv. Mater. 16 (2014) 820.
11. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
12. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
13. Jena, K.: J. Electron. Mater. 45 (2016) 2172.
14. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
15. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
16. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
17. Panda, J.: J. Semicond. 37 (2016) 044003.
18. Mleczko, M.: Sci Adv. 3 (2017) e1700481.
19. Kumar, S.: IEEE Trans. Electron Dev. 64 (2017) 4868.
20. Kumar, S.: Solid-State Electr. 137 (2017) 117.
21. Dutta, G.: IEEE Trans. Electron Dev. 64 (2017) 3602.
22. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
#   23. Chen, K.J.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 347-366.
24. Kim, H.: J. Mater Sci-Mater. Electron. 29 (2018) 17508.
25. Kim, H.: Nanoscale Res. Lett. 13 (2018) 232.
26. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
27. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
28. Kumar, S.: ACS Applied Electron. Mater. 1 (2019) 340.
29. Kanaga, S.: IEEE Trans. Dev. Mater. Reliab.‏ 20 (2020) 613.

Ostermaier, C., Pozzovivo, G., Carlin, J., Basnar, B., Schrenk, W., Douvry, Y., Gaquiere, C., DeJaeger, J., Čičo, K., Fröhlich, K., Gonschorek, M., Grandjean, N., Strasser, G., Pogany, D., and Kuzmík, J.Ultrathin InAlN/AlN barrier HEMT with high performance in normally off operation, IEEE Electron Dev. Lett. 30 (2009) 1030-1032.

1. Lim, T.: IEEE Electron. Dev. Lett. 31 (2010) 671.
2. Tasli P.; Physica B 405 (2010) 4020.
3. Wang, H.: Phys. Status Solidi c 7 (2010) 2440.
4. Akazawa, M.: J. Applied Phys. 109 (2011) 013703.
5. Wang, R.: IEEE Electron Dev. Lett. 32 (2011) 309.
6. Akazawa, M.: Applied Phys. Lett. 98 (2011) 142117.
7. Cheng, Z.: Microw. Optical Technol. Lett. 53 (2011) 1206.
8. Cheng, Z.: 2011 Inter. Conf. Electr., Comm. Control (ICECC)  (2011) 1979.
9. Cheng, Z.: 2011 Inter. Conf. Electr., Comm. Control (ICECC)  (2011) 2306.
10. Wang, L.: J. Electronic Mater. 41 (2012) 2130.
11. Akazawa, M.: Phys. Status Solidi C 9 (2012) 592.
12. Lenka, T. R.: Phys. Procedia 25 (2012) 36.
13. Sarikavak-Lisesivdin, B.: Current Applied Phys. 13 (2013) 224.
14. Pang, L.: 2013 IEEE PECI, Art. no. 6506026.
15. Rossetto, I.:.Microelectr. Reliab. 53 (2013) 1476.
16. Kim, S.: Japan. J. Applied Phys. 52 (2013) 10MA05.
17. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI UNSP 10MA07.
18. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
19. Adak, S.: Superlatt. Microstruct. 75 (2014) 347.
20. Freedsman, J.J.: Applied Phys. Express 7 (2014) 104101.
21. Anderson, T.: J.Vacuum Sci Technol. B 32 (2014) 051203.
22. Pandey, D.: Environment. Sci Engn. 2014. P. 67.
23. Freedsman, J.J.: IEEE Device Research Conf. Proc. 2014. P. 49.
#   24. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
25. Chiu, H.-C.: Microelectr. Reliab. 55 (2015) 48.
26. Geum, D.-M.: IEEE Electron Device Lett. 36 (2015) 306.
27. Zhang, P.: Chinese Phys. B 24 (2015) 037304.
28. Medjdoub, F.: Applied Phys. Express 8 (2015) 101001.
29. Medjdoub, F.: IEEE IEDM 2015.
30. Aubry, R.: IEEE Electron Device Lett. 37 (2016) 629.
31. Zuniga-Perez, J.: Applied Phys. Rev. 3 (2016) 041303.
32. Li, X.: Microelectr. Reliab. 65 (2016) 35.
33. Swain, S.K.: Superlatt. Microstr. 97 (2016) 258.
34. Mei, H.: J. Instrument. 11 (2016) P12021.
#   35. Medjdoub, F.: Technical Digest – IEDM 2016. Art. No. 7409660, p. 9.2.1.
36. Haq, M.R.: In 2016 3rd Inter. Conf. Electr. Engn. Information Comm. Technol. (ICEEICT), Dhaka 2016, pp. 1-5.
37. Wang, Z.: In Gallium Nitride Power Devices. Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 111-143.
38. Murugapandiyan, P.: In AEU Inter. J. Electron. Comm. 77 (2017)  163.
39. Dong, Y.: Inter. J. Numerical Modell.-Electron. Networks Dev. Fields 31 (2018) e2299.
40. Dong, Y.: Sensors 18 (2018) 1314.
41. Chugh, N.: 5TH IEEE Uttar Pradesh Sect. Inter. Conf. Electr., Electron. Computer Engn. (UPCON) 2018, pp. 809-813.
42. Ma, J.: Applied Phys. Lett. 113 (2018) 242102.
43. Narin, P.: Applied Phys. A 125 (2019) 278.
44. Dong, Y.: Inter. J. Numer. Modell. 32 (2019) e2482.
45. Gulseren, M.E.: Proc. SPIE 10918 (2019) 109181A.
46. Kotani, J.: J. Applied Phys. 127 (2020) Iss.‏ 23.
47. Fukuda, K.: Japan. J. Applied Phys. 60 (2021) SBBD04.
48. Oda, O.: Phys. Status Solidi A 218 (2021) ‏ SI2000462.

Pozzovivo, G., Kuzmík, J., Golka, K., Čičo, K., Fröhlich, K., Carlin, J., Gonschorek, M., Grandjean, N., Schrenk, W., Strasser, G., and Pogany, D.: Influence of GaN capping on performance of InAlN/AlN/GaN MOS-HEMT with Al2O3 gate insulation grown by CVD, Physica Status Solidi c 5 (2008) 1956-1958.

1. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
2. Watanabe, A.: Applied Phys. Express 7 (2014) 041002.
3. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
4. Kumar, S.: Solid-State Electr. 137 (2017) 117.
5. Kanaga, S.: IEEE Inter. Conf. Electron. Comp. Comm. Technol. 2018.
6. Kanaga, S.: IEEE Trans. Dev. Mater. Reliab.‏ 20 (2020) 613.

Kuzmík, J., Pozzovivo, G., Abermann, S., Carlin, J., Gonschorek, M., Feltin, E., Grandjean, N., Bertagnolli, E., Strasser, G., and Pogany, D.: Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2, IEEE Trans Electron Devices 55 (2008) 937-941.

1. Dabiran, A. M.: Applied Phys. Lett. 93 (2008) 082111.
*      2. Iliopoulos, E.: Inter. Workshop on Nitride Semiconductors. Book of Abstracts. Montreux 2008. P. 394.
3. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
4. Tahir, D.: Applied Phys. Lett. 94 (2009) 212902.
5. Gregusova, D.: Semicond. Sci Technol. 24 (2009) 075014.
6. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
7. Ardaravicius, L.: J. Applied Phys. 106 (2009) 073708.
8. Saadat, O.I.: IEEE Electron Device Lett. 30 (2009) 1254.
9. Wu, T.Y.: IEEE Trans. Electron Dev. 56 (2009) 2911.
10. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
11. Basu, S.: IEEE Trans. Electron Devices 57 (2010) 2978.
12. Mao, W.: Chinese Phys. Lett. 27 (2010) 128501.
*    13. Wang, H.: Phys. Status Solidi c 7 (2010) 2440.
14. Mao, W.: Chinese Phys. B 20 (2011) 017203.
15. Morgan, D.: Applied Phys. Express 4 (2011) 114101.
16. Eickelkamp, M.: J. Applied Phys. 110 (2011) 084501.
17. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
18. Kayis, C.: Phys. Status Solidi c 8 (2011) 1539.
#     19. Xie, S.: Gongneng Cailiao/J. Functional Mater. 42 (2011) (SUPPL. 5) 784.
20. Bi, Z.-W.: Chinese Phys. Lett. 29 (2012) 028501.
21. Feng Q.: Chinese Phys. B 21 (2012) 067305.
22. Son, J.: Applied Phys. Lett. 101 (2012) 102905.
23. Chen, C.-H.: Microelectron. Reliab. 52 (2012) 2551.
24. Tian B.-L.: Chinese Phys. B 21 (2012) 126102.
25. Tian B.-L.: Chinese Phys. Lett. 30 (2013) 026101.
26. Zhang, W.: IEEE Electron Device Lett. 34 (2013) 45.
27. Wu, T.-Y.: Solid-State Electron. 82 (2013) 1.
28. Mao, W.: Chinese Phys. Lett. 30 (2013) 058502.
29. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
30. Arulkumaran, S.: IEEE Device Research Conf. Proc. 2013. P. 71.
31. Lachab, M.: J. Phys. D 47 (2014) 135108.
32. Hatano, M.: Applied Phys. Express 7 (2014) 044101.
33. Malmros, A.: Phys. Status Solidi C 11 (2014) 924.
34. Chou, B.-Y.: IEEE Electron Device Lett. 35 (2014) 1091.
35. Ye, G.: Applied Phys. Lett. 105 (2014) 152104.
36. Ilgaz, A.: J. Optoelectron. Adv. Mater. 16 (2014) 1008.
37. Owen, M.H.S.: Applied Phys. Lett. 105 (2014) 031602.
38. Ye, G.: Applied Phys. Lett. 105 (2014) 022106.
39. Chou, B.-Y.: Semicond. Sci Technol.  30 (2015) 015009.
40. Li, Y.-R.: Rare Metals 34 (2015) 371.
41. Jones, K.A.: J. Mater. Sci 50 (2015) 3267.
42. Downey, B. P.: Solid-State Electr. 106 (2015) 12.
43. Ye, G.: Applied Phys. Lett. 106 (2015) 091603.
44. Xue, J.S.: Applied Phys. Lett. 107 (2015) 043503.
45. Singh, S.P.: J. Phys. D 48 (2015) 365104.
46. Ye, G.: J. Vacuum Sci Technol. A 33 (2015) 05E117.
47. Liu, H.Y.: Proc. 11th IEEE Inter. Conf. on Power Electron. Drive Systems – PEDS 2015. Art. no. 7203398, p. 578.
48. Freedsman, J.J.: IEEE DRC 2015. P. 55.
49. Zervos, Ch.: Semicond. Sci Technol. 31 (2016) 065002.
50. Lee, C.-S.: Semicond. Sci Technol. 31 (2016) 055012.
51. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
52. Mi, M.: Physica Status Solidi C 13 (2016) 325.
53. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
54. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
55. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
56. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.
57. Lee, C.-S.: Semicond. Sci Technol. 32 (2017) 055012.
58. Murugapandiyan, P.: AEU-Inter. J. Electron. Comm. 77 (2017) 163.
59. Duan, T.: In Gallium Nitride Power Devices. Eds.Yu, H., Duan, T. New York: Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
60. Murugapandiyan, P.: J. Sci-Adv. Mater. Dev. 2 (2017) 515.
61. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
62. Lee, C.-S.: Semicond. Sci Technol. 33 (2018) 065004.
63. Li, Y.: IEEE Trans. Electron Dev. 65 (2018) 783.
64. Taoka, N.: Japan. J. Applied Phys. 57 (2018) 01AD04.
65. Ren J.: Acta Phys. Sinica 67 (2018) 247202.
66. Jiang, H.: IEEE Trans. Electron Dev. 65 (2018) 5337.
#     67. Hao, Y.: In Nitride Wide Bandgap Semicond. Material and Electronic Devices. CRC Press 2016, ISBN: 978-149874513-0, pp. 1-368.
68. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
69. Partida-Manzanera, T.: J. Applied Phys. 126 (2019) 034102.
70. Lin, T.: ECS J. Solid State Sci Technol. 8 (2019) P388.
71. Chen, F.: J. Electron. Mater. 48 (2019) Iss.SI 11.
72. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
73. Liang, J.: Solid-State Electron. 160 (2019) UNSP 107622.
74. Varghese, A.: Proc. IEEE Sensors 2019, pp.8956889.
75. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
76. Mishra, S.N.: ECS J. Solid State Sci Technol. 9 (2020) 065002.
77. Oda, O.: Phys. Status Solidi A‏ 218 (2021) SI2000462.

Bychikhin, S., Dubec, V., Kuzmík, J., Würfl, H., Kurpas, P., Teyssier, J., Pogany, D., : Current gain collapse in HBTs analysed by transient interferometric mapping method. In: Conf. Proc. 2nd European Microwave Integrated Circuits Conference, EuMIC 2007. (2007) 28-31. ISBN 978-2-87487-002-6. (not IEE SAS).

#       1. Hu, J. Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 32 (2012)  472.
#       2. Hu, J. Guti Dianzixue Yanjiu Yu Jinzhan/ Res. Progress Solid State Electron. 32 (2012)  488.

Pozzovivo, G., Kuzmík, J., Golka, K., Schrenk, W., Strasser, G., Pogany, D., Čičo, K., Ťapajna, M., Fröhlich, K., Carlin, J., Gonschorek, M., Feltin, E., and Grandjean, N.: Gate insulation and drain current saturation mechanism in InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors, Applied Phys. Lett. 91 (2007) 043509.

1. Iliopoulos, E.: Applied Phys. Lett. 92 (2008) 191907.
2. Huang, L.H.: J. Electronic Materi. 38 (2009) 529.
3. Shiozaki, N.: J. Applied Phys. 105 (2009) 064912.
4. Arslan, E.: Applied Phys. Lett. 94 (2009) 142106.
5. Selvaraj, J.: Japan. J. Applied Phys. 48 (2009) 04C102.
6. Rigutti, L.: Semicond. Sci Technol. 24 (2009) 055015.
7. Chen, Z.T.: Applied Phys. Lett. 94 (2009) 213504.
8. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
*      9. Chabak, K.: Proc. CS Mantech Conf. 2009. Tampa, Florida.
10. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
11. Wu, M.: J. Vacuum Sci Technol. B 94 (2010) 908.
12. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
13. Lee, C.S.: J. Electrochem. Soc 158 (2011) H452.
14. Arslan, E.: Microelectr. Reliab. 51 (2011) 370.
15. Chiou, Y.L.: J. Electrochem. Soc 158 (2011) H477.
16. Corrion, A. L.: IEEE Electron Devices Lett. 32  (2011) 1062.
17. Son, J.: Applied Phys. Lett. 101 (2012) 102905.
18. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
#    19. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
#    20. Pardeshi, H.: Proc. CODIS 2012 (2012) art. no. 6422233, pp. 441.
#     21. Ahmed, I.:  2012 IEEE Inter. Conf. Electronic Dev., Systems, and Appl. 6507820, pp. 75.
22. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
23. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
24. Hiroki, M.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF02.
25. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI10MA05.
26. Pardeshi, H.: Superlatt. Microstr. 60 (2013) 47.
27. Bera, M. K.: ECS Trans. 53 (2013) 65.
28. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs (2013) 207.
29. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
30. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
31. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
32. Karaoglan-Bebek, G.: J. Vacuum Sci Technol. B 32 (2014) 011213.
33. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2013. P.
07.
34. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
#     35. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
36. Son, J.: J. Vacuum Sci Technol. A 33 (2015) 020602.
37. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
38. Freedsman, J.J.: IEEE DRC 2015. P. 55.
39. Neufeld, O.: J. Chem. Theory Comput. 12 (2016) 1572.
40. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
41. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
#     42. Hao, Y.: In Nitride Wide Bandgap Semicond. Material and Electronic Devices. CRC Press 2016, ISBN: 978-149874513-0, pp. 1-368.
43. Jena, K.: Inter. J. Numerical Modell.-Electron. Networks Dev. Fields 30 (2017) e2117.
44. Adak, S.: NANO 12 (2017) 1750009.
45. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.|
46. Ozaki, S.: Applied Phys. Express 10 (2017) 061001.
47. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
48. Kanaga, S.: IEEE Inter. Conf. Electron. Comp. Comm. Technol. 2018.
49. Mohanty, S.S.: J. Nanoelectr. Optoelectr. 14 (2019) 923.
50. Adak, S.: Nano 14 (2019) 1950060.
51. Chavan, N.: J. Active Passive Electron. Dev. 14 (2019) 201.
52. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
53. Mohanty, S.S.: J. Micromech. Microengn. 29 (2019) 084001.
54. Partida-Manzanera, T.: J. Applied Phys. 126 (2019) 034102.
55. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
#     56. Kushwah, B.: ICEE 2018, pp.8937856.
57. Kanaga, S.: IEEE Trans.Dev. Mater. Reliab.‏ 20 (2020) 613.
58. Ozaki, S.: Semicond. Sci Technol. 35 (2020) 035027.
59. Chatterjee, U.: IEEE Calcutta Conf. – CALCON 2020, p.‏ 426.
60. Oda, O.: Phys. Status Solidi A‏ 218 (2021) ‏ SI2000462.

Kuzmík, J., Carlin, J., Gonschorek, M., Kostopoulos, A., Konstantinidis, G., Pozzovivo, G., Golka, K., Georgakilas, A., Grandjean, N., Strasser, G., and Pogany, D.: Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs, Physica status solidi (a) 204 (2007) 2019.

1. Polyakov, A. Y.: Applied Phys. Lett. 91 (2007) 232116.
2. Kohn, E.: Proc. 2007 Int. Workshop Phys. Semicond. Devices: IWPSD-2007. P. 311.
•  3. Fieger, M.: Physica Status Solidi (c) 5 (2008) 1926.
4. Miyoshi, M.: Applied Phys. Express 1 (2008) 081102.
5. Polyakov, A.Y.: J. Applied Phys. 104 (2008) 053702.
6. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
7. Leach, J.H.: Proc. SPIE 7216 (2009).
8. Leach, J.H.: Proc. SPIE 7602 (2010).
9. Leach, J. H.: Physica Status Solidi A 207 (2010) 211.
10. Chabak, K. D.: IEEE Electron. Dev. Lett. 31 (2010) 561.
11. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
12. Chiou, Y.L.: J. Electrochem. Soc 158 (2011) H477.
13. Zhang, J.-F.: Acta Phys. Sinica 60 (2011) 117305.
14. Wang, P.-Y.: Acta Phys. Sinica 60 (2011) 117304.
15. Feng Q.: Chinese Phys. B 21 (2012) 067305.
16. Tapajna, M.: IEEE Electron Device Lett. 33 (2012) 1126.
17. Hsiao, C.-J.: 2014 IEEE Inter. Conf. Semicond. Electron. P. 456.
18. Li, Y.: Physica E 67 (2015) 77.
19. Deen, D.A.: J. Applied Phys. 120 (2016) 235704.
#    20. Hao, Y.: In Nitride Wide Bandgap Semicond. Material and Electronic Devices. CRC Press 2016, ISBN: 978-149874513-0, pp. 1-368.
21. Polyakov, A.Y.: ECS J. Solid State Sci Technol. 7 (2018) Q1.
22. Chiu, H.-C.: ECS J. Solid State Sci Technol. 7 (2018) Q185.
23. Hsueh, K.-P.: ECS J. Solid State Sci Technol. 7 (2018) Q142.
24. Mollah, S.: Applied Phys. Express 12 (2019) 074001.
25. Cui, X.: Nano Energy 68 (2020) 104361.
26. Qin, J.: IEEE Trans. Electron Dev. 67 (2020) 5427.

Kuzmík, J., Bychikhin, S., Pogany, D., Gaquiere, C., Pichonat, E., and Morvan, E.: Investigation of the thermal boundary resistance at the III-Nitride/substrate interface using optical methods, J. Applied Phys. 101 (2007) 054508.

1. Sarua, A.: IEEE Trans. Electron Devices 54 (2007) 3152.
2. Deng, Y.: Solid-State Electr. 52 (2008) 1106.
3. MacKenzie, R.: Physica Status Solidi C 5 (2008) 485.
4. Soudi, A.: ACS NANO 5 (2011) 255.
5. Cho, J.: IEEE Electron Dev. Lett. 33 (2012) 378.
6. Wang J.-H.: Chinese Phys. Lett. 29 (2012) 088502.
7. Hjelmgren, H.: IEEE Trans. Electron Devices 59 (2012) 3344.
8. Cho, J.: Technical Digest – IEEE CSIC (2012) art. no. 6340094.
9. Cho, J.: ITHERM (2012) art. no. 6231463, pp. 435.
10. Bozorg-Grayeli, E.: ITHERM (2012) art. no. 6231541, pp. 1059.
#    11. Babić, D.I.: MIPRO 2012 – Proc. (2012) art. no. 6240612, pp. 48.
#    12. Wang, J.: J. Semicond. 33 (2012) 094004.
13. Cho, J.: IEEE Trans. Compon. Packag. Manufact. Technol. 3 (2013) 79.
14. Zheng, H.: IEEE Trans. Electron Devices 60 (2013) 1911.
15. Nam H.: Nature Comm. 4 (2013) 1452.
#     16. Won, Y.: Technical Digest – IEEE CSIC (2013) 6659222.
17. Schwitter, B.K.: IEEE Trans. Electron Dev.  61 (2014) 1327.
18. Wang, Z.: Inter. J. Thermal Sci 79 (2014) 266.
19. Babic, D.I.: IEEE Trans. Electron Dev.  61 (2014) 1047.
20. Cho, J.: Phys. Rev. B 89 (2014) 115301.
21. Donovan, B.F.: Applied Phys. Lett. 105 (2014) 203502.
22. Hwang, Y.-H.: J. Vacuum Sci Technol. B 32 (2014) 061202.
23. Tallarico, A.N.: 2014 Inter. Conf. Simulation Semicond. Processes and Devices, SISPAD 6931606, pp. 233.
#      24. Wang, Z.-L.: Kung Cheng Je Wu Li Hsueh Pao/J. Engn. Thermophys. 35 (2014) 2244.
25. Wang, Z.: Inter. J. Thermal Sci 87 (2015) 178.
26. Won, Y.: IEEE Trans. Comp. Packaging Manufact. Technol. 5 (2015) 737.
27. Zhang, Y.: Semicond. Sci Technol.  30 (2015) 055016.
28. Sodan, V.: IEEE Trans. Electron Dev. 62 (2015) 2416.
29. Miyagawa, R.: Japan. J. Applied Phys. 54 (2015) 071302.
#     30. Hwang, Y.H.: ECS Trans. 66 (2015) 223.
31. Piotrowska, A.B.: ECS Trans. 75 (2016) 77.
32. Le, N.Q.: Phys. Rev. B 95 (2017) 245417.
33. Wojtasiak, W.: Micromachines 9 (2018) 546.
34. Zhang, G.: J. Nanosci Nanotechnol. 18 (2018) 7578.
35. Sodan, V.: IEEE Trans. Comp. Packaging Manufact. Technol. 8 (2018) 1747.
36. Feghhi, R.: Inter. J. RF Microwave Comp.-Aided Engn. 28 (2018) e21513.
37. Miyagawa, R.: Japan. J. Applied Phys. 58 (2019) SCCB01.
38. Wu, M.: Japan. J. Applied Phys. 58 (2019) SCCB11.
39. Soleimanzadeh, R.: J. Applied Phys. 126 (2019) 165113.
40. Deng, S.: Applied Phys. Lett. 115 (2019) 101603.
41. Chatterjee, B.: J. Applied Phys. 127 (2020) 044502.
# 42. Zhou, J.: Kung Cheng Je Wu Li Hsueh Pao/J. Engn. Thermophys. 41 (2020) 1462.

Abermann, S., Pozzovivo, G., Kuzmík, J., Strasser, G., Pogany, D., Carlin, J., and Grandjean, N., and Bertagnolli, E.: MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs, Semicond. Sci Technol. 22 (2007) 1272-1275.

1. Miyoshi, M.: Applied Phys. Express 1 (2008) 081102.
2. Gong, Y.P.: J. Phys. D 42 (2009) 015405.
3. Shih, C.F.: J. Alloys Compounds 480 (2009) 541.
4. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
5. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
6. Li, S.B.: J. Electrochem. Soc 157 (2010) G221.
7. Mizue, C.: Japan. J. Applied Phys. 50 (2011) 021001.
8. Tian, B.: Semicond. Sci Technol. 26 (2011) 085023.
9. Pergament, A.: Phase Trans. 84 (2011) 103.
10. Eickelkamp, M.: Physica Status Solidi C 8 (2011) 2213.
#     11. Dutta, G.: J. Nano- and Electron. Phys. 3 (2011) (1 PART4) 728.
#     12. Xie, S.: Gongneng Cailiao/J. Functional Mater. 42 (2011) (SUPPL. 5) 784.
13.  Gros-Jean, M.: Thin Solid Films 520 (2012) 2594.
14. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
15. Kordos, P.: J. Electron. Mater. 41 (2012) 3013.
16. Nandi, S. K.: AIP Conf. Proc. 1451 (2012) 209.
17.  Lee, C.-S.: ECS J. Solid State Sci Technol. 1 (2012) Q1.
#    18. Gu, G. : J. Semicond. 33 (2012) 064004.
#    19. Buzynin, A.N.: Advan.OptoElectron. (2012) 907560.
#    20.  Pardeshi, H.: J. Semicond. 33 (2012) 124001.
#    21. Von Hauff, P.: CS MANTECH 2012, 4p.
22. von Hauff, P.: Applied Phys. Lett. 102 (2013) 251601.
23. Kambayashi, H.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF09.
24. Pardeshi, H.M.: Superlatt. Microstr. 60 (2013) 10.
25. Zhao, C.: Nanoscale Res. Lett. 8 (2013)  456.
26. Bera, M.K.: ECS Trans. 53 (2013) 65.
27. Kubo, T.: Semicond. Sci Technol.  29 (2014) 045004.
28. Lee, Yi-C.: IEEE Trans. Electron Dev. 61 (2014) SI493.
29. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
30. Owen, M.H.S.: Applied Phys. Lett. 105 (2014) 031602.
31. Chou, B.-Y.: Inter. Conf. Inf. Sci, Electron. Electrical Engn. – ISEEE 2014 2, 6947814, pp. 977.
32. Chou, B.-Y.: Semicond. Sci Technol.  30 (2015) 015009.
33. Kaya, S.: Mater. Sci Semicond. Process. 33 (2015) 42.
34. Lee, Y.-C.: Semicond. Sci Technol.  30 (2015) 045010.
35. Kaya, S.: IEEE Trans. Electron Dev. 62 (2015) 980.
36. Pardeshi, H.: Superlatt. Microstr. 88 (2015) 508.
37. Adak, S.: Proc. 1st Inter. Conf. on Computing, Comm., Control and Automat. – ICCUBEA 2015. Art. no. 7155977, p. 902.
38. Chan, S.H.: Japan. J. Applied Phys. 55 (2016) 021501.
39. Yamada, A.: Japan. J. Applied Phys. 55 (2016) 05FK03.
40. Yuan, S.-H.: CRYSTALS 7 (2017) 146.
41. Duan, T.: In Gallium Nitride Power Devices. Eds.Yu, H., Duan, T. New York: Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
42. Dinara, S.M.: J. Vacuum Sci Technol. B 35 (2017) 051202.
43. Chapin, C.A.: Sensors Actuators A 263 (2017) 216.
44. Taoka, N.: Japan. J. Applied Phys. 57 (2018) 01AD04.
45. Altuntas, H.: Mater. Sci in Semicond. Process. 86 (2018) 111.
46. Rawat, A.: IEEE Trans. Electron Dev. 65 (2018) 3725.
47. Hassan, A.: IEEE Access 6 (2018) 78790.
#      48. Shen, S.C.: In Semiconductor Devices in Harsh Conditions. CRC Press  2016, ISBN 978-1-498-74380-8, pp. 111-132.
#      49. Barquinha, P.: In Transparent Oxide Electronics: From Materials to Devices. Wiley 2012, ISBN 978-047068373-6.
50. Kang, M.-S.: J. Nanosci Nanotechnol. 19 (2019) 6232.
51. Partida-Manzanera, T.: J. Applied Phys. 126 (2019) 034102.
52. Adak, S.: Nano 14 (2019) 1950060.
53. Chavan, N.: J. Active Passive Electron. Dev. 14 (2019) 201.
54. Mohanty, S.S.: J. Nanoelectr. Optoelectr. 14 (2019) 923.
55. Rawat, A.: Solid-State Electron. 64 (2020) 107702.
56. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Čičo, K., Kuzmík, J., Gregušová, D., Stoklas, R., Lalinský, T., Georgakilas, A., Pogany, D., Fröhlich, K., :Optimization and performance of Al2O3/GaN metal-oxide-semiconductor structures. Microelectr. Reliability 47 (2007) 790-793.

1. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
2. Quah, H.J.: IEEE Trans. Electron Devices 59 (2012) 3009.
3. Quah, H.J.: Sci. Advanced Mater. 5 (2013) 1816.
4. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
5. Quah, H.J.: ACS Applied Mater. Interfaces 5 (2013) 6860.
6. Yang, M.: J. Rare Earths 31 (2013) 395.
#    7. Quah, H.J.: Current Applied Phys. 13 (2013) 1433.
      8. Quah, H.J.: Mater. Chem. Phys. 148 (2014) 592.
9. Prasad, C.V.: Applied Phys. A 123 (2017) 279.
10. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
11. Nguyen, H.T.: Materials 13 (2020) 899.
12. Yang, C.: Applied Phys. Lett. 117 (2020) 052105.

Kuzmík, J., Bychikhin, S., Lossy, R., Würfl, H., di Forte Poisson, M., Teyssier, J., Gaquiere, C., and Pogany, D.: Transient self-heating effects in multifinger AlGaN/GaN HEMTs with metal airbridges, Solid-State Electronics 51 (2007) 969-974.

1. Menozzi, R.: IEEE Trans. Device Mater. Reliability 8 (2008) 255.
2. Manoi, A.: Solid-State Electronics 57 (2011) 14.
3. Crupi, G.: Solid-State Electron. 64 (2011) 28.
4. Wang, A.: Semicond. Sci Technol. 28 (2013) 055010.
5. Feghhi, R.: IEEE Mediterranean Microwave Symp. 2016.
6. Crupi, G.: Solid-State Electron. 152 (2019) 11.

Kuzmík, J., Bychikhin, S., Pogany, D., Gaquiere, C., Morvan, E., : Current conduction and saturation mechanism in AlGaN/GaN ungated structures. J. Applied Phys. 99 (2006) 123720.

1. Alifragis, Y.: Biosensors & Bioelectronics 22 (2007) 2796-2801.
2. Alifragis, Y.: Physica Status Solidi A 204 (2007) 2059.
3. Sarua, A.: IEEE Trans. Electron Devices 54 (2007) 3152.
4. Danilchenko, B.A.: Solid State Comm. 144 (2007) 114.
5. Hu, C.Y.: Applied Phys. Lett. 97 (2010) 222103.
#    6. James, W.T.: 14th Inter. Heat Transfer Conf. IHTC 14 3 (2010) 725.
7. Firrincieli, A.: Japan. J. Applied Phys. 53 (2014) SI04EF01.
8. Fernandez, M.: IEEE Electron Dev. Lett. 38 (2017) 505.
9. Moens, P.: Power Electron. Power Systems (2017) 319.
10. Muhtadi, S.: IEEE Electron Dev. Lett. 38 (2017) 914.
11. Li, H.: IEEE Trans. Industry Appl. 55 (2019) 1807.
12. Arreola-Pina, A.S.: Mater. Sci Semicond. Process.‏ 123 (2021) 105482.
13. Tao, Q.: Japan. J. Applied Phys. 60 (2021) 020908.

Kuzmík, J., Kostopoulos, A., Konstantinidis, G., Carlin, J., Georgakilas, A., and Pogany, D.: InAlN/GaN HEMTs: A first insight into technological optimization, IEEE Trans. Electron Dev. 53 (2006) 422-426.

*     1. Medjdoub, F.: Electron Devices Meeting 2006 – IEDM ’06. Techn. digest P. 1.
2. Jessen, G.H.: IEEE Electron Dev. Lett. 28 (2007) 354.
3. Yiang, Q.: Applied Surface Sci 253 (2007) 3927.
4. Pietzka, C.: J. Electronic Mater. 37 (2008) 616.
5. Arslan, E.: Applied Phys. Lett. 94 (2009) 142106.
6. Selvaraj, J.: Japan. J. Applied Phys. 48 (2009) 04C102.
7. Chen, Z.T.: Applied Phys. Lett. 94 (2009) 213504.
8. Arslan, E.: Semicond. Sci Technol. 24 (2009) 075003.
9. Ardaravicius, L.: J. Applied Phys. 106 (2009) 073708.
10. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
11. Crespo, A.: IEEE Electron Dev. Lett. 31 (2010) 2.
*     12. Šebok, J.: In: 16th Inter. Conf. on Applied Physics of Condensed Matter – APCOM. Bratislava: FEI STU, 2010.  ISBN: 978-80-227-3307-6. P. 154.
13.  Leach, J. H.: Phys. Status Solidi A 207 (2010) 211.
14. Chikhaoui, W.: Applied Phys. Lett. 96 (2010) 072107.
15. Akazawa, M.: Applied Phys. Lett. 96 (2010) 132104.
16. Wu, M.: J. Vacuum Sci Technol. B 28 (2010) 908.
#   17. Šatka, A.: In: ASDAM 2010. Piscataway: IEEE, 2010.  ISBN: 978-1-4244-8572-7. P. 295.
18. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
19. Song, J.: Applied Phys. Lett. 97 (2010) 232106.
20. Leach, J.H.: Gallium Nitride Mater. Devices 7602  (2010).
21. Mao, W.: Chinese Phys. Lett. 27 (2010) 128501.
#     22. Liu, H.Q.:, ICMMT 2010. Art. no. 5525207, p. 2059.
#     23. Chen, Y.: ICMMT 2010. Art. no. 5524738, p. 1710.
24. Akazawa, M.: J. Applied Phys. 109 (2011) 013703.
25. Donoval, D.: J. Applied Phys. 109 (2011) 063711.
26. Chen, Z.T.: IEEE Electron Dev. Lett. 32 (2011) 620.
27. Kovač, J.: Applied Phys. Lett. 98 (2011) 162111.
28. Arslan, E.: Microelectr. Reliability 51 (2011) 576.
#     29. Liu, H.: Guti Dianzixue Yanjiu Yu Jinzhan/Research Progress Solid State Electr. 31 (2011) 120.
30. Kim, H.-Y.: Applied Phys. Lett. 100 (2012) 012107.
31. Feng Q.: Chinese Phys. B 21 (2012) 067305.
32. Xue, J.S.: J. Applied Phys. 111 (2012) 114513.
33. Lo, Ch.-F.: J. Vacuum Sci Technol. B 30 (2012) 031202.
34. Jones, E.J.: Applied Phys. Lett. 101 (2012) 113101.
35. Ganguly, S.: Applied Phys. Lett. 101 (2012) 253519.
36. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
37. Dawahre, N.: J. Vacuum Sci Technol. B 31 (2013) 041802.
38. Gonzalez-Posada, F.: Japan. J. Applied Phys. 52 (2013) 08JE19.
39. Kim, H.-Y. .: J. Vacuum Sci Technol. B 31 (2013) 051210.
40. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
41. Kim, S.: Japan. J. Applied Phys. 52 (2013) 10MA07.
42. Kim, S.: Japan. J. Applied Phys. 52 (2013) 10MA05.
43. Chen, R.-S.: Applied Surface Sci 285 (2013) 625.
44. Arslan, E.: Thin Solid Films 548 (2013) 411.
45. Benyahya, N.: Optical Quantum Electr. 46 (2014) 209.
46. Choi, S.: J. Crystal Growth 388 (2014) 137.
47. Du, J.: J. Applied Phys. 115 (2014) 164510.
48. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
49. Lin, F.: Chinese Phys. B 23 (2014) 037303.
50. Rais-Zadeh, M.: J. Microelectromech. Systems 23 (2014) 1252.
51. Nsele, S.D.: Applied Phys. Lett. 105 (2014) 192105.
52. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
53. Rossetto, I.: Microelectron. Reliab. 54 (2014) SI2248.
54. Zhou, Y.: Semicond. Sci Technol.  29 (2014) 095011.
55. Zhou, J.: IEEE Inter. Conf. Electron Devices and Solid-State Circuits, EDSSC 2014. Art. no. 7061277.
56. Wu, Y.-H.: Mater. Research Express 1 (2014) 015904.
#      57. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
58. Tsou, C.-W.: IEEE Trans. Electron Dev. 62 (2015) 2675.
59. Sang, L.: Applied Phys. Lett. 107 (2015) 052102.
60. Rossetto, I.: Solid-State Electr. 113 (2015) 15.
61. Watanabe, A.: J. Applied Phys. 118 (2015) 235705.
62. Xu, Z.Y.: J. Crystal Growth 447 (2016) 1.
63. Corekci, S.: J. Electron. Mater. 45 (2016) 3278.
64. Tangi, M.: J. Applied Phys. 120 (2016) 045701.
65. Liu, G.: Physica E 83 (2016) 207.
66. Xiang, Y.: J. Phys. D 49 (2016) 305103.
67. Kim, S.: Electronic Mater. Lett. 13 (2017) 302.
68. Zhang, J.: Applied Phys. Lett. 110 (2017) 172101.
69. Freedsman, J.J.: IEEE Electron Device Lett. 38 (2017) 497.
70. Murugapandiyan, P.: Superlatt. Microstr. 111 (2017) 1050.
71. Murugapandiyan, P.: Superlatt. Microstr. 109 (2017) 725.
72. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
73. Miyoshi, M.: Applied Phys. Express 11 (2018) 051001.
74. Riedmueller, S.: Phys. Status Solidi A 215 (2018) 1700456.
75. Babaya, A.: 2018 Inter. Symp. Adv. Electr. Comm. Technol. (ISAECT) 2018.
76. Wang, T.: Adv. Sci 5 (2018) 1800844.
77. Riedmuller, S.: In 48th Europ. Microwave Conf. – EuMC 2018, pp. 1277-1280.
78. Riedmuller, S.: In 13th Europ. Microwave Integrated Circuits Conf. – EuMIC 2018, pp. 309-312.
79. Miyoshi, M.: J. Crystal Growth 506 (2019) 40.
80. Jiang, R.: IEEE Trans. Nuclear Sci 66 (2019) SI170.
81. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
82. Miyoshi, M.: Japan. J. Applied Phys. 58 (2019) SC1006.
83. Cao, Y.: Semicond. Semimet. 102 (2019) 41.
84. Asbeck, P.M.: Semicond. Semimet. 102 (2019) 1.
85. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
86. Cui, P.: Applied Phys. Express 12 (2019) 104001.
87. Gu, Y.: Electronics 8 (2019) 885.
88. El Ghazi, H.: Physica B 582 (2020) 411951.
89. Murugapandiyan, P.: J. Sci-Adv. Mater. Dev.‏ 5 (2020) 192.
90. Filippov, I.A.: Russian Phys. J.‏ 63 (2020) 94.
#   91. Warnock, S.: IEEE MTT-S Inter. Microwave Symp. Digest 2020, no. 9224061, pp. 289-292.

Čičo, K., Kuzmik, J., Gregušová, D., Lalinský, T., Georgakilas, A., Pogany, D., and Fröhlich, K.: Rapid thermal annealing and performance of Al2O3/GaN metal-oxide-semiconductor structures. In: ASDAM 2006. Proc. 6th Int. Conf. on Advanced Semiconductor Devices and Microsystems. Eds. J. Breza et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 197-200.

1. Kim, H.-D.: J. Alloys Compounds 742 (2018) 822.

Pichonat, E., Kuzmik, J., Bychikhin, S., Pogany, D., Poisson, M.A., Grimbert, B., and Gaquière, C.: Temperature analysis of AlGaN/GaN High-Electron- Mobility Transistors using micro-Raman scattering spectroscopy and Transient Interferometric Mapping. In: Europ. Microwave Integrated Circuits Conf. – Proc. (2006) 54-57.

1. Prasad, C.: IEEE IRPS 2017.
2. Chervonni, B.: Semicond. Sci Technol. 33 (2018) 095024.
3. Thomas, B.R.: IEEE Trans. Electron Dev. 66 (2019) 1937.
4. Prasad, C.: IEEE Trans. Electron Dev. 66 (2019) 4546.

Reggiani, S., Gnani, E., Rudan, M., Baccarani, G., Bychikhin, S., Kuzmík, J., Pogany, D., Gornik, E., Denison, M., Jensen, N., Groos, G., Stecher, M., : A new numerical and experimental analysis tool for ESD devices by means of the transient interferometric technique, IEEE Electron Device Lett. 26 (2005) 916-918.(Not IEE SAS).

1.Chatterjee, A.: IEEE Inter. Electron Devices Meeting 2007. P. 181.
#    2. Li, Z.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 29 (2008) 2014.
3. Holland, S.: Electric. Overstress/Electrostatic Discharge Symp. Proc. (2008) 76.
4. Heer, M.: Microelectr. Reliab. 49 (2009) 1455.
5. Singh, P.: J. Phys. Comm. 4 (2020) 065009.

Bychikhin, S., Vandamme, L., Kuzmík, J., Meneghesso, G., Levada, S., Zanoni, E., Pogany, D., : Accelerated aging og GaN light emitting diodes studied by 1/f and RTS noise, AIP Conf. Proc. 780 (2005) 709-712.

     1. Pralgauskaite, S.: Fluctuation Noise Lett. 7 (2007) L367.

Kuzmík, J., Carlin, J., Kostopoulos, T., Konstantinidis, G., Georgakilas, A., Pogany, D., : Technology, properties and limitations of state-of-the-art InAlN/GaN HEMTs. In: 63rd Device Research Conf. Santa Barbara 2005. Conf. Digest p. 57-58.

      1. Quai, R.: Gallium Nitride Electr. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.

Osvald, J., Kuzmík, J., Konstantinidis, G., Lobotka, P., Georgakilas, A., : Temperature dependence of GaN Schottky diodes I–V characteristics. Microelectronic Engn. 81 (2005) 181-187.

1. Das, S.N.: Vacuum 81 (2007) 843.
2. Chiang, H.P.: Thin Solid Films 515 (2007) 6953.
3. Das, S.N.: J. Phys. D 40 (2007) 7291.
4. Pipinys, P.: Lithuanian J. Phys. 47 (2007) 51.
5. Cho, H.K.: J. Phys. D 41 (2008) 175107.
6. Lu, C.Z.: J. Vacuum Sci Technol. B 26 (2008) 1987.
7. Kim, H.: Applied Phys. Lett.  93 (2008) 192902.
8. Ravinandan, M.: J. Optoelectr. Advanced Mater. 10 (2008) 2787.
9. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
10. Ravinandan, M. : Semicond. Sci Technol. 24 (2009) 035004.
11. Dogan, S.: Physica E 41 (2009) 646.
12. Cinar, K.: J. Applied Phys. 106 (2009) 073717.
13. Yildrim, N.: J. Applied Phys. 108 (2010) 114506.
14. Lin, Y.: Thin Solid Films 519 (2010) 829.
15. Pipinys, P.: Adv. Cond. Matt. Phys. (2010) 526929.
16. Ejderha, K.: Mater. Sci Semicond. Process. 14 (2011) 5.
17. Chen, Y.: Proc. SPIE 7980 (2011) 79801E.
18. Ameur, K.: Sensor Lett. 9 (2011) SI. 2268.
19. Reddy, N.: Bull. Mater. Sci 35 (2012) 53.
20. Peta, K.R.: J. Crystal Growth 378 (2013) 299.
21. Elgawadi, A.: J. Phys. Cond. Matt. 25 (2013) 335803.
22. Grodzicki, M.: Applied Surface Sci 304 (2014) 24.
23. Ejderha, K.: European Phys. J.-Applied Phys. 68 (2014) Iss. 2.
24. Reddy, P.: J. Applied Phys. 116 (2014) 123701.
#     25. Munir, T.: Adv. Mater. Research 895 (2014) 439.
#     26. Wang, R.X.: In Gallium Nitride: Structure, Thermal Properties and Applications. Nova Sci Publ 2014 ISBN: 978-163321388-3. P. 119.
27. Dogan, H.: Physica B 457 (2015) 48.
28. Liu, C.: Comput. Mater. Sci 107 (2015) 170.
29. Tao, X.: Proc. Inter. Symp. Phys. Failure Analysis of Integrated Circuits –  IPFA 2015. Art. no. 7224418, p. 430.
30. Ejderha, K.: Silicon 9 (2017) 395.
31. Tao, X.-H.: Chinese Phys. Lett. 34 (2017) 038501.
32. Turut, A.: J. Optoelectron. Adv. Mater. 19 (2017) 424.
33. Asha, B.: J. Electronic Mater.47 (2018) 4140.
34. Wang, T.-T.: Chinese Phys. Lett. 36 (2019) 057101.
35. Khachariya, D.: J. Applied Phys. 128 (2020) 064501.
36. Reddy, P.: Semicond. Sci Technol. 35 (2020) 055007.
37. Ahmed, N.: Digest J. Nanomater. Biostruct.‏ 15 (2020) 399.
38. Liu, W.: IEEE Electron Dev. Lett.‏ 41 (2020) 1468.

Reggiani, S., Gnani, E., Rudan, M., Baccarani, G., Bychikhin, S., Kuzmik, J., Pogany, D., Gornik, E., Denison, M., Jensen, N., Groos, G., and Stecher, M.: Predictive device simulation for ESD protection structures validated with transient interferometric thermal – mapping experiments. In: Proc. ESSDERC’2005. Eds. G. Ghibaudo et al. Grenoble 2005. ISBN0-7803-9203-5. Piscataway, IEEE 2005. Catalog No.: 05EX1087. P. 411-414.

1. Holland, S.: Microelectron. Reliab. 88-90 (2018) SI208.

Kuzmík, J., Bychikhin, S., Neuburger, M., Dadgar, A., Krost, A., Kohn, E., and Pogany, D.: Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon, IEEE Trans. Electron Dev. 52 (2005) 1698-1705.

1. Sarua, A.: IEEE Trans. Electron Devices 53 (2006) 2438.
2. Ji, H.: IEEE Trans. Electron Devices 53 (2006) 2658.
3. Kuball, M. .: IEEE Electron Devices Lett. 28 (2007) 86.
4. Xu, J.F.: IEICE Trans. Electr. E90C (2007) 204.
5. Xu, J.F.: IEEE Microwave Wireless Components Lett. 17 (2007) 55.
6. Aubry, R.: IEEE Trans. Electron Devices 54 (2007) 385.
*      7. Kuball, M.: WOCSDICE 07. Venice 2007. Abstract Book P.77.
8. Kuball, M.: Phys. Stat. Solidi (a) 204 (2007) 2014.
9. Camarchia, V.: IEEE Trans. Microwave Theory Techn. 55 (2007) 1824.
10. Sarua, A.: IEEE Trans. Electron Devices 54 (2007) 3152.
11. Simms, R.J.I.: IEEE Trans. Electron Dev. 55 (2008) 478.
12. Menozzi, R.: IEEE Trans. Device Materials Reliability 8 (2008) 255.
13. De Groote, F.: IEEE Microwave Magazine 9 (2008) 70.
14. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 5, 8. ISBN 978-3-540-71890.
15. Lancry, O.: Solid-State Electronics 54 (2010) 1434.
16. Hu, C.Y.: Applied Phys. Lett. 97 (2010) 222103.
17. James, W.T.: 14th Inter. Heat Transfer Conf. IHTC 14 3 (2010) 725.
18. Douglas, E.A.: Electrochem. Solid State Lett. 14 (2011) H464.
#     19. Fu, P.: IEEE Electrical Design of Advanced Packaging and Systems Symp. – EDAPS 2011, art. no. 6213718.
20. Wang J.-H.: Chinese Phys. Lett. 29 (2012) 088502.
#     21. Wang, J.: J. Semicond. 33 (2012) 094004.
22. Yahyazadeh, R.: ECS Trans. 44 (2012) 49.
23. Yahyazadeh, R.:  ECS Trans. 44 (2012) 165.
24. Douglas, E.A.: ECS Trans. 50 (2012) 261.
25. Wang, A.: Semicond. Sci Technol. 28 (2013) 055010.
26. Zheng, H.: IEEE Trans. Electron Devices 60 (2013) 1911.
27. Shenoy, B.M.: J. Applied Phys. 114 (2013) 044506.
28. Manno, M.: ASME 2013, InterPACK 2013 2.
29. Schwitter, B.K.: IEEE Trans. Electron Dev.  61 (2014) 1327.
30. Wang, Z.: Inter. J. Thermal Sci 79 (2014) 266.
31. Babic, D.I.: IEEE Trans. Electron Dev. 61 (2014) 1047.
32. Hou, M.: Proc. Intersoc Conf. – Thermomech. Phenomena in Electronic Systems 2014. 6892260, pp. 25.
33. Wang, Z.: Inter. J. Thermal Sci 87 (2015) 178.
34. Mukhopadhyay, P.: Solid-State Electr. 104 (2015) 101.
35. Jones, J.P.: Microelectron. Reliab. 55 (2015) 2634.
36. Lye, K.S.: Applied Phys. Lett. 109 (2016) 032106.
37. Nagahisa, T.: Japan. J. Applied Phys. 55 (2016) SI04EG01.
38. Bagnall, K.R.: IEEE Intersociety Conf. Thermal Thermomechan. Phenomena in Electronic Syst. 2016. P. 1551.
39. Perpina, X.: RSC Nanosci Nanotechnol. 38 (2016) 383.
40. Kuball, M.: IEEE Trans. Device Mater. Reliab. 16 (2016) 667.
41. Ye, H.: IEEE Electron Dev. Lett. 37 (2016) 1473.
42. Bagnall, K.R.: IEEE Trans. Electron Devices 64 (2017) SI2121.
43. Cutivet, A.: Physica Status Solidi C 14 (2017) UNSP 1700225.
#     44. Pavlidis, G.: CS MANTECH 2017.
45. Cina, L.: IEEE Trans. Electron Devices 65 (2018) 1739.
46. Pavlidis, G.: IEEE Trans. Electron Devices 65 (2018) 1753.
47. Bagnall, K.R.: IEEE Trans. Compon. Pack. Manufact. Technol. 8 (2018) 606.
48. Tadjer, M.: IEEE J. Electron Dev. SOC 6 (2018) 922.
49. Zhang, G.: J. Nanosci Nanotechnol. 18 (2018) 7578.
50. Gerrer, T.: Inter. J. Microwave Wireless Technol. 10 (2018) SI666.
#     51. Tang, Y.: J. Semicond. Technol. Sci 18 (2018) 383.
52. Cutivet, A.: Physica Status Solidi A 216 (2019) SI1800503.
53. Pavlidis, G.: IEEE Trans. Electron Dev. 66 (2019) 330.
54. Brocero, G.: IEEE Trans. Electron Devices 66 (2019) 4156.
55. Cui, P.: Applied Phys. Express 12 (2019) 104001.
#     56. Oh, S.K.: J. Electronic Pack. Trans. ASME 141 (2019) 020801.
#     57. Chandrasekar, H.: Inter. J. High Speed Electron. Systems 28 (2019) 1940001.
58. Li, L.: Applied Phys. Lett. 116 (2020) 142105.
59. van Erp, R.: Nature 585, Iss. 7824 (2020) 211.
#     60. Erp, R.V.: InterSoc. Conf. Thermal Thermomechan. Phenomena in Electron. Systems – ITHERM 2020, no. 9190356, pp. 53-59.

Kuzmík, J., Pogany, D., Gornik, E., Javorka, P., and Kordoš, P.: Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes. Solid-State Electronics 48 (2004) 271-276.

1. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 7. ISBN 978-3-540-71890.
2. Lo, C.F.: Electrochem. Solid State Lett. 14 (2011) H264.
3. Lo, C.F.: ECS Trans. 41 (2011) 63.
4. Kaschani, K.T.: Microelectron. Reliab. 55 (2015) 853.
5. Rossetto, I.: IEEE Trans. Electron Dev. 62 (2015) 2830.
6. Shankar, B.: IEEE Inter. Reliability Phys. Symp. 2016.
7. Shankar, B.: IEEE Inter. Conf. on VLSI Design (2017) 361.
#  8. Meneghesso, G.: Electrostatic Discharge Protection: Advances and Applications. CRC Press 2017, ISBN 978-148225589-8, pp. 113-140.
9. De Santi, C.: IET Power Electron. 11 (2018) SI668.
10. Shankar, B.: IEEE Trans. Electron Dev. 66 (2019) 3756.
11. Islam, Z.: IEEE Trans. Electron Dev. 67 (2020) 3056.
12. Shankar, B.: IEEE Trans. Electron Dev. 67 (2020) 1567.
#    13. Krone, A.: ASME 2020, InterPACK 2020, no. V001T07A008.
#    14. Xin, Y.: Proc. Inter. Symp. Power Semicond. Dev. and ICs 2020,  no. 9170063, pp. 317-320.

Kuzmík, J., Konstantinidis, G., Harasek, S., Haščík, Š., Bertagnolli, E., Georgakilas, A., and Pogany, D.: ZrO2/(Al)GaN metal–oxide–semiconductor structures: characterization and application, Semiconductor Sci Techn. 19 (2004) 1364-1368.

1. Liu, C.: Applied Phys. Lett. 88 (2006) 173504.
2. Liu, C.: Applied Phys. Lett. 88 (2006) 222113.
3. Shi, L.: Applied Surface Sci 253 (2007) 3731.
4. Yang, C.: J. Non-Crystall. Solids 355 (2009) 33.
5. Feng, Q.: Chinese Phys. B 18 (2009) 3014.
6. Tian, F.: J. Electrochem. Soc. 157 (2010) H557.
7. Mizue, C.: Japan. J. Applied Phys. 50 (2011) 021001.
8. Tian, B.: Semicond. Sci Technol. 26 (2011) 085023.
9. Hu, C.-C.: IEEE Trans. Electron Devices 59 (2012) 121.
10. Feng Q.: Chinese Phys. B 21 (2012) 067305.
11. Lakshmi, B. P.: Current Applied Phys. 12 (2012) 765.
12. Kambayashi, H.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF09.
#     13. Lee, Y.-C.: CS MANTECH (2013) 333.
14. Saghrouni, H.: Phys. B 444 (2014) 58.
15. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
16. Chiu, H.-C.: Microelectr. Reliab. 54 (2014) 1282.
17. Kodama, S.: IEEE Inter. Meeting for Future of Electron Dev., Kansai 2014.
18. Al-Hada, N.M.: PLOS ONE 9 (2014) e103134.
19. Hu, C.-C.: Mater. Sci Semicond. Process. 29 (2015) 272.
20. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
21. Xing, W.: IEEE Electron Device Lett. 39 (2018) 947.
22. Reddy, V. R.: Mater. Sci Engn. B 231(2018) 74.
23. Reddy, N.: Silicon 11 (2019) 159.
24. Cui, X.: Nano Energy 68 (2020) 104361.
25. Bakkaloglu, O.F.: J. Molecul. Struct.‏ 1224 (2021) 129057.

Kuzmík, J., Blaho, M., Pogany, D., Gornik, E., Alam, A., Dikme, Y., Heuken, M., Javorka, P., Marso, M., Kordoš, P., : Backgating, high-current and breakdown characterisation of AlGaN/GaN HEMTs on silicon substrates. In: ESSDERC 2003. Eds. J. Franca, P.Freitas. Piscataway: IEEE 2003. ISBN: 0-7803-7999-3. P. 319-322.

1. Jarndal, A.: IEEE MTT-S Inter. Microwave Symp. (2010) 1668.
2. Jarndal, A.: IEEE Trans. Microwave Theory Techn. 59 (2011) 644.
3. Zhou, H.: Applied Phys. Lett. 99 (2011) 163505.
4. Sengouga, N.: Mater. Sci In Semicond. Process. 24 (2014) 34.
5. Kompa, G.: Parameter Extraction Complex Nonlinear Transistor Models. Artech House 2020. ISBN 978-1630817442, pp. 99-111.

Kuzmík, J., Pogany, D., Gornik, E., Javorka, P., and Kordoš, P.: Electrostatic discharge effects in AlGaN/GaN high-electron-mobility transistors. Applied Phys. Lett. 83 (2003) 4655-4657.

1. Chevtchenko, S. A.: Applied Phys. Lett. 100 (2012) 223502.
2. Ferng, Y.-C.: Japan. J. Applied Phys. 51 (2012) 124201.
#    3. Chang, L.B.: CECNet 2012 – Proc. (2012) 3251.
#    4. Kuei, P.-Y.: IEEE Inter. Symp. on Electromagn. Compatib. EMC 2014. Art. no 6997239, p. 721.
5. Rossetto, I.: IEEE Trans. Electron Dev. 62 (2015) 2830.
6. Saito, W.: Microelectron. Reliab. 55 (2015) 1682.
7. Shankar, B.: IEEE Inter. Reliability Phys. Symp. 2016.
8. Shankar, B.: IEEE Inter. Conf. on VLSI Design (2017) 361.
9. Hu, T.: IEEE IPFA 2017.
10. Voss, D.: J. Infrared Millim. Terahertz Waves 39 (2018) 262.
11. Shankar, B.: IEEE Trans. Electron Dev. 66 (2019) 3433.
12. Cheng, N.-H.: IEEJ Trans. Electr. Electron. Engn. 14 (2019) 1091.
13. Canato, E.: Microelectron. Reliab. 100 (2019).
14. Shankar, B.: IEEE Trans. Electron Dev. 66 (2019) 3756.
#  15. Yang, W.: WiPDA 2019, pp. 171-174.
16. Shankar, B.: IEEE Trans. Electron Dev. 67 (2020) 1567.
17. Yang, W.: IEEE Inter. Reliability Phys. Symp. – IRPS 2020.
#    18. Xin, Y.: Proc. Inter. Symp. Power Semicond. Dev. and ICs 2020,  no. 9170063, pp. 317-320.

Javorka, P., Alam, A., Marso, M., Wolter, M., Kuzmík, J., Fox, A., Heuken, M., Kordoš, P., : Material and device issues of AlGaN/GaN HEMTs on silicon substrates. Microelectr. J. 34 (2003) 435-437.

1. Chang, S.J.: Sensors Actuators A 135 (2007) 502.
2. Chuang, R.W.: J. Applied Phys. 102 (2007) 073110.
3. Chang, S.P.: EDSSC: 2008 IEEE Inter. Conf. Electron Dev. Solid-State Circuits  (2008) 264.
4. Chang, S.P.: J. Crystal Growth 311 (2009) 3003.
5. Cuerdo, R.: IEEE Electron Dev. Lett. 30 (2009) 808.
6. Chang, S.-P.: J. Nanomater. (2012) 452310.
7. Kaushik, J. K.: Semicond. Sci Technol. 28 (2013) 015026.
8. Mukhopadhyay, P.: J. Vacuum Sci Technol. B 31 (2013) 03C132.
9. Chang, S.-P.: Inter. J. Electrochem. Sci 8 (2013) 10280.
10. Mukhopadhyay, P.: J. Electron. Mater. 43 (2014) 1263.

Pogany, D., Bychikhin, S., Kuzmík, J., Dubec, V., Jensen, N., Denison, M., Groos, G., Stecher, M., Gornik, G., : Thermal distribution during destructive pulses in ESD protection devices using a single-shot, two-dimensional interferometric method IEEE Trans. Device Mater. Reliability 3 (2003) 197-201.

      1. Imoto T.: 2009 IEEE Inter. Reliability Phys. Sympos. 1-2 (2009) 663.
2. Scheier, S.: IEEE Trans. Electromagn. Compatib. 57 (2015) 1309.

Kuzmík, J., Javorka, P., Marso, M., Kordoš, P., : Annealing of Schottky contacts deposited on dry etched AlGaN/GaN. Semicond. Sci Technol. 17 (2002) L76-L78.

1. Hashimuze, T.: Applied Surface Science 234 (2004) 387.
2. Readinger, E. D.: Semicond. Sci Technol. 20 (2005) 389.
3. Guhel, Y.: Microelectron. Reliability 46 (2006) 786.
#    4. Desmaris, V.: Doktorsavhandlingar vid Chalmers Tekniska Hogskola (2006) pp. 1-64.
5. Wang, X.J.: Acta Physica Sinica 57 (2008) 3171.
6. Shiozaki, N.: J. Applied Phys. 105 (2009) 064912.
7. Kim, S.: Japan. J. Applied Phys. 51 (2012) 060201.
8. Eljarrat, A.: Microscopy Microanal. 18 (2012) 1143.
9. Yatabe, Z.: Applied Phys. Express 6 (2013) 016502.
10. Li, H.: Applied Phys. Lett. 103 (2013) 232109.
11. Chou, P.-C.: Inter. J. Hydrogen Energy 40 (2015) 9006.
12. Yatabe, Z.: Phys. Status Solidi A 212 (2015) SI1075.
13. Wilkins, S. J.: Applied Phys. Lett. 106 (2015) 151602.
14. Luo, J.: Chinese Phys. B 24 (2015) 117305.
15. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
#   16. Eljarrat, A.: Adv. Imag. Electron Phys. 209 (2019) 101.

Kuzmík, J., Javorka, P., Alam, A., Marso, M., Heuken, M., and Kordoš, P.: Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method, IEEE Trans. Electron Dev. 49 (2002) 1496-1498.

1. Suzuki, N.: Japan. J. Applied Phys. 42 (2003) 5607.
2. Umana-Membreno, G.A.: Proc. SPIE 5274 (2004) 152.
3. Feng, Z. H.: Applied Physics Lett. 85 (2004) 5248.
*     4. Wolter, M.J.: PhD. Thesis. Technischen Hochschule Aachen 2004.
5. Fujishiro, H.I.: 2003 Inter. Symp. Compound Semicond.: Post-Conf. Proc. 2004. P. 152.
6. Feng, Z. H.: Jap. J. Applied Phys. 44 (2005) L21.
7. Fujishiro, H. I.: Phys. Stat. Sol. (c) 2 (2005) 2696.
8. Arulkumaran, S.: Solid-State Electr. 49 (2005) 1632.
9. Umana-Membreno, G.A.: Phys. Stat. Sol. (c) 2 (2005) 2581.
10. Angelini, A.: 13th GaAs Symp. Paris, 2005. P. 145.
11. McAlister, S.P.: Solid-State Electronics 50 (2006) 1046.
12. McAlister, S.P.: J. Vac. Sci. Technol. A 24 (2006) 624.
13. Benbakhti, B.: IEEE Trans. Electron Devices 53 (2006) 2237.
14. Turin, V.O.: J. Applied Phys. 100 (2006) 054501.
15. Crupi, G.: IEEE Trans. Microwave Theory Tech. 54 (2006) 3616.
16. Das, J.: IEEE Trans. Electron Devices 53 (2006) 2696.
*    17. Krämer, M.: PhD Thesis. Eindhoven: Technische Universiteit Eindhoven 2006.
18. McAlister, S.P: Solid-State Electronics 51 (2007) 142.
19. Benbakhti, B.: Microelectr. J. 38 (2007) 7.
20. McAlister, : Phys. Stat. Solidi (c), 4 (2007) 1653.
21. Shiu, J.Y.: IEEE Electron Device Lett. 28 (2007) 476.
22. Alifragis, Y.: Biosensors & Bioelectronics 22 (2007) 2796.
23. Kuball, M.: IEEE Compound Semicond. Integrated Circuit Symp. – 2007 IEEE CSIC Symp., Technol. Digest. 2007. P. 135.
24. Simms, R.J.I.: IEEE Trans. Electron Dev. 55 (2008) 478.
*    25. Simms, R. J. T.: Abstract Book WOCSDICE 2008. Leuven 2008. P. 117
26. Cuerdo, R.: Physica Status Solidi (c) 5 (2008) 1971.
27. Menozzi, R.: IEEE Trans. Device Materi. Reliability 8 (2008) 255.
28. Alekseev, A.N.: Technical Phys. Lett. 34 (2008) 711-713 .
29. Chattopadhyay, M.K.: Microelectronics J. 39 (2008) 1181.
30. Darwish, A.M.: IEEE Trans. Microwave Theory Techn. 56 (2008) 3188.
31. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
32. Thorsell, M.: IEEE Trans. Microwave Theory Techn. 57 (2009) 19.
33. Tang, X.: Applied Phys. Lett. 95 (2009) 142102.
34. Joh, J.: IEEE Trans. Electron Dev. 56  (2009) 2895.
35. Tang, X.: EUMIC 2009. P. 168.
36. Cheng, X.X.: Solid-State Electron. 54 (2010) 42.
37. Shiu, J.-Y.: Japan. J. Applied Phys. 49 (2010) 021001.
38. Wang, L.: J. Applied Phys. 108 (2010) 054501.
39. Killat, N.: Inter. Reliability Phys. Symp. (2010) 528.
40. Feng, S.W.: Proc. IEEE Semicond. Thermal Measurement Management Symp. (2010) 165.
41. Mouginot, G.: EUMIC 2010. P. 110.
42. Callet, G.: EUMIC 2010. P. 266.
#    43. Sommet, R.: THERMINIC 2010 (2010) art. no. 5636300, pp. 13.
44. Zhang, G.: Chinese Phys. Lett. 28 (2011) 017201.
45. Douglas, E.A.: Electrochem. Solid State Lett. 14 (2011) H464.
46. Ricci, M.: Microelectr. Reliab. 51 (2011) 1725.
#    47. Khémiri, S.: IET Conf. Publ. 2011 (577 CP), p. 96.
#    48. Khémiri, S.: Proc. German Microwave Conf. – GeMiC 2011, art. no. 5760768.
49. Nochetto, H.C.: ASME 2011, IMECE 2011. (2011), pp. 241.
50. Li, L.: Applied Phys. Lett. 100 (2012) 172109.
51. Raj, B.: J. Comp. Theoretical Nanoscie 9 (2012) 763.
52. Wang J.-H.: Chinese Phys. Lett. 29 (2012) 087203.
53. Sommet, R.: Microelectr. J. 43 (2012) SI611.
54. Fagerlind, M.: IEEE Trans. Device Mater. Reliab. 12 (2012) 538.
55. Yu, C.-H.: Acta Phys. Sinica 61 (2012) 207301.
56.  Edwards, M.J.: Phys. Status Solidi C 9 (2012) 960.
#     57. Zhang, G.: J. Semicond. 33 (2012) 044003.
58. Douglas, E. A. ECS Trans. 50 (2012) 261.
59. Zhao, M.: Optics Comm. 291 (2013) 104.
60. Fontsere, A.: ECS Solid State Lett. 2 (2013) P4.
61. Lee, D.S.: IEEE Electron Device Lett. 34 (2013) 6545319.
62. Abbate, C.: Microelectr. Reliab. 53 (2013) 1481.
63. Martin-Horcajo, S.: IEEE Trans. Electron Dev. 60 (2013) 6658874.
64. Marinella, M. J.: ECS Trans. 58 (2013) 365.
65. Lee, D.S.: IEEE Device Research Conf. Proc. (2013) 195.
66. Wei, W.: IET Microwaves Antennas Propagation 8 (2014) 323.
67. Bajaj, S.: Applied Phys. Lett. 105 (2014) 263503.
68. Hiroki, M.: Applied Phys. Lett. 105 (2014) 193509.
69. Martin-Horcajo, S.: Semicond. Sci Technol.  29 (2014) 115013.
70. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
71. Kyaw, L.M.: Applied Phys. Lett. 105 (2014) 073504.
72. Asubar, J.T.: Applied Phys. Lett. 105 (2014) 053510.
73. Bag, A.: IEEE TechSym 2014. Art. no. 6808083, p. 393.
74. Ferranti, F.: IEEE Trans. Comp. Packaging Manufact. Technol. 5 (2015) 788.
75. Rodriguez, R.: Phys. Status Solidi A 212 (2015) SI1130.
76. Mukhopadhyay, P.: Solid-State Electr. 104 (2015) 101.
77. Bag, A.: AIP Conf. Proc. 1661 (2015) 050001.
78. Alim, M.A.: Semicond. Sci Technol.  30 (2015) 125005.
79. Raj, B.: In Fakhfakh, M. et al.: Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design.  IGI Global 2015. ISBN-13: 978-1466666276. P. 399-418.
80. Sodan, V.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2015. P. 377.
81. Rodriguez, R.: Spanish Conf. Electron Devices 2015. P. 34.
82. Zhao, X.: IEEE ICCP 2015. P. 261.
83. Garcia, S.: Semicond. Sci Technol. 31 (2016) 065005.
84. Chen, S.-H.: Applied Thermal Engn. 98 (2016) 1003.
85. Nagahisa, T.: Japan. J. Applied Phys. 55 (2016) SI04EG01.
86. Sodan, V.: IEEE Trans. Electron Dev. 63 (2016) 2321.
87. Islam, A.S.Md.J.: IEEE ICIEV 2016. P. 961.
88. Harris, T. R.: IEEE Intersociety Conf. on Thermal and Thermomechan. Phenomena in Electronic Systems 2016. P. 1505.
89. Brocero, G.: IEEE MIKON 2016.
90. Alim, M.A.: Solid-State Electr. 126 (2016) 67.
91. Wong, M.H.: Applied Phys. Lett. 109 (2016) 193503.
92. Alim, M.A.: IEEE Trans. Microwave Theory Techniq. 64 (2016) 3483.
93. Martin-Horcajo, S.: IEEE Electron Device Lett. 37 (2016) 1197.
94. Kuball, M.: IEEE Trans. Device Mater. Reliab. 16 (2016) 667.
95. Alim, M.A.: Semicond. Sci Technol. 31 (2016) 125016.
#      96. Syed, A.: ICIEV 2016. Art. No. 7760142, p. 961.
97. Chang, T.-H.: Sci Rep. 7 (2017) 6360.
98. Zhao, X.: IEEE Trans. Microwave Theory Techniq. 65 (2017) 2271.
99. Xing, W.: IEEE Electron Device Lett. 38 (2017) 619.
100. Zhang, Y.: IEEE Trans. Electron Dev. 64 (2017) SI2166.
101. Aouf, A.: ICSC‘ 17. P. 451.
102. Zhao, X.: ECS J. Solid State Sci Technol. 6 (2018) S3014.
103. Podder, A.K.: EICT 2017.
104. Yang, L.: IEEE Trans. Semicond. Manufact. 30 (2017) 526.
105. Rodriguez, R.: Solid-State Electron. 137 (2017) 44.
106. Hou, M.: J. Applied Phys. 122 (2017) 195102.
107. Kumar, S.: IEEE Trans. Electron Dev. 64 (2017) 4868.
*     108. Florovič, M.: In Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 36.
109. Latry, O.: IEEE MELECON 2018. P. 265.
110. Zhu, H.: Solid-State Electron. 145 (2018) 40.
111. Florovič, M.: In ASDAM 2018. P. 159-162.
112. Bouchour, Al M.: 2018 Inter. Symp. Adv. Electr. Comm. Technol. (ISAECT) 2018.
113. Gerrer, T.: Inter. J. Microwave Wireless Technol. 10 (2018) SI666.
114. Wu, M.: IEEE Trans. Electron Dev. 65 (2018) 4792.
115. Rodriguez, R.: Electronics 7 (2018) 210.
116. Florovic, M.: J. Electr. Engn.-Elektrotechn. Cas. 69 (2018) 390.
117. Zhang, D.: IEEE Trans. Electron Dev. 65 (2018) 3379.
118. Xu, Z.: IEEE Trans. Electron Dev. 65 (2018) 5301.
#  119. Wu, M.: In 14th China Inter. Forum on Solid State Lighting – IFWS 2017, pp. 200-203.
120. Cutivet, A.: Phys. Status Solidi A 216 (2019) SI1800503.
121. Zhong, Y.-N.: Japan. J. Applied Phys. 58 (2019) SCCD24.
122. Oh, S.K.: J. Electr. Packag. 141 (2019) 020801.
123. Florovic, M.: Semicond. Sci Technol. 34 (2019) 065021.
124. Kumar, S.: IEEE Trans. Electron Dev. 66 (2019) 3310.
125. Wu, M.: Japan. J. Applied Phys. 58 (2019) SCCB11.
126. Deyasi, A.: IEEE EDKCON 2018, pp. 37-41.
127. Ranjan, K.: IEEE J. Electron Dev. Soc 7 (2019) 1264.
128. Moultif, N.: IEEE Trans. Device Mater. Reliab. 19 (2019) 704.
129. Brocero, G.: IEEE Trans. Electron Dev. 66 (2019) 4156.
130. Cui, P.: Applied Phys. Express 12 (2019) 104001.
131. Chen, X.: IEEE Trans. Electron Dev. 66 (2019) 3748.
#     132. Chandrasekar, H.: Inter. J. High Speed Electron. Systems 28 (2019) 1940001.
133. Fatahilah, M.F.: Micro Nano Engn. 3 (2019) 59.
#     134. Odabasi, O.: EuMCE 2019, pp. 87.
135. Zhu, T.: Semicond. Sci Technol. 35 (2020) 055006.
136. Beom, K.: Nanotechnol. 31 (2020) 265201.
137. Choi, W.: Nano Lett.‏ 20 (2020) 2812.
138. Odabasi, O.: IEEE Trans. Electron Dev. 67 (2020) 1553.
139. Dasari, P.: IEEE Trans. Electron Dev. 67 (2020) 847.
140. Park, M.: Sci Rep. 10 (2020) 2764.
141. Gonzalez, B.: IEEE Trans. Electron Dev. 67 (2020) ‏ 5408.
142. Li, L.: Applied Phys. Lett. 117 (2020) 152108.
143. Ranjan, K.: IEEE Electron Dev. Technol. Manufact. Conf. – EDTM 2020.

Kuzmík, J.InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal. Semicond. Sci Technol. 17 (2002) 540-544.

1. Katz, O.: Electronics Lett. 40 (2004) 1304.
2. Dadgar, A.: Applied Physics Lett. 85 (2004) 5400.
3. Neuburger, M.: Inter. J. High Speed Electronics & Systems 14 (2004) 161.
*   4. Katzer, D.S.: North American Conf. MBE. Banff, 2004. Book of abstracts.
5. Dadgar, A.: Phys. Stat. Sol. (a) 202 (2005) 832.
6. Katzer, D.S.: J. Vacuum Sci Technol. B 23 (2005) 1204.
7. Alifragis, Y.: Applied Phys. Lett. 87 (2005) 253507.
8. Medjdoub, F.: Electronics Lett. 42 (2006) 779.
*    9. Medjdoub, F.: Abstract Book WOCSDICE 2006. Fiskebäckskil 2006. P. 157.
10. Higashiwaki, M.: Japan. J. Applied Phys. 45 (2006) L843.
11. Watanabe, N.: IEEE Compound Semicond. Integrated Circuits Symp. 2006. P. 257.
12. Zhou, L.: Applied Phys. Lett. 90 (2007) art. no. 081917.
13. Medjdoub, F.: Electronics Lett. 43 (2007) 309.
14. Alifragis, Y.: Biosensors & Bioelectronics 22 (2007) 2796-2801.
15. Alifragis, Y.: Physica Status Solidi A 204 (2007) 2059.
16.  Xie, J.: Applied Phys. Lett. 91 (2007) 132116.
17. Pietzka, C.: J. Electronic Mater.  37 (2008) 616.
18. Khoshroo, R.: Phys. Status Solidi (c) 5 (2008) 2041.
19.  Xie, J.: Proc.SPIE 6894 (2008) art. no. 68941R.
20. Georgakilas, A.: CAS: 2008 Inter. Semicond. Conf. IEEE 2008. P. 43.
21. Wang, X.J.: Acta Phys. Sinica 57 (2008) 3171.
22. Georgakilas, A.: CAS: 2008 Inter. Semicond. Conf. IEEE 2008. P. 43.
23. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
24. Tulek, R.: J. Applied Phys. 105 (2009) 013707.
25. Rahman, F.: Applied Phys. A 94 (2009) 633.
26. Teke, A.: New J. Phys. 11 (2009) 063031.
*   27. Crespo, A.: 36th Inter. Symp. Comp. Semicond. Santa Barbara 2009. P. 275.
*   28. Chabak, K.: Proc. CS Mantech Conf. 2009. Tampa, Florida.
29. Crespo, A.: IEEE Electron Dev. Lett. 31 (2010) 2.
30. Guo, S.: Physica Status Solidi A 207 (2010) 1348.
31. Paskova, T.: Proc. IEEE 98 (2010) 1324.
32. Vilalta-Clemente, A.: Phys. Status Solidi A 207 (2010) 1105.
33. Gokden, S.: Semicond. Sci Technol. 25 (2010) 045024.
34. Tasli, P.; Physica B 405 (2010) 4020.
#   35. Marek, J.: In: ASDAM 2010. Piscataway: IEEE, 2010.  P. 143.
#   36. Crespo, A.: Phys. Status Solidi c 7 (2010) 2433.
37. Vilalta-Clemente, A.: Proc. SPIE 7602 (2010) art. no. 76020K.
38. Laurent, T.: Acta Phys. Polonica A 119 (2011) 196.
39. Moser, P.: Japan. J. Applied Phys. 50 (2011) 031002.
40. Chen, Z.T.: IEEE Electron Dev. Lett. 32 (2011) 620.
41. Yu, H.: Semicond. Sci Technol. 26 (2011) 085010.
42. Charash, R.: Applied Phys. Lett. 98 (2011) 201112.
43. Mahtadi, S. M.: Phys. Status Solidi c 8 (2011)  2288.
44. Mahtadi, S. M.: Phys. Status Solidi c 8 (2011)  2292.
45. Hasan, M. T.: Applied Phys. Lett. 99 (2011) 132102.
46. Azize, M.: IEEE Electron Dev. Lett. 32 (2011) 1680.
47. Xie S.: IEEE Int. Conf. Electron Dev. Solid-State Circuits (EDSSC) 2011.
#   48. Lecourt, F.: Conf. Proc. EuMIC 2011, art. no. 6102861, p. 136.
#   49. Bi, Y.: J. Semicond. 32 (2011) 083003.
#   50. Jardel, O.: Inter. J. Microwave. Wireless Technol. 3 (2011) 301.
51. Alexewicz, A.: Thin Solid Films 520 (2012) 6230.
52. Zhu, J.J.: J. Crystal Growth 348 (2012) 25.
53. Xue, J.S.: J. Crystal Growth 343 (2012) 110.
54. Liu, G.: J. Crystal Growth 340 (2012) 66.
55. Kelekci, O.: Current Applied Phys. 12 (2012) 1600.
56. Lenka, T. R.: Phys. Procedia 25 (2012) 36.
#    57. Bi, Y.: EPJ Applied Phys. 57 (2012) 30103.
58. Slepko, A.: J. Applied Phys. 113 (2013) 013707.
59. Elibol, K.: Solid State Comm. 162 (2013) 8.
60. Dadgar, A.: J. Crystal Growth 370 (2013) 278.
61. Saito, H.: Phys. Status Solidi C 10 (2013) 824.
62. Yang, Y.-N.: Wuli Xuebao/Acta Phys. Sinica 62 (2013) 177302.
63. Kim, S.: Japan. J. Applied Phys. 52 (2013) 10MA05.
64. Kim, S.: Japan. J. Applied Phys. 52 (2013) 10MA07.
65. Jones, E.: Applied Phys. Lett. 103 (2013) 231904.
66. Tulek, R.: Thin Solid Films 551  (2014) 146.
67. Choi, S.: J. Crystal Growth 388 (2014) 137.
68. Kim, J.: J. Crystal Growth 388 (2014) 143.
69. Liu, Y.: J. Vacuum Sci Technol. B 32 (2014) 032201.
70. Naresh-Kumar, G.: AIP Adv. 4 (2014) 127101.
71. Gan, X.: Mater. Sci Semicond. Process. 27   (2014) 665.
72. Goswami, A.: J. Applied Phys. 116 (2014) 164508.
73. Dakhlaoui, H.: Chinese Phys. B 23 (2014) 097304.
74. Zhou, Y.: Semicond. Sci Technol.  29 (2014) 095011.
75. Schulz, O.: Physica Status Solidi C 11 (2014) 397.
76. Chang, S.-C.: ECS Solid State Lett. 3 (2014) R53.
77. Martin-Horcajo, S.: Semicond. Sci Technol.  30 (2015) 035015.
78. Chowdhury, S.: Applied Phys. Lett. 106 (2015) 082111.
79. Zhao Y.: Chinese Phys. B 24 (2015) 017302.
80. Chowdhury, S.: J. Electron. Mater. 44 (2015) 4144.
81. Kim, J.: J. Applied Phys. 118 (2015) 125303.
#     82. Hennig, J.: AIP Adv. 5 (2015) 077146.
83. Almansour, S.: Chinese Phys. Lett. 33 (2016) 027301.
84. Amirabbasi, M.: J. Experimen. Theoret. Phys. 122 (2016) 159.
85. Dakhlaoui, H.: Chinese Phys. B 25 (2016) 067304.
86. Yoshida, S.: Japan. J. Applied Phys. 55 (2016) SI05FD10.
87. Zervos, Ch.: Applied Phys. Lett. 108 (2016) 142102.
88. Das, S.: IEEE ICDCS 2016. P. 128-+.
89. Wang, Y.: Physica Status Solidi A 213 (2016) 1252.
90. Swain, S.K.: Superlatt. Microstr. 97 (2016) 258.
91. Liu, G.: Physica E 83 (2016) 207.
#     92. Shaffa, A.:  Chinese Phys. Lett. 33 (2016) 027301.
93. Wang, W.: IEEE Electron Device Lett. 38 (2017) 1086.
94. Kim, S.: Electronic Mater. Lett. 13 (2017) 302.
95. Mojaver, H.R.: J. Applied Phys. 121 (2017) 244502.
96. Vilalta-Clemente, A.: Acta Materialia 125 (2017) 125.
97. Li, Y.: AIP Adv. 7 (2017) 105109.
98. Singh, V.K.: Physica Status Solidi A 215 (2018) 1700757.
#      99. Asmae, B.: In Inter. J. Electr. Computer Engn. 8 (2018) 954.
100. Islam, Md. S.: ICECE 2018, p. 14.
101. Kumar, S.: IEEE Trans. Electron Dev. 66 (2019) 1230.
102. Li, Y.: Physica Status Solidi B 256 (2019) 1800704.
103. Biswas, D.: J. Applied Phys. 125 (2019) 225707.
104. Hwang, I.-T.: Applied Sci-Basel 9 (2019) 3610.
105. Gu, Y.: Electronics 8 (2019) 885.
#     106. Adak, S.: DevIC 2019, pp. 156-160.
#     107. Eljarrat, A.: Adv. Imag. Electron Phys. 209 (2019) 101.
108. Wang, W.: Applied Phys. Lett. 116 (2020) 123501.
109. Beloufa, A.: J. Electr. Mater.‏ 49 (2020) 2008.
110. Oda, O.: Phys. Status Solidi A‏ 218 (2021) SI2000462.

Pogany, D., Bychikhin, S., Kuzmík, J., Dubec, V., Jensen, N., Denison, M., Groos, G., Stecher, M., Gornik, G., : Thermal distribution during destructive pulses in ESD protection devices using a single-shot, two-dimensional interferometric method. In: IEEE-IEDM Technical Digest 2002. P. 345-348.

1. Lee, J.-H.: Inter. Reliab. Phys. Symp. (2006) P. 629.
2. de Raad, G.: Electrical Overstress Electrostatic Discharge Symp. 2014.

Kuzmík, J., Hasenöhrl, S., Kúdela, R., Haščík, Š., Mozolová, Ž., Lalinský, T., Breza, J., Vogrinčič, P., Škriniarová, J., Fox, A., Kordoš, P., : InGaAs/InGaP HEMTs: technological optimization and analytical modelling. Vacuum 61 (2001) 333-337.

      1. Li, A.Z.: J. Crystal Growth 251 (2003) 816.

Kuzmík, J., Javorka, P., Alam, A., Marso, M., Heuken, M., Kordoš, P., : Investigation of self-heating effects in AlGaN/GaN HEMTs. In: EDMO 2001. Vienna: TU, 2001. P. 21.

1. Shigekawa, N.: Japan. J. Applied Phys. 42 (2003) 2245.
2. Zou, J.: J. Applied Phys. 100 (2006) 104309.
3. Chattopadhyay, M.K.: Microelectr. J. 39 (2008) 1181.
4. Miller, M.A.: J. Vacuum Sci Technol. B 26 (2008) 1883.

Kuzmík, J.Power electronics on InAlN/(In)GaN: prospect for a record performance, IEEE Electron Devices Lett. 22 (2001) 510-512.

1. Higashiwaki, : Japan. J. Applied Phys. 43 (2004) L 768.
2. Endoh, A.: Japan. J. Applied Phys. 43 (2004) 2255.
3. Dadgar, A.: Applied Physics Lett. 85 (2004) 5400.
4. Katz, O.: Technical Digest – IEDM (2004) 1035.
5. Neuburger, M.: Inter. J. High Speed Electr. & Systems 14 (2004) 785.
#      6. Xue, F.: Research & Progress Solid State Electron. 24 (2004) 265.
#      7. Xue, F.: Research & Progress Solid State Electron. 24 (2004) 280.
8. Katz, O.: IEEE Trans. Electron Dev. 52 (2005) 146.
9. Dadgar, A.: Phys. Status Solidi (a) 202 (2005) 832.
10. Higashiwaki, M.: Phys. Stat. Sol. (c) 2 (2005) 2598.
11. di Forte-Poisson, M.A.: Physica Status Solidi A  203 (2006) 185-193.
12. Medjdoub, F.: Electronics Lett. 42 (2006) 779.
*     13. Medjdoub, F.: Abstract Book WOCSDICE 2006. P. 157.
#    14. Desmaris, V.: Doktorsavhandlingar vid Chalmers Tekniska Hogskola (2416), (2006) pp. 1-64.
15. Higashiwaki, M.: Japan. J. Applied Phys. 45 (2006) L843.
16. Gonschorek, M.: Applied Phys. Lett. 89 (2006) Art. No. 062106.
*     17. Medjdoub, F.: Abstract Book 2006. Lester Eastman Conf. High Performance Devices. Cornell Univ. 2006. P. 21.
18. Miyoshi, M.: Solid-State Electronics 50 (2006) 1515.
*     19. Carlin, J.-F.: Technical Digest Inter. Workshop on Nitride Semicond. 2006.  Kyoto 2006. P. 77.
*      20. Endoh, A. : Technical Digest Inter. Workshop on Nitride Semicond. 2006. Kyoto 2006. P. 159.
21. Hiroki, M.: Superlattices Microstr. 40 (2006) 214.
22. Watanabe, N.: IEEE Compound Semicond. Integrated Circuits Symp. 2006. P. 257.
23. Medjdoub, F.: Electron Devices Meeting 2006 – IEDM ’06. Technical Digest P. 673.
24. Medjdoub, F.: Electronics Lett. 43 (2007) 309.
25. Jessen, G. H.: IEEE Electron Dev. Lett. 28 (2007) 354.
26. Medjoub, F.: Electronics Lett. 43 (2007) 691.
*       27. Gillespie, J.K.: CS Mantech Conf. Austin 2007. P. 73.
28. Jeganathan, K.: J. Crystal Growth 304 (2007) 342.
29. Xie, J.: Applied Phys. Lett. 91 (2007) 132116.
30. Butte, R: J. Phys. D 40 (2007) 6328.
31. Sarazin, N.: Electronics Lett. 43 (2007) 1317.
32. Xie J: Applied Phys. Lett. 91 (2007) 262102.
#       33. Gaquiere, C.: IEEE MTT-S Inter. Microwave Symp. Digest. (2007)  art. no. 4264295, 2145.
34. Medjdoub, F.: Inter. Semicond. Device Research Symp. 2007. Art. no. 4422392.
#       35. Medjdoub, F.: Inter. J. High Speed Electr. Systems  17 (2007) 91.
*        36. Medjdoub, F.: The Open Electrical and Electronic Engn. J. 2 (2008) 1.
37. Medjdoub, F.: IEEE Electron Dev. Lett. 29 (2008) 422.
38. Oh, TC.: J. Applied Phys. D 41 (2008) 095402.
*        39. Fieger, M.: Abstract Book WOCSDICE 2008. Leuven 2008. P. 25
*       40. Gonschorek, M.: Abstract Book WOCSDICE 2008. Leuven 2008. P. 47
*       41. Grandjean, N.: Abstract Book WOCSDICE 2008. Leuven 2008. P. 93
43. Gonschorek, M.: J. Applied Phys. 103 (2008) 093714.
44. Khoshroo, R.: Phys. Status Solidi (c) 5 (2008) 2041.
45. Fieger, M.: Phys. Status Solidi (c) 5 (2008) 1926.
46.  Xie, J.: Proc.SPIE 6894 (2008) art. no. 68941R.
47. Hiroki, M.: Applied Phys. Express 1 (2008) 111102.
48. Ive, T.: Phys.  Rev. B 78 (2008) 035311.
49. Miyoshi, M.: Applied Phys. Express 1 (2008) 081102.
50. Oh, T.S.: J. Korean Phys. Soc. 53 (2008) 1956.
*        51. Hiroki, M.: Inter. Workshop Nitride Semicond. Book Abstracts. Montreux 2008. P. 296.
*        52. Behmenburg, H.: Inter. Workshop Nitride Semicond. Book Abstracts. Montreux 2008. P. 326.
*        53. Gonschorek, M.: Inter. Workshop Nitride Semicond. Book Abstracts. Montreux 2008. P. 564.
*        54. Gonschorek, M.: Inter. Workshop Nitride Semicond. Book Abstracts. Montreux 2008. P. 565.
55. Kohn, E.: Proc.14th Inter. Workshop Phys. Semicond. Dev.-IWPSD (2007) 4472506, pp. 311.
56. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
57. Zhou, L.: Applied Physics Lett. 94 (2009) 121909.
58. Tulek, R.: J. Applied Phys. 105 (2009) 013707.
59. Selvaraj, J.: Japan. J. Applied Phys. 48 (2009) 04C102.
60. Chen, Z.T.: Applied Phys. Lett. 94 (2009) 213504.
61. Teke, A.: New J. Phys. 11 (2009) 063031.
62. Gonschorek, M.: European Phys. J.-Applied Phys. 47 (2009) 30301.
63. Sun, H.F.: IEEE Electron Dev. Lett. 30 (2009) 796.
64. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
65. Chen, Z.T.: Applied Phys. Lett. 95 (2009) 083504.
66. Khoshroo, L. R.: Phys. Status Solidi C 6 (2009) S470.
67. Bohmenburg, H.: Phys. Status Solidi C 6 (2009) S1041.
68. Hiroki, M.: Phys. Status Solidi C 6 (2009) S1056
69. Vescan, A.: Phys. Status Solidi C 6 (2009) S1003.
70. Ardaravicius, L.: J. Applied Phys. 106 (2009) 073708.
71. Alomari, M.: IEEE Electron Dev. Lett. 30 (2009) 1131.
*         72. Zhou, L: 36th Inter. Symp. Comp. Semicond. Santa Barbara 2009. P. 269.
*         73. Carlin J.-F.: 36th Inter. Symp. Comp. Semicond. Santa Barbara 2009. P. 277.
*         74. Zhou,L.: 8th Inter. Conf. Nitride Semicond. Jeju 2009. P. 935.
*         75. Kirste, L: 8th Inter. Conf. Nitride Semicond. Jeju 2009. P. 937.
*         76. Carlin, J-F.: 8th Inter. Conf. Nitride Semicond. Jeju 2009. P. 1438.
77. Leach, J.H.: Applied Phys. Lett. 95 (2009) 223504.
78. Lisesivdin, S.B.: Optoelectron Advanced Mater 3 (2009) 904.
#         79. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
#         80. Zhou, L.: Microscopy Microanal. 15 (2009) 1048.
81. Alomari, M.: Inter. J. High Speed Electr. Systems 19 (2009) 137.
#         82. Johnstone, D.: Proc. SPIE 7216 (2009) 72162R.
83. Crespo, A.: IEEE Electron Dev. Lett. 31 (2010) 2.
84. Sarazin, N.: IEEE Electron Dev. Lett. 31 (2010) 11.
85. Zhou, L.: J. Applied Phys. 107 (2010) 014508.
86. Kirste, L.: Physica Status Solidi A 207 (2010) 1338.
87. Leach, J.H.: Physica Status Solidi A 207 (2010) 1345.
88. Choi, S.: Applied Phys. Lett. 96 (2010) 243506.
89. Gokden, S.: Semicond. Sci Technol. 25 (2010) 045024.
90. Akazawa, M.: Applied Phys. Lett. 96 (2010) 132104.
91. Sun, H.F.: IEEE Electron. Dev. Lett. 31 (2010) 293.
92. Alomari, M.: Phys. Stat. Solidi C 7 (2010) 13.
93. Leach, J. H.: Physica Status Solidi A 207 (2010) 211.
94. Brown, D.: J. Applied Phys. 107 (2010) 033509.
95. Chikhaoui, W.: Applied Phys. Lett. 96 (2010) 072107.
96. Hu, W.: Jap. J. Applied Phys. 49 (2010) 035701.
97. Leach, J. H.: Applied Phys. Lett. 96 (2010) 102109.
98. Dong, X.: Chinese Phys. Lett. 27 (2010) 037102.
99. Kordos, P.: IEEE Electron. Dev. Lett. 31 (2010) 180.
100. Hiroki M.: Japan. J. Applied Phys. 49 (2010) 04DF13.
101. Leach, J. H.: J. Applied Phys. 107 (2010) 083706.
102. Chabak, K. D.: IEEE Electron. Dev. Lett. 31 (2010) 561.
103. Leach, J. H.: Physica Status Solidi A 207 (2010) 1091.
104. Brown, D.: IEEE Electron. Dev. Lett. 31 (2010) 800.
105. Tasli, P.: Physica B 405 (2010) 4020.
106. Leach, J.H.: Proc. IEEE 98 (2010) 1127.
107. Lisesivdin, S. B.: Thin Solid Films 518 (2010) 5572.
108. Paskova, T.: Proc. IEEE  98 (2010) 1324.
109. Sun, H.: IEEE Electron. Dev. Lett. 31 (2010) 957.
110. Wu, M.: J. Vacuum Sci Technol. B 28 (2010) 908.
111. Sun, H.: Applied Phys. Express 3 (2010) 094101.
112. Cheng, H.: Applied Phys. Lett. 97 (2010) 112113.
113. Hiroki, M.: IEICE Trans. Electronics  E93C (2010) 5.
114. Tasli, P.: Physica B 405 (2010) 4020.
115. Sakalauskas, E.: J. Phys. D  43 (2010) 365102.
116. Mikulics, M.: Applied Phys. Lett. 97 (2010) 173505.
117. Wang, R.: IEEE Electron Dev. Lett. 31 (2010)1383.
118. Jardel, O.: EUMIC 2010. P. 49-52.
119. Sun, H.F.: IEEE Microwave Wireless Components Lett. 20 (2010) 453.
120. Poisson, M.A.D.: Phys. Status Solidi c 7 (2010) 1317.
121. Maier, D.: IEEE Trans. Device Materials Reliab. 10 (2010) 427.
122. Leach, J.H.: Gallium Nitride Mater. Devices 7602  (2010).
#      123. Zhou, L.: Phys. Status Solidi c 7 (2010) 2436.
#      124. Behmenburg, H.: Phys. Status Solidi C 7 (2010) 2014.
#     125. Alomari, M.: Phys. Status Solidi c 7 (2010) 13.
#     126. Chen, Y.: ICMMT 2010. Art. no. 5524738, p. 1710.
#     127. Liu, H.Q.:, ICMMT 2010. Art. no. 5525207, p. 2059.
#     128. Maier, D.: MIKON 2010 – Conf. Proc. Art. no. 5540502.
129. Akazawa, M.: J. Applied Phys. 109 (2011) 013703.
130. Sakai, Y.: Japan. J. Applied Phys. 50 (2011) 01AD01.
131. Sun, H.F.: Phys. Status Solidi A 208 (2011) 429.
132. Mao, W.: Chinese Phys. B  20 (2011) 017203.
133. Moser, P.: Japan. J. Applied Phys. 50 (2011)  031002.
134. Xue, J.: Applied Phys. Lett. 98 (2011) 113504.
135. Gonschorek, M.: J. Applied Phys. 109 (2011) 063720.
136. Lee, D.S.: IEEE Electron Dev. Lett. 32 (2011) 617.
137. Akazawa, M.: Applied Phys. Lett. 98 (2011) 142117.
138. Dasgupta; Applied Phys. Express 4 (2011) 045502.
139. Yu, H.: Semicond. Sci Technol. 26 (2011) 085010.
140. Lee, D.S.: IEEE Electron Dev. Lett. 32 (2011) 755.
141. Lee, J.: Phys. Status Solidi A 208 (2011) 1538.
142. Charash, R.: Applied Phys. Lett. 98 (2011) 201112.
143. Billingsley, D.: J. Crystal Growth 327 (2011) 98.
144. Manuel, J.M.: Phys. Status Solidi C 8 (2011) 2500.
145. Eickelkamp, M.: Phys. Status Solidi C 8 (2011) 2213.
146. Hasan, M.T.: Applied Phys. Lett. 99 (2011) 132102.
147. Akazawa, M.: Phys. Status Solidi C 8 (2011) 2139.
148. Kayis, C.: Applied Phys. Lett. 99 (2011) 063505.
149. Gao, X.: Phys. Status Solidi C 8 (2011) 2081.
150. Yu, H.: Semicond. Sci. Technol. 26 (2011) 085010.
151. Tirelli, S.: IEEE Electron Dev. Lett. 32 (2011) 1364.
152. Lee, D.S.: IEEE Electron Dev. Lett. 32 (2011) 1525.
153. Morgan, D.: Applied Phys. Express 4 (2011) 114101.
154. Chen, Z.T.: Applied Phys. Lett. 99 (2011) 183504.
155. Eickelkamp, M.: J. Applied Phys. 110 (2011) 084501.
156. Medjdoub, F.: Electronics Lett. 47 (2011)  1345.
157. Lo, C.F.: J. Vacuum Sci Technol. B 29 (2011) 061201.
158. Ardaravicius, L.: Acta Physica Polonica A 119 (2011) 231.
169. Leach, J. H.: Proc. SPIE 7939 (2011) 79391P.
160. Kayis, C.: Proc. SPIE 7939 (2011) 79392G.
161. Zhang, J.-F.: Acta Phys. Sinica 60 (2011) 117305.
162. Ilgaz, A.: European Phys. J.-Applied Phys. 55 (2011) 30102.
163. Medjdoub, F.: Applied Phys. Express 4 (2011) 124101.
#    164. Liu, B.: J. Semicond. 32 (2011) 124003.
#     165. Piotrowicz, S.: 2011 IEEE Compound Semicond. Integrated Circuit Symp. (CSICS) (2011)  1-4  ISBN: 978-1-61284-711-5.
#    166. Xue, F.: 2011 Guti Dianzixue Yanjiu Yu Jinzhan/Research and Progress of Solid State Electron. 31 (2011) 421.
#    167. Jardel, O.: Inter. J. Microwave Wireless Technol. 3 (2011) 301.
#    168. Zhou, Q.: Technical Digest – Inter. Electron Devices Meeting, IEDM (2011), art. no. 6131664 , pp. 33.4.1-33.4.4.
#    169. Dufraisse, J.: EuMW 2011, Conf. Proc., art. no. 6102848 , p. 140.
#    170. Rafei, A.E. : EuMW 2011, Conf. Proc., art. no. 6102848 , p. 5.
#    171. Lecourt, F. : EuMW 2011, Conf. Proc., art. no. 6102848 , p. 136.
#    172. Xie, S.: Gongneng Cailiao/J. Functional Mater. 42 (2011) (SUPPL. 5) 784.
173. Xue, J.: Appl. Phys. Lett. 100 (2012) 013507.
174. Kim, H.-Y.: Applied Phys. Lett. 100 (2012) 012107.
175. Ichikawa, J.: Japan. J. Applied Phys. 51 (2012) 01AF07.
176. Zhou, Q.: IEEE Electron Dev. Lett. 33 (2012) 38.
177. Gamarra, P.: Phys. Status Solidi A 209 (2012) 21.
178. Lee, H.-S.: IEEE Electron Dev. Lett. 33 (2012) 982.
179. Yue, Y.: IEEE Electron Dev. Lett. 33 (2012) 988.
180. Feng Q.: Chinese Phys. B 21 (2012) 067305.
181. Xue, J.S.: J. Applied Phys. 111 (2012) 114513.
182. Bayrakli, A.: Phys. Status Solidi A 209 (2012) 1119.
183. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) SI 04DF02.
184. Kayis, C.: Phys. Status Solidi R 6 (2012) 163.
185. Xue, J.S.: J. Crystal Growth 343 (2012) 110.
186. Chen, Z. T.: J. Applied Phys. 111 (2012) 053535.
187. Wong, M.H.: Applied Phys. Lett. 100 (2012) 072107.
188. Liu, G.: J. Crystal Growth 340 (2012) 66.
189. Ferreyra, R.A.: Proc. SPIE 8262 (2012) 82621U.
190. Akazawa, M.: Phys. Status Solidi C 9 (2012) 592.
191. Sadler, T.: Phys. Status Solidi C 9 (2012) 461.
192. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
193. Taniyasu, Y.: Applied Phys. Lett. 101 (2012) 082113.
194. Luan, C.: J. Applied Phys. 112 (2012) 054513.
195. Matulionis, A.: Microelectron. Reliab. 52 (2012) SI2149.
196. Jones, E.J.: Applied Phys. Lett. 101 (2012) 113101.
197. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
198. Ding, J.: Applied Phys. Lett. 101 (2012) 182102.
199. Kelekci, O.: Current Applied Phys. 12 (2012) 1600.
200. Lu, J.: Japan. J. Applied Phys. 51 (2012) 115502.
201. Akazawa, M.: Phys. Status Solidi C 9 (2012) 592.
202. Sadler, T.: Phys. Status Solidi C 9 (2012) 461.
203. Akazawa, M.: ECS Solid State Lett. 1 (2012) P4.
204. Lo, C.-F.: J. Vacuum Sci Technol. B 30 (2012) 041206.
205. Kamath, A.: IEEE Electron Dev. Lett. 33 (2012) 1690.
206. Kuzuhara, M.: ASDAM 2012 (2012) art. no. 6418587 , pp. 1.
207. Medjdoub, F.: EuMW 2012, EuMIC 2012 Conf. Proc. (2012) art. no.
483801, pp. 321.
208. Pardeshi, H.: Proc. CODIS 2012 (2012) art. no. 6422233, pp. 441.
209. Pardeshi, H.: IEEE Proc. 2012 Inter. Conf. Comm., Devices Intelligent
systems (CODLS) (2012) 441.
#    210. Johnson, W.: Springer Ser. Mater. Sci 156 (2012) 209.
#    211. Bi, Y.: EPJ Applied Phys. 57 (2012) 30103.
#    212. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
213. Hossain, Md. I.: Proc. SPIE 8549 (2012) 85490S.
214. Perillat-Merceroz, G.: J. Applied Phys. 113 (2013) 063506.
215. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
216. Huang, W.-C.: Sains Malaysiana 42 (2013) 247.
217. Sarikavak-Lisesivdin, B.: Current Applied Phys. 13 (2013) 224.
218. Zhou, Q.: IEEE Trans. Electron Dev. 60 (2013) 1075.
219. Nsele, S.D.: IEEE Trans. Electron Dev. 60 (2013) 1372.
220. Hiroki, M.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF02.
221. Dadgar, A.: J. Crystal Growth 370 (2013) 278.
222. Simukovic, A.: Semicond. Sci Technol. 28 (2013) 055008.
223. Brazzini, T.: Semicond. Sci Technol. 28 (2013) 055007.
224. Nakano, T.: IEICE Trans. Electron. E96C (2013) 686.
225. Mao, W.: Chinese Phys. Lett. 30 (2013) 058502.
226. Chen, H.: J. Applied Phys. 113 (2013) 194509.
227. Schuette, Michael L.: IEEE Electron Dev. Lett. 34 (2013) 741.
228. Perez-Tomas, A.: Mater. Sci Semicond. Process. 16 (2013) SI1336.
229. Baliga, B. J.: Semicond. Sci Technol. 28 (2013) SIUNSP 074011.
230. Matulionis, A.: Semicond. Sci Technol. 28 (2013) SI074007.
231. Zhang, L.: Applied Phys. Lett. 102 (2013) 242112.
232. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
233. Lu, J.: Applied Phys. Lett. 102 (2013) 232104.
234. Lugani, L.: J. Applied Phys. 113 (2013) 214503.
235. Medjdoub, F.: Inter. J. Microwave Wireless Technol. 5 (2013) SI335.
236. Tirelli, S.: IEEE Trans. Electron Dev. 60 (2013) 6544563.
237. Kachi, T.: IEICE Electron. Express 10 (2013) 20132005.
238. Geum, D.M.: Electron. Lett. 49 (2013) 1536.
239. Zhou, Q.: ECS Trans. 58 (2013) 351.
240. Lee, D.S.: Phys. Status Solidi C 10 (2013)  827.
241. Saito, H.: Physica Status Solidi C 10 (2013) 824.
242. Pardeshi, H.M.: Superlatt. Microstr. 60 (2013) 10.
243. Pardeshi, H.: Superlatt. Microstr. 60 (2013) 47.
244. Liu, L.: Proc.SPIE 8625 (2013) 86250W.
245. Sasikumar, A.: Applied Phys. Lett. 103 (2013) 033509.
246. Akazawa, M.: Japan. J. Applied Phys. 52 (2013) 08JN23.
247. Gonzalez-Posada, F.: Japan. J. Applied Phys. 52 (2013) 08JE19.
248. Xue, J.: Japan. J. Applied Phys. 52 (2013) 08JB04.
249. Tirelli, S.: Japan. J. Applied Phys. 52 (2013) 08JN16.
250. Kim, H.-Y.: J.Vacuum Sci Technol. B 31 (2013) 051210.
251. Hiroki, M.: J. Crystal Growth 382 (2013) 36.
252. Saunier, P.: IEEE Trans. Electron Dev. 60 (2013) 6589143.
253. Nsele, S.D.: 2013 22nd ICNF. (2013) 6578989.
#    254. Xie, S.: Trans. Tianjin Univ. 19 (2013) 43.
#    255. Liu, B.: J. Semicond. 34 (2013) 044006.
256. Kyaw, L.M.: ECS Trans. 53 (2013) 75.
257. Bera, M.K.: ECS Trans. 53 (2013) 65.
258. Zhou, Q.: IEEE Proc. Inter. Symp. Power Semicond. Devices & ICs (2013) 195.
259. Benyahya, N.Optical Quantum Electr. 46 (2014) 209.
260. Zhou, Q.: Solid-State Electr. 91 (2014) 19.
261. Tulek, R.: Thin Solid Films 551  (2014) 146.
262. Kriouche, N.: J. Crystal Growth 390 (2014) 51.
263. Li, G.: Applied Phys. Lett. 104 (2014) 193506.
264. Liu, Y.: J. Vacuum Sci Technol. B 32 (2014) 032201.
265. Lachab, M.: J. Phys. D 47 (2014) 135108.
266. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
267. Watanabe, A.: Applied Phys. Express  7 (2014) 041002.
268. Yu, Y.-X.: Chinese Phys. B 23 (2014) 047201.
269. Hao, Y.: Chinese Sci Bull. 59 (2014) 1228.
270. Kaun, S.: Semicond. Sci Technol.  29 (2014) 045011.
271. Lu, J.: Applied Phys. Lett. 104 (2014) 092107.
272. Ganguly, S.: Applied Phys. Express 7 (2014) 034102.
273. Zhang P.: Chinese Phys. Lett. 31 (2014) 037302.
274. Ding, K.: IEEE Electron Device Lett. 35 (2014) 333.
275. Lugani, L.: J. Applied Phys. 115 (2014) 074506.
276. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
277. Nakamura, A.: Phys. Chem. Chemical Phys. 16 (2014) 15326.
278. Chyi, J. -I.: ECS Trans. 61 (2014) 3.
279. Bera, M. K.: ECS Trans. 61 (2014) 271.
280. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
281. Matulionis, A.: Proc. SPIE 8986 (2014) 89861D.
282. Matulionis, A.: Lithuanian J. Phys. 54 (2014) 1.
283. Tripathy, S.: ECS J. Solid State Sci Technol. 3 (2014) Q84.
284. Fang, Y.: IEEE Trans. Electron Dev. 61 (2014) 4084.
285. Wang C.: Chinese Phys. Lett. 31 (2014) 128501.
286. Tang, C.: Semicond. Sci Technol.  29 (2014) 125004.
287. Adak, S.: Superlatt. Microstr. 75 (2014) 347.
288. Zhao, Y.: Japan. J. Applied Phys. 53 (2014) 110314.
289. Sultana, M.: Semicond. Sci Technol.  29 (2014) 115031.
290. Arulkumaran, S.: IEEE Electron Device Lett. 35 (2014) 992.
291. Kachi, T.: Japan. J. Applied Phys. 53 (2014) 100210.
        292. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
293. Joshin, K.: IEICE Trans. Electron. E97C (2014) 923.
294. Lugani, L.: Applied Phys. Lett. 105 (2014) 112101.
295. Lesnik, A.: J. Phys. D 47 (2014) 355106.
296. Rossetto, I.: Microelectron. Reliab. 54 (2014) SI2248.
297. Ilgaz, A.: J. Optoelectr. Adv. Mater. 16 (2014) 1008.
298. Jeganathan, K.: AIP Adv. 4 (2014) 097113.
299. Sakalas, P.: Semicond. Sci Technol.  29 (2014) 095014.
300. Zhou, Y.: Semicond. Sci Technol.  29 (2014) 095011.
301. Chen, H.: J. Applied Phys. 116 (2014) 074510.
302. Owen, M.H.S.: Applied Phys. Lett. 105 (2014) 031602.
303. Zhao, S.L.: Applied Phys. Express 7 (2014) 071002.
304. Kriouche, N.: J. Crystal Growth 390 (2014) 51.
305. Schulz, O.: Physica Status Solidi C 11 (2014) 397.
306. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
307. Zhou, J.: IEEE Conf. on Electron Devices and Solid-State Circuits 2014.
308. Wu, Y.-H.: Mater. Res. Express 1 (2014)  015904.
#      309. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
#      310. Dong, X.: Gongneng Cailiao/J. Functional Mater. 45 (2014) S104.
#      311. Lenka, T.R.: IEEE 9th Nanotechnol. Mater. Devices Conf. – NMDC 2014. 6997438, p. 124.
312. AbinGeorge.: Inter. Conf. Electron. Comm. Systems – ICECS 2014. Art. no. 6892781.
#       313. Vescan, A.: ASDAM 2014. 6998656, p. 101.
#       314. Bo, L.: J. Semicond. 35 (2014) 113005.
315. Qi, M.: Applied Phys. Lett. 106 (2015) 041906.
316. Pillai, R.: J.Vacuum Sci Technol. B 33 (2015) 011205.
317. Saidi, I.: Superlatt. Microstr. 84 (2015) 113.
318. Hardy, M.T.: J. Crystal Growth 425 (2015) 119.
319. Liu, Y.: Superlatt. Microstr. 83 (2015) 353.
320. Zhao, Y.: Solid-State Electr. 109 (2015) 075005.
321. Zhou, X.: Solid-State Electr. 109 (2015) 90.
322. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
323. Py, M. A.: J. Applied Phys. 117 (2015) 185701.
324. Ren, J.: J. Applied Phys. 117 (2015) 154503.
325. Wu, F.: J. Applied Phys. 117 (2015) 155701.
326. Zhang, Y.: Applied Phys. Lett. 106 (2015) 152101.
327. Arulkumaran, S.: Japan. J. Applied Phys. 54 (2015) SI04DF12.
328. Kajitani, R.: Japan. J. Applied Phys. 54 (2015) SI04DF09.
329. Pandey, D.: Semiconductors 49 (2015) 513.
330. Downey, B. P.: Solid-State Electr. 106 (2015) 12.
331. Martin-Horcajo, S.: Semicond. Sci Technol.  30 (2015) 035015.
332. Sermuksnis, E.: Semicond. Sci Technol.  30 (2015) 035003.
333. Chowdhury, S.: Applied Phys. Lett. 106 (2015) 082111.
334. Amirabbasi, M.: Chinese J. Phys. 53 (2015) 020802.
335. Miyoshi, M.: Applied Phys. Express 8 (2015) 021001.
336. Zhao Y.: Chinese Phys. B 24 (2015) 017302.
337. Hennig, J.: AIP Adv. 5 (2015) 077146.
338. Huang, W.-C.: Japan. J. Applied Phys. 54 (2015) 071001.
339. Suemitsu, T.: IEICE Electron. Express 12 (2015) 20152005.
340. Petitdidier, S.: Microelectron. Reliab. 55 (2015) 1719.
341. Sang, L.: Applied Phys. Lett. 107 (2015) 052102.
342. Hardy, M. T.: J. Crystal Growth 425 (2015) 119.
343. Kyaw, L.M.: J.Vacuum Sci Technol. B 33 (2015) 051203.
344. Singh, S.P.: J. Phys. D 48 (2015) 365104.
345. Bergsten, J.: Semicond. Sci Technol. 30 (2015) 105034.
346. Ardaravicius, L.: Semicond. Sci Technol.  30 (2015) 105016.
347. Rossetto, I.: Solid-State Electr. 113 (2015) 15.
348. Chowdhury, S.: J. Electron. Mater. 44 (2015) 4144.
349. Luo, J.: Chinese Phys. B 24 (2015) 117305.
350. Guen-Bouazza, A.: Optoelectron. Adv. Mater.-Rapid Comm. 9 (2015) 508.
351. Yan, J.-D.: Chinese Phys. Lett. 32 (2015) 127301.
352. Pardeshi, H.: Superlatt. Microstr. 88 (2015) 508.
353. Qi, M.: Applied Phys. Lett. 107 (2015) 232101.
354. Watanabe, A.: J. Applied Phys. 118 (2015) 235705.
355. Gladysiewicz, M.: Applied Phys. Lett. 107 (2015) 262107.
356. Martin, K.N.: IEEE Radar Conf. 2015. P. 248.
357. Then, H.W.: IEEE IEDM 2015.
358. Berthet, F.: IEEE RADECS 2015.
359. Amarnath, G.: IEEE ICCCI 2015.
360. Adak, S.: IEEE ICCUBEA 2015. P. 902.
361. Makiyama, K.: IEEE IEDM 2015.
#      362. Kayis, C.: CS MANTECH 2015. P. 333.
#      363. Ichikawa, H.: SEI Technical Rev. Iss. 81 (2015) 36.
*      364. Priesol, J.: ADEPT 2015. P. 53.
365. Goyal, N.: IEEE Trans. Electron Dev. 63 (2016) 881.
366. Arulkumaran, S.: Devices Circuits and Systems   Volume: 47 (2016) 63.
367. Amirabbasi, M.: J. Experimen. Theoret. Phys. 122 (2016) 159.
368. Ren, J.: Microelectr. Reliab. 56 (2016) 34.
369. Hwang, J.H.: Phys. Status Solidi A 213 (2016) 889.
370. Jiao, W.: AIP Adv. 6 (2016) 035211.
371. Hardy, M.T.: J. Vacuum Sci Technol. A 34 (2016) 021512.
372. Yamada, A.: Japan. J. Applied Phys. 55 (2016) SI05FK03.
373. Fiala, D.: Current Sci (2016) 1524.
374. Kotani, J.: Applied Phys. Lett. 108 (2016) 152109.
375. Kotani, J.: Phys. Status Solidi A 213 (2016) 883.
376. Ren, J.: Microelectr. Reliab. 61 (2016) 82.
377. Wang, Y.: Phys. Status Solidi A 213 (2016) 1252.
378. Chiu, H.-C.: Japan. J. Applied Phys. 55 (2016) 056502.
379. Chang, J.: Sci Rep. 6 (2016) 29571.
380. Corekci, S.: J. Electron. Mater. 45 (2016) 3278.
381. Khan, M.A.: Adv. Mater. Interfaces 3 (2016) 1500713.
382. Adak, S.: Proc. Inter. Conf. on Devices, Circuits and Systems 2016. P. 89.
383. Lv, Y.: SSLChina – IFWS 2016. P. 107.
384. Makiyama, K.: IEEE Compound Semicond. Integrated Circuit Symp.   Technical Digest 2016. P. 213.
385. Han, T.: J. Semicond. 37 (2016) 024007.
386. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
387. Dogmus, E.: Electronics 5 (2016) 31.
388. Ren, J.: Microelectron. Reliab. 61 (2016) 82.
389. Tangi, M.: J. Applied Phys. 120 (2016) 045701.
390.  Lv, Y.: Electron. Lett. 52 (2016) 1340.
391. Jiao, W.: Applied Phys. Lett. 109 (2016) 082103.
392. Xiang, Y.: J. Phys. D 49 (2016) 305103.
393. Swain, S.K.: Superlatt. Microstr. 97 (2016) 258.
394. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
395. Liu, G.: Physica E 83 (2016) 207.
396. Tsatsulnikov, A. F.: Semiconductors 50 (2016) 1383.
397. Xu, Z. Y.: J. Crystal Growth 450 (2016) 160.
398. Ahn, S.: J. Vacuum Sci Technol. B 34 (2016) 051202.
399. Miyoshi, M.: J. Vacuum Sci Technol. B 34 (2016) 050602.
400. Guo, L.: Sci Rep. 6 (2016) 37415.
401. Itoh, T.: Applied Phys. Lett. 109 (2016) 142104.
402. Lv Y.-J.: J. Infrared Millim. Waves 35 (2016) 534-+.
403. Quan, R.-D.: Chinese Phys. Lett. 33 (2016) 108104.
404. Lv, Y.-J.: J. Infrared Millim. Waves 35 (2016) 641.
405. Adak, S.: Superlatt. Microstr. 100 (2016) 306.
406. Zuniga-Perez, J.: Applied Phys. Rev. 3 (2016) 041303.
407. Matys, M.: J. Applied Phys. 120 (2016) 225305.
408. Usov, S.O.: J. Phys.: Conf. Ser. 741 (2016) 012164.
409. Hardy, M.T.: J. Visualized Experim. 117 (2016) e54775.
410. Ishida, H.: IEEE IEDM (2016)  UNSP 20.4.
411. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
#      412. Wong, H.Y.: WiPDA 2015. Art. No. 7369266, p. 24.
#      413. Makiyama, K.: Proc. 25th LEC 2016. Art. No. 7578927, p. 31.
#      414. Nagy, L.: ICETA 2015. IEEE 2016. Art. No. 7558501.
#      415. Makiyama, K.: IEDM 2016. Art. No. 7409659, p. 9.1.1.
#      416. Then, H.W.: Technical Digest – IEDM 2016. Art. No. 7409710, p. 16.3.1.
417. Berthet, F.: Solid-State Electr. 127 (2017) 13.
418. Sohi, P.: Semicond. Sci Technol. 32 (2017) 075010.
419. Duggen, L.: Semicond. Sci Technol. 32 (2017) 064001.
420. Zhang, C.: Superlatt. Microstr. 106 (2017) 170.
421. Zhang, J.: Applied Phys. Lett. 110 (2017) 172101.
422. Hardy, M.T.: Applied Phys. Lett. 110 (2017) 162104.
423. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.
424. Ben Ammar, H.: Phys. Status Solidi A 214 (2017) 1600441.
425. Kukushkin, S.A.: Semiconductors 51 (2017) 396.
426. Yin J.-Y.: J. Infrared Millim. Waves 36 (2017) 6-+.
427. Yamada, A.: Phys. Status Solidi B 254 (2017) 1600496.
428. Keller, S.: Power Electron. Power Systems (2017) 27.
429. Mishra, U.K.: Power Electron. Power Systems (2017) 69.
430. Adak, S.: NANO 12 (20117)1750009.
431. Murugapandiyan, P.: Superlatt. Microstr. 109 (2017) 725.
432. Chou, L.-I.:IEEE Compound Semicond. Integr. Circuit Symp. Techn. Digest 2017.
433. Chander, S.: ICIEEIMT 2017. P. 293.
434. Ozaki, S.: Applied Phys. Express 10 (2017) 061001.
435. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
436. Floros, K.: Phys. Status Solidi A 214 (2017) 1600835.
437. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
438. Chapin, C.A.: Sensors Actuators A 263 (2017) 216.
439. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
440. Foronda, H.M.: J. Crystal Growth 475 (2017) 127.
441. Vallabhaneni, A.K.: J. Heat Transfer-Trans. ASME 139 (2017) 102701.
442. Kumar, S.: Solid-State Electr. 137 (2017) 117.
443. Chvala, A.: Microelectron. Reliab. 78 (2017) 148.
444. Latrach, S.: Current Applied Phys. 17 (2017) 1601.
445. Ben Ammar, H.: J. Microscopy 268 (2017) SI269.
#      446. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
#      447. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
#      448. Ishida, H.: Technical Digest (2017) Art. no. 7838460.
#      449. Lv, Y.: IFWS 2017. Art. no. 7803769, P. 107.
#      450. Lu, J.: MRS Adv. 2 (2017) 329.
#      451. Khanna, V.K.: Extreme-Temp. and Harsh-Environment Electron.: Phys., Technol.Appl. IOP Publ. 2017. ISBN: 978-075031155-7.
452. Yamada, A.: Japan. J. Applied Phys. 57 (2018) S01AD01.
453. Xing, W.: IEEE Electron Device Lett. 39 (2018) 75.
454. Wang, W.: IEEE J. Electron Dev. Soc 6 (2018) 360.
455. Ruterana, P.: Mechanics Mater. Sci (2018) 842.
456. Fu, X.-C.: J. Infrared Millimet. Waves 37 (2018) 15.
457. Wang, L.: Phys. Rev. Applied 9 (2018) 024006.
458. Hosomi, D.: Japan. J. Applied Phys. 57 (2018) SI04FG12.
459. Mohamad, R.: Phys. Status Solidi B 255 (2018) 1700394.
460. Sohi, P.: Applied Phys. Lett. 112 (2018) 262101.
461. Chang, C.-W.: Sensors Actuators B 267 (2018) 191.
462. Sakharov, A.V.: Semiconductors 52 (2018) 1843.
463. Bourlier, Y.: ECS J. Solid State Sci Technol. 7 (2018) P329.
464. Pradeep, S.: Superlatt. Microstruct. 120 (2018) 40.
465. Meziani, A.: Phase Trans. 91 (2018) 1232.
466. Chiu, H.-C.: ECS J. Solid State Sci Technol. 7 (2018) Q185.
467. Tsukui, M.: J. Crystal Growth 509 (2019) 103.
468. Mrad, M.: J. Crystal Growth 507 (2019) 139.
#        469. Arulkumaran, S.: In Gallium Nitride (GaN): Physics, Devices, and Technology. CRC Press 2017, ISBN 978-1-138-89335-1, pp. 63-107.
470. Chavan, N.: J. Active Passive Electron. Dev. 14 (2019) 201.
471. Jaiswal, D.: J. Active Passive Electron. Dev. 14 (2019) 215.
472. Satterthwaite, P.F.: Inter. Reliab. Phys. Symp. 2019.
473. Chvala, A.: Proc. ASME 2019, Art. No. V001T04A003.
474. Adak, S.: Nano 14 (2019) 1950060.
475. Petitdidier, S.: IEEE Trans. Nuclear Sci 66 (2019) 810.
476. Khan, A. B.: J. Nanoelectron. Optoelectron. 14 (2019) 699.
477. Kumar, S.: IEEE Trans. Electron Dev. 66 (2019) 1230.
478. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
479. Doundoulakis, G.: Solid-State Electr. 158 (2019) 1.
480. Biswas, D.: J. Applied Phys. 125 (2019) 225707.
481. Huang, Y.-P.: IEEE Electron Device Lett. 40 (2019) 929.
482. Xie, X. J.: Physica B 562 (2019) 112.
483. Sha, W.: J. Phys. D 52 (2019) 213003.
484. Saidi, I.: J. Applied Phys. 125 (2019) 185702.
*        485. Dobročka, E.: Mater. Struct. 26 (2019) 148.
486. Zhou, X.: IEEE Inter. Conf. Electron Dev. Solid-State Circuits 2019.
487. Cao, Y.: Semicond. Semimet. 102 (2019) 41.
488. Gulseren, Melisa E.: Proc. SPIE 10918 (2019) 109181A.
489. Cha, S.: IEEE Trans. Electron Dev. 66 (2019) 3740.
490. Gu, Y.: Electronics 8 (2019) 885.
491. Zhou, Y.: Applied Phys. A 125 (2019) 881.
492. Saidi, I.: J. Applied Phys. 126 (2019) 135704.
493. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
494. Brudnyi, V.N.: Semiconductors 53 (2019) 1724.
495. Vega, N.A.: IEEE Trans. Nuclear Sci 66 (2019) 2417.
#        496. Charles, M.: In High mobility materials for CMOS appl. Woodhead Publ. 2018. ISBN 978-0-0810206-16, pp 115-158.
#        497. Potier, C.: INMMIC 2018, no. 8430000.
#       498. Siddham, P.: Springer Proc. in Phys. 215 (2019) 255.
#       499. Adak, S.: DevIC 2019, 8783383, pp. 156-160.
500. Chvala, A.: DTIS 2019, no. 8735087.
501. Chvala, A.: J. Electron. Packag. 141 (2019) SI031007.
502. Chvala, A.: Proc. ASME 2019, pp. V001T04A003.
503. Mrad, M.: J. Crystal Growth 507 (2019) 139.
504. Potier, C.: Proc. EuMC 2019, pp. 824-827. ‏
505. Potier, C.: Proc. EuMC 2019, pp. 270-273.
506. Velpula, R.T.: Optical Mater. Express 10 (2020) 472.
507. Mohamad, R.: Computat. Mater. Sci 172 (2020) 109384.
508. Liu, Y.-C.: IEEE Trans. Indust. Electron. 67 (2020) 1580.
509. Borovac, D.: J. Applied Phys. 127 (2020) 015103.
510. Afonin, A.G.: Russian Phys. J. 62 (2020) 1656.
511. Bhuiyan, A.G.: AIP Adv. 10 (2020) 015053.
512. Beloufa, A.: J. Electr. Mater.‏ 49 (2020) 2008.
513. Sun, C.: Ultrason. 108 (2020) 106202.
514. Sun, C.: IEEE Trans. Electron Dev. 67 (2020) 3355.
515. Kao, M.-L.: Applied Phys. Express 13 (2020) 065501.
516. Reddy, P.: Semicond. Sci Technol. 35 (2020) 055007.
517. Minoura, Y.: Japan. J. Applied Phys. 59 (2020) SGGD03.
518. Ozaki, S.: Semicond. Sci Technol. 35 (2020) 035027.
519. Borovac, D.: J. Crystal Growth 533 (2020) 125469.
520. Bourlier, Y.: Surface Interface Anal.‏ 52 (2020) SI914.
521. Lee, C.-S.: ECS J. Solid State Sci Technol.‏ 9 (2020) 105002.
522. Gao, K.H.: Physica B 595 (2020) 412370.
523. Mohamed, A.: J. Phys. D 53 (2020) 365102.
#  524. Jin, N.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 40 (2020) 300.
#   525. Zhu, S.: ICEPT 2020, no. 9202430.
#   526. Dubey, S.K.:  Lecture Notes in Electr. Engn.  664 (2020) 449.
527. Kalita, S.: Optic. Quantum Electr. 53 (2021) 98.
528. Mohamad, R.: J. Phys. D 54 (2021) 015305.
529. Oda, O.: Phys. Status Solidi A‏ 218 (2021) ‏ SI2000462.

Amimer, K., Georgakilas, A., Androulidaki, M., Tsagaraki, K., Pavelescu, M., Mikroulis, S., Constantinidis, G., Arbiol, J., Peiro, F., Cornet, A., Calamiotou, M., Kuzmík, J., Davydov, V., : Study of the correlation between GaN material properties and the growth conditions of radio frequency plasma-assisted molecular beam epitaxy. Materials Sci & Engn. B 80 (2001) 304-308.

1. Jeon, H.C.: Current Applied Phys. 3 (2003) 385.
2. Jeon, H.C.: J. Korean Phys. Soc 64 (2014) 1128.

Lalinský, T., Škriniarová, J., Kuzmík, J., Hasenöhrl, S., Fox, A., Tomáška, M., Mozolová, Ž., Kordoš, P., Kovačik, T., Haščík, Š., : Technology and performance of 150 nm gate length InGaP/InGaAs/GaAs pHEMTs. Vacuum 61 (2001) 323-327.

1. Li, A.Z.: J. Crystal Growth 251 (2003) 816.
2. Mil’shtein, S.: Microelectr. J. 40 (2009) 554.

Lalinský, T., Burian, E., Držík, M., Haščík, Š., Mozolová, Ž., Kuzmík, J., Hatzopoulos, Z., : Performance of GaAs micromachined microactuator. Sensors Actuators A 85 (2000) 365-370.

1. Husak, M.: 9th IEEE Int. Conf. on Electronics, Circuits and Systems – ICECS. Dubrovník 2002. ISBN 0-7803-7597-1. P. 227.
*     2. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
3. Vopilkin, E.A.: J. Micromech. Microengn. 18 (2008) 095006.
*     4. Dhamarasu, N.: In: Comprehensive Microsystems. Elsevier: 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.

Lalinský, T., Burian, E., Držík, M., Haščík, Š., Mozolová, Ž., and Kuzmík, J.: Thermal actuation of a GaAs cantilever beam, J. Micromechanics Microengn. 10 (2000) 293-298.

*     1. Husak, M.: ASDAM ’02. Piscataway: IEEE 2002. P. 75.
2. Gaspar, J. J. Non-Crystalline Solids 299 (2002) 1224.
#    3. Husak, M.: IMAPS’2002. Denver, 2002. P. 749.
4. Chu, V.: Mater. Res. Soc. Symp. – Proc. 715 (2002)  745.
5. Gaspar, J. J.: J. Applied Phys. 93 (2003) 10018.
*     6. Davis, Z.J.: PhD. Thesis. Lyngby: TU Denmark 2003.
7. Enikov, E.T.: J. Microelectromech. Systems 14 (2005) 788.
*     8. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
9. Ramos, D.: Sensors 7 (2007) 1757.
10. Vopilkin, EA.: J. Micromech. Microengn. 18 (2008) 095006.
#   11. Kramkowska, M.: Materials Sci – Poland 26 (2008) 173.
*   12. Dhamarasu, N.: In: Comprehensive Microsystems. Eds.Y. Gianchandani et al. Elsevier 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.
*    13. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.
14. Du, K.: Advanced Materials Res. 97-101 (2010) 4225.
15. Toda, M.: Rev. Sci Instrum. 81 (2010) 055104.
16. Ma, H.Y.: J. Micromech. Microengn. 20 (2010) 055036.
#    17. Wu, Y.B.: Microelectron. Engn. 87 (2010) 2035.
#    18. Voiculescu, I.: Nanocantilever Beams: Modeling, Fabrication and Applications. Pan Stanford Publ. Pte. 2016. ISBN: 978-981461324-8. P. 411.
19. Wang, X.: Sci Rep. 7 (2017) 4602.
20. Brown, K.A.: ACS Nano 13 (2019) 8.

Matsumoto, K., Chen, Y., Kuzmík, J., Nishino, S., : 6H-SiC Schottky diode edge terminated using amorphous SiC by sputterning method, Mater. Sci Forum 264-268 (1998) 925. (Not IEE SAS).

1. Harrell, W.R.: J. Electronic Mater. 31 (2002) 1090.
2. Zhang, J. J.: J. Vacuum Sci Technol. B 21 (2003) 872.
3. Ciechonski, R.R.: Mater. Sci Forum 483 (2005) 425.
4. Porro, S.: Phys. Status Solidi A 202 (2005) 2508-2514.

Constantinidis, G., Kuzmík, J., Michelakis, K., Tsagaraki, K., : Schottky contacts on CF4/H2 Reactive ion etched -SiC Solid State Electron. 42 (1998) 253.

1. Monch, W.: J. Vacuum Sci Technol. B 17 (1999) 1867.
2. Morrison, D.J.: Materials Sci Forum 338-342 (2000) 1199.
3. Morrison, D.J.: Semicond. Sci Technol. 15 (2000) 1107.

Pogany, D., Lalinský, T., Kuzmík, J., Mozolová, Ž., : Study of thermall effects in GaAs micromachined power sensor microsystem by an optical interferometer technique Microelectron. J. 29 (1998) 191.

*   1. Ribas, R.P.: These de Doctorat INPG. Grenoble: TIMA Lab. 1998. ISBN: 2-913329-10-1. P. 90.
2. Thalhammer, R.: J. Optical Soc America A 20 (2003) 707.
3. Thalhammer, R.K.: IEEE Trans. Computer 23 (2004) 60.
4. Thalhammer, R.K.: J. Applied Phys. 97 (2005) 023102.
5. Thalhammer, R.K.: Advances Imaging Electron Phys. 135 (2005) 225.
6. El Rafei, A.: IEEE Electron Device Lett. 31 (2010) 939.

Constantinidis, G., Kuzmík, J., Michelakis, K., : Schottky contact investigation on reactive ion etched 6H -SiC Diamond Related Mater. 6 (1997) 1459.

1. Kim, B.S.: Mater. Sci Forum 389-393 (2002) 953.
2. Kwietniewski, N.: Applied Surface Sci 254 (2008) 8106.

Haščík, Š., Lalinský, T., Kuzmík, J., Porges, M., Mozolová, Ž., : Fabrication of thin GaAs cantilever beams for power sensor microsystem by RIE Vacuum 47 (1996) 1215-1217.

*    1. Jakovenko, J.: MME 2001. Cork 2001. P. 225.
2. Oesterschulze, E.: Adv. Image Elect. Phys. 118 (2001) 129.
#    3. Jakovenko, J.: WSEAS Trans Electr. 2 (2005) 85.
4. Hu, J.: ISTM/2007: 7th Inter. Symp. Test Measurement. Conf. Proc. 2007. P. 5014.
5. Xue, C.Y.: 2008 3rd IEEE Inter. Conf. Nano/Micro Engn. Molecular Systems 2008. P. 586.
#    6. Tian, T.: Chinese J. Sensors Actuators 21 (2008) 611.
*    7. Husak, M.: Mikrosenzory a mikroaktuátory. Praha: Academia 2008. 544 s.
8. Lee, J.W: Thin Solid Films 518 (2010) 6488.
#   9. Wang, D.-B.: Guangxue Jingmi Gongcheng/Optics Precision Engn. 19 (2011) 110.

Lalinský, T., Kuzmík, J., Porges, M., Haščík, Š., Mozolová, Ž., Grno, L., : Monolithic GaAs MESFET power sensor microsystem Electron. Lett. 31 (1995) 1914.

*    1. Sugiyama, Y.: Sensors. In: Properties of Gallium Arsenide. IEE, INSPEC 1996. Chapt. 22.1.
*    2. Jakovenko, J.: MME 2001. Cork 2001. P. 225.
3. Dehe, A.: IEEE MTT-S Inter. Microwave Symp. Digest (2002) 1829.
4. Pantazis, A. J.: Micromech. Microengn. 15 (2005) S53.
#    5. Jakovenko, J.: WSEAS Trans Electr. 2 (2005) 85.
#    6. Jakovenko, J.: WSEAS Trans Electr. 3 (2006) 156.
7. Hu, J.: Sensor Lett. 6 (2008) 193.
*    8. Dhamarasu, N.: In: Comprehensive Microsystems. Elsevier 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.
*    9. Husak, M.: Mikrosenzory a mikroaktuátory. Praha: Academia 2008. 544 s.
10. Wang, D.B.: J. Micromech. Microengn. 19 (2009) 125012.
11. Li, Q.Z.: Chinese Phys. B 19 (2010) 047310.
12. Tan, Z.X.: Chinese Phys. Lett. 27 (2010) 088505.
13. Xue, C.Y.: IEEE Sensors J. 11 (2011) 384.
14. Wang, D.B.: Electron. Lett. 47 (2011) 41.
15. Wang, D.-B.: Electronics Lett. 47 (2011) 875.
16. Wang, D.B.: Electron. Lett. 48 (2012) 102-U1207.

Kuzmík, J., Georgakilas, A., : Study of Schottky contact formation on CH4/H2 reactive-ion-etched InAlAs Semicond. Sci Technol. 9 (1994) 1226.

1. Takahashi, N.: J. Electron Mater. 25 (1996) 633.
2. Pilkington, S.J.: J. Applied Phys. 83  (1998) 5282.
3. Chuang, H.F.: J. Applied Phys. 83  (1998) 366.

Kuzmík, J., Lalinský, T., Seidel, P., : Coimplantation of Mg and Si in GaAs MESFETs Solid State Electr. 36 (1993) 427.

1. Dutt, M.B.: Solid-State Electr. 42 (1998) 1905.
2. Liu CH.: J. Mater. Sci 15 (2004) 91.

Kuzmík, J., Michelakis, K., Konstantinidis, G., Papanicolaou, N., : Reactive ion etching of beta-SiC in CCl2F2/O2 Electron. Lett. 29 (1993) 18.

1. Alok, D.: J. Electronic Mater. 24 (1995) 311.
2. Dartnell, N.J.: Vacuum 46 (1995) 349.
3. Fissel, A.: Phys. Reports 379 (2003) 149.

Lalinský, T., Kuzmík, J., Gregušová, D., Mozolová, Ž., Breza, J., Feciško, M., Seidel, P., : Properties of WN x/GaAs Schottky contacts prepared by ion implantation of nitrogen J. Materials Sci 3 (1992) 157.

1. Chiu, H.T.: J. Mater. Res. 8 (1993) 1353.
2. Floyd, L.P.: Solid State Electr. 37 (1994) 1579.
3. Kim, J.D.: Inter. J. Electr. 81 (1996) 285.
*   4. Venger, E.F.: Mežfaznyje vzaimodeistvija i mechanizmy degradacii v strukturach metall-InP i metall-GaAs. Kyjev: Nac. Akad. Nauk Ukrajiny 1999.

Kuzmík, J., Lalinský, T., Mozolová, Ž., Porges, M., : DC performance of short ion-implanted GaAsMESFETs, the role of gate length shortening Solid-State Electr. 33 (1990) 1223.

*     1. Moini, A.R.: On the Scaling of VLSI Devices and Circuits. Centre GaAs VLSI, Univ. of Adelaide 1992.
2. Grno, L.:  IEEE Trans. Instrum.  Measurements 44 (1995) 377.
3. Majumdar, L.: Applied Surface Sci 119 (1997) 369.
4. Chattopadhyay, P.: Semicond Sci Technol. 13 (1998) 226.
5. Jessen, G.: IEEE Trans. Electron Dev. 54 (2007) 2589.

Šafránková, J., Lalinský, T., Kuzmík, J., Mozolová, Ž., Porges, M., Gregušová, D., : Preparation and properties of GaAs double-Schottky-interdigitated photodetectors, Crystal Propert. Preparation 19-20 (1989) 315.

     1. Riesz, F.: Proc. SPIE WA 92 (1992).

Lalinský, T., Kuzmík, J., Porges, M., Mozolová, Ž., Gregušová, D., : Technology and characterization of a submicrometer GaAs length GaAs MESFETs, Crystal Propert. Preparation 19-20 (1989) 259.

*    1. Wronka, A.: Proc. Conf. on Surface Sci. Phys. Lodz: Inst. Phys. Univ. Lodz 1989.

Lalinský, T., Chromik, Š., Porges, M., Gregušová, D., Kuzmík, J., Breza, J., : Problémy technológie, elektrickej charakterizácie a spoľahlivosti ohmických kontaktov na GaAs, Elektrotechn. časopis 37 (1986) 354.

       1. Murakami, M.: Sci Technol. Advanced Materials 3 (2002) 1.