Ing. Lobotka Peter, CSc.

Rýger, I., Lobotka, P., Steiger, A., Chromik, Š., Lalinský, T., Raida, Z., Pítra, K., Zehetner, J., Španková, M., Gaži, Š., Sojková, M., and Vanko, G.: Uncooled antenna-coupled microbolometer for detection of terahertz radiation, J. Infrared, Millimet., Terahertz Waves 42 (2021) 462–478.

1. Yu, X.: Applied Surface Sci 570 (2021) 151221.
2. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
3. Vera-Reveles, G.: Electronics 11 (2022) 1665.
4. Aji, A.P.: Sensors 22 (2022) 5107.

Cigáň, A., Lobotka, P., Dvurečenskij, A., Škrátek, M., Radnóczi, G., Majerová, M., Czigány, Z., Maňka, J., Vávra, I., and Mičušík, M.: Characterization and magnetic properties of nickel and nickel-iron nanoparticle colloidal suspensions in imidazolium-based ionic liquids prepared by magnetron sputtering,  J. Alloys Compounds 768 (2018) 625-634.

1. Solano, R.: Environment. Sci Pollut. Res. 28 (2021) 16962.
2. Sergievskaya, A.: Beilstein J. Nanotechnol. 13 (2022) 10.

Lalinský, T., Dzuba, J., Vanko, G., Kutiš, V., Paulech, J., Gálik, G., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0.33MnO3 microbolometer made on circular SOI membrane, Sensors Actuators A 265 (2017) 321–328.

1. Yan, F.: Thin Solid Films 698 (2020) 137872.

Lalinský, T., Vanko, G., Dzuba, J., Kutiš, V., Gálik, G., Paulech, J., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0,33MnO3 microbolometer made on circular SOI membrane, Procedia  Engn. 168 (2016) 733-736.

1. Kim, CH.: Trans. Electr. Electron. Mater. 23 (2022) 19.

Lobotka, P. and Kunzo, P.: Carbon nanoparticles/polymer composites for sensing. In: Handbook of Polymer Nanocomposites. Processing, Performance and Application. Vol. B: Carbon Nanotube Based Polymer Composites. Eds: K.K.Kar, J.K.Pandey, S.Rana. Berlin:  Springer-Verlag 2015. ISBN: 978-3-642-45228-4. P. 577-601.

1. Rivera, M.: Materials 10 (2017) 986.
2. Yusoff, M.M.: Measurement 149 (2020) UNSP 106982.

Kunzo, P., Lobotka, P., and Kováčová, E.: Modification of polyaniline-based gas sensor by electrophoretic deposition of metal nanoparticles in ionic liquids, Key Engn. Mater. 654 (2015) 224-229.

1. Pandey, S.: J. Sci-Adv. Mater. Dev. 1 (2016) 431.

Bertók, T., Šedivá, A., Filip, J., Ilčíková, M., Kasak, P., Velič, D., Jane, E., Mravcová, M., Rovenský, J., Kunzo, P., Lobotka, P., Šmatko, V., Vikartovská, A., and Tkáč, J.: Carboxybetaine modified interface for electrochemical glycoprofiling of antibodies isolated from human serum. Langmuir 31 (2015) 7148-7157.

 1. Sun, M.: Electroch. Acta 190 (2016) 186.
2. Bhattarai, J. K.: J. Electroanalytical Chem. 780  (2016) 311.
3. Akiba, U.: Sensors 16  (2016) 2045.
4. Zhang, X.: Archivum Immun. Therapiae Experiment. 65  (2017) 111.
5. Cui, M.: Sensors Actuators B 244 (2017) 742.
6. Rodovalho, V.R.: Biosensors & Bioelectron. 100 (2018) 577.
7. Farzin, L.: J. Pharmaceut. Biomed. Anal. 147 (2018) SI 185.
8. Gao, Y.: Analyt. Biochem. 597 (2020) 113686.
9. Lorencova, L.: In Glyconanotechnol.: Nanoscale Approach for Novel Glycan Analysis and their Medical Use (2020) 109.

Misják, F., Nagy, K., Lobotka, P., and Radnóczi, G.: Electron scattering mechanisms in Cu-Mn films for interconnect applications. J. Applied Phys. 116 (2014) 083507.

 1. Cao, F.: Vacuum 122 (2015) 122.
2. Wang, Y.: Vacuum 126 (2016) 51.
3. Fang, J. S.: Applied Surface Sci 364 (2016) 358.
4. Miao, T.: RSC Adv. 8 (2018) 20679.
5. Karalis, D.G.: Engn. Failure Anal. 94 (2018) 69.
6. Furgeaud, C.: Acta Materialia 159 (2018) 286.
7. Lee, H.-Y.: Coatings 9 (2019) 118.
8. Lee, H.-Y.: Adv. Mater. Sci Engn. 2019 (2019) 6578350.
9. Dong, Z.: Scripta Mater.‏ 187 (2020) 296.
10. Yoo, E.: Mater. Character. 166 (2020) 110451.
11. Wang, Y.-P.: ACS Applied Electron. Mater. 2 (2020) 1653.
12. Sun, H.: Nanotechnol. Rev. 9 (2020) 990.
13. Malekzadeh, M.: Chem. Soc Rev. 50 (2021) 7132.
14. Hajagos-Nagy, K.: Periodica Polytechnica-Mechan. Engn. 65 (2021) 252.
15. Moon, J.H.: J. Mater. Sci Technol. 105 (2022) 17.
16. Scott, E.A.: Nanotechnol. 33 (2022) 375503.
17. Ribeiro, P.R.T.: J. Magnet. Magnet. Mater. 541 (2022) 168537.

Chromik, Š., Štrbik, V., Dobročka, E., Roch, T., Rosová, A., Španková, M., Lalinský, T., Vanko, G., Lobotka, P., Ralbovský, M., and Choleva, P.: LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers, Applied Surface Sci 312 (2014) 30-33.

1. Zhao, S.: Adv. Applied Ceram. 116 (2017) 180.
2. Jiang, J.: Ceramics Inter. 44 (2018) 3915.
3. Galik, G.: AIP Conf. Proc. 1996 (2018) 020011.
4. Ji, F.: Mater. Res. Express 6 (2019) 086326.
5. Dong, G.: Ceramics Inter. 45 (2019) 12162.
6. Shi, Q.: Adv. Electron. Mater. 5 (2019) 1900020.
7. Liu, S.: J. Micromech. Microengn. 29 (2019) 065008.
8. Yu, X.: J. Sol-Gel Sci. Technol. 90 (2019) 221.
9. Liu, Y.: Ceramics Inter. A 45 (2019) 24070.
10. Li, H.: J. Alloys Comp. 810 (2019) UNSP 151908.
11. Pu, X.: J. Material. Sci-Mater. Electr. 30 (2019) 19862.
12. Li, H.: J. Alloys Comp. 847 (2020) 156417.
13. Chu, K.: J. Material. Sci-Mater. Electr. 31 (2020) 12389.
14. Chu, K.: Ceramics Inter. 46 (2020) 7568.
15. Liu, Y.: Ceramics Inter. 47 (2021) 7674.
16. Guan, X.L.: Ceramics Inter. 47 (2021) 18931.
17. Guan, X.: J. Alloys Comp. 876 (2021) 160173.
18. Yang, S.: Ceramics Inter. 47 (2021) 29631.
19. Yu, Z.: Ceramics Inter. 47 (2021) 33202.
20. Yu, X.: Applied Surface Sci 570 (2021) 151221.
21. Guan, X.: J. Alloys Comp. 895 (2022) 162555.
22. Chaluvadi, S.K.: Applied Surface Sci 579 (2022) 152095.
23. Guan, X.: Applied Phys. A 128 (2022) 362.
24. Guan, X.L.: Ceramics Inter. 48 (2022) 11094.
25. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.

Kunzo, P., Lobotka, P., Šmatko, V., and Vávra, I.: Polyaniline-functionalized polyacarbonate filter as a flow-through gas sensor. In: IEEE Proc. 17th Inter. Conf. on Solid-State Sensors, Actuators and Microsyst. – Transducers 2013 & EUROSENSORS XXVII. Barcelona 2013. IEEE 2013. ISBN: 978-1-4673-5981-8. P. 270-272.

1. Kumar, M.R.: Environment. Chem. Lett. 17 (2019) 767.

Kunzo, P., Lobotka, P., Kováčová, E., Chrisstopoulou, K., Papoutsakis, L., Anastasiadis, S., Križanová, Z., and Vávra, I.: Nanocomposites of polyaniline and titania nanoparticles for gas sensors, Phys. Status Solidi a 210 (2013) 2341-2347.

1. McNally, T.: Phys. Status Solidi A 210 (2013) 2249.
2. Li, X.: J. Alloys Compounds 645 (2015) 553.
3. Bandgar, D. K.: RSC Adv. 5 (2015) 68964.
4. Tsizh, B.: Molecular Crystals Liquid Crystals 639 (2016) 19.
#     5. Pang, Z.: Colloids Surfaces A 494 (2016) 248.
6. Liu, C.: Sensors Actuators B 246 (2017) 85.
7. Pandey, S.: J. Sci-Adv. Mater. Dev. 1 (2016) 431.
8. Jha, R.K.: New J. Chem. 42 (2018) 735.
9. Wang, S.: Nano Energy 51 (2018) 231.
10. Aksimentyeva, O.I.: Molecular Crystals Liquid Cryst. 670 (2018) SI3.
#   11. Tsizh, B.: Proc. UkrMiCo 2018, pp. 9047579.
12. Kulkarni, S. B.: Sensors Actuators B 288 (2019) 279.
13. Tsizh, B.: Sensors Actuators A 315 (2020) 112273.
14. Rasool, A.: J. Alloys Comp. 854 (2021) 156661.
15. Tsizh, B.: Molecul. Cryst. Liquid Cryst. 716 (2021) 112.
16. Li, X.L.: Mater. Sci Engn. B 271 (2021) 115272.
17. Horbenko, Y.: Acta Phys. Polonica A 141 (2022) 386.

Kunzo, P., Lobotka, P., Micusik, M., and Kováčová, E.: Palladium-free hydrogen sensor based on oxygen-plasma-treated polyaniline thin film, Sensors Actuators B 171-172 (2012) 838-845.

1. Ouyang, Y.J.: Surface Engn. 29 (2013) 312.
2. Chen, C.: Electrochimica Acta 97 (2013) 112.
3. Ishpal, K.A.: J. Applied Phys. 113 (2013) 094504.
4. Seo, H.-K.: Talanta 104 (2013) 219.
5. Ciric-Marjanovic, G.: Synthetic Metals 177 (2013) 1.
6. Buzanovskii, V.A.: Instrum. Systems: Monitor., Control, Diagn. (2014) 28.
7. Sinha, M.: Mater. Res. Express 2 (2015) 076401.
8. Ameen, S.: In Advanced Functional Mater. Wiley 2015, ISBN: 978-111899897-7, pp. 3-57.
9. Puliyalil, H.: Frontiers Chem. Sci Engn. 10 (2016) 265.
10. Pandey, S.: J. Sci-Adv. Mater. Dev. 1 (2016) 431.
11. Kumar, L.: Sensors Actuators B 240 (2017) 408.
12. Rivera, M.: Materials 10 (2017) 986.
13. Rozemarie, M.L.: IOP Conf. Ser. 209 (2017) 012063.
14. Wang, S.: Applied Surface Sci 428 (2018) 1070.
15. Cvelbar, U.: Plasma Process. Polymer. 16 (2019) SIe1700228.
16. Bafandeh, N.: Polymer Bull. 77 (2020) 3697.
17. Nasresfahani, S.: Synthetic Metals 265 (2020) 116404.
18. Nami-Ana, S.F.: ACS Applied Mater. Interfaces 13 (2021) 39791.

Lobotka, P., Kunzo, P., Kováčová, E., Vávra, I., Križanová, Z., Šmatko, V., Stejskal, J., Konyushenko, E., Omastová, M., Spitalsky, Z., Micusik, M., and Krupa, I.: Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing, Thin Solid Films 519 (2011) 4123-4127.

  1. Matejik, D.: Key Engn. Mater. 495 (2012) 83.
2. Sharma, A.L.: Polymer 51 (2012) 1382.
3. Wang, Y.: Applied Surface Sci 259 (2012) 486.
4. Kan, K.: Advan. Mater. Res. 554-556 (2012) 661.
5. Ghosh, P.: Smart Mater. Struct. 22 (2013) 035004.
6. Gu, Y.: Colloids Surfaces A 433 (2013) 166.
7. Ciric-Marjanovic, G.: Synthetic Metals 170 (2013) 31.
8. Singh, A.: RSC Adv. 3 (2013) 5506.
9. Yun, J.: J. Nanomater. (2013) 184345.
10. Mekki, A.: J. Colloid Interface Sci 418 (2014) 185.
11. Li, H.: J. Nanosci Nanotechnol. 14 (2014) 3087.
12. Merian, T.: Sensors Actuators B 203 (2014) 626.
13. Zhang, L.: Sensors Actuators B 216 (2015) 293.
14. Zhang, L.: Current Applied Phys. 15 (2015) 789.
15. Kaushik, A.: Chemical Rev. 115 (2015) 4571.
16. Sinha, M.: Mater. Research Express 2 (2015) 076401.
17. Jaisutti, R.: IEEE Sensors (2015) 1586.
18. Fennell, J.F.: Angewandte Chemie 55 (2016) 1266.
19. Liu, P.: J. Mater. Sci-Mater. in Electron. 27 (2016) 7776.
20. Bora, A.: Sensors Actuators B 253 (2017) 977.
21. Yoon, J.-W.: Lab on a Chip 17 (2017) 3537.
22. Mello, P.D.: Thin Solid Films 656 (2018) 14.
23. Tanguy, N.R.: Sensors Actuators B 257 (2018) 1044.
24. Her, S.-C.: J. Applied Biomater. Funct. Mater. 16 (2018) 10.
25. Zhao, T.: Nanotechnol. 29 (2018) 405504.
26. Saoudi, M.: Polymer Composites 40 (2019) SIE821.
27. Ansari, M.O.: Polymers Polymeric Comp.-Ref. Ser. (2019) 911.
28. Wong, Y.C.: J. Electrochem. Soc 167 (2019) 037503.
29. Ali, S.S.: Sensors Actuat. B‏ 320 (2020) 128364.
30. Taghizadeh, M.: Iran. J. Chem. Chem. Engn.-Inter. Eng. Ed. 39 (2020) 281.
31. Xuan, J.: RSC Adv. 10 (2020) 39786.
32. Matindoust, S.: React. Function. Polymers 165 (2021) 104962.
33. Saoudi, M.: Polymers 13 (2021 ) 2595.
34. Nahirniak, S.: Sensors 22 (2022) 972.
35. Pauly, A.: Polymers 14 (2022) 891.

Španková, M., Chromik, Š., Vávra, I., Štrbik, V., Liday, J., Vogrinčič, P., Espinos, J., and Lobotka, P.: Epitaxial LSMO films grown on GaAs substrates with MgO buffer layer Phys. Status Solidi A 206 (2009) 1456-1460.

1. Sahu, D.R.: J. Alloys Compounds 503 (2010) 163.
2. Cesaria, M.: J. Physics Conf. Series 292 (2011) 012003.
3. Sahu, D.R.: J. Phys. Chem. Solids 73 (2012) 622.
4. Paul, N.: IEEE EDKCON 2018, p. 55.

Chromik, Š., Španková, M., Vávra, I., Liday, J., Vogrinčič, P., Lobotka, P., : Preparation and structural properties of MgO films grown on GaAs substrate. Applied Surface Sci 254 (2008) 3635-3637.

1. Miranda E.: Microelectr. Reliability 49 (2009) 1052.
#    2. Miranda, E.: Proc. Inter. Symp. Phys. Failure Analysis Integr. Circ. – IPFA 2009. P. 71.
3. Kim, K.-H.: Crystal Growth & Design 11 (2011) 2889.
4. Torelli, P.: Nanotechnol. 23 (2012) 465202.
5. Sarkar, A.: Nanotechnol. 26 (2015) 165203.
6. Mudiyanselage, K.: Surface Sci‏ 699 (2020) 121625.

Lobotka, P., Lalinský, T., Španková, M., Vávra, I., Chromik, Š., Haščík, Š., Šmatko, V., Mozolová, Ž., Kováčová, E., Dérer, J., Gaži, Š., and Gierlowski, P.: Antenna-coupled uncooled THz microbolometer based on micromachined GaAs and LSMO thin film, IEEE Sensors (2008) 604-607.

1. Paul, N.: IEEE EDKCON 2018, p. 55.

Sedlačková, K., Ujvári, T., Grasin, R., Lobotka, P., Bertóti, I., Radnóczi, G., : C-Ti nanocomposite thin films: structure, mechanical and electrical properties. Vacuum 82 (2007) 214-216.

1. Wang, Y.H.: Applied Surface Sci 254 (2008) 5085.
2. Abrasonis G.: J. Phys. Chem. C 113 (2009) 8645.
3. Kataria, S.: Surface Interface Anal. 42 (2010) 7.
4. Berndt, M.: J. Applied Phys. 109 (2011) 063503.
5. Onoprienko, A. A.: Surface Coatings Technol. 206 (2012) 3450.
6. Grigore, E.: Surface Coatings Technol. 211 (2012) 192.
7. Balazsi, K.: Mater. Sci Engn. C 33 (2013) 1671.
8. Balazsi, K.: J. European Ceramic Soc 33 (2013) SI2217.
9. Chen, Y.-M.: Surface Coatings Technol. 228 (2013) S210.
10. Han, C.-S.: Korean J. Metals Mater. 52 (2014) 163.
11. Olah, N.: J. European Ceramic Soc 34 (2014) SI3421.
12. Balazsi, K.: Green Biorenewable Biocomp.: from Knowledge to Industrial Appl.  (2015) 27.
13. Heras, I.: Solar Energy Mater. Solar Cells 157  (2016) 580.
14. Dalouji, V.: Optik 148 (2017) 1.
15. Yang, S.: Particulate Sci Technol. 36 (2018) 141.
#    16. Balázsi, K.: Vacuum 164 (2019) 121.
17. Wang, C.: Renewab. Sustainab. Energy Rev. 134 (2020) 110277.
18. Balazsi, K.: Inter. J. Applied Ceramic Technol. 19 (2022) 753.

Španková, M., Chromik, Š., Vávra, I., Sedlačková, K., Lobotka, P., Lucas, S., and Stanček, S. : Epitaxial LSMO films grown on MgO single crystalline substrates. Applied Surface Sci 253 (2007) 7599-7603.

1. Zhu, X.D.: Applied Surface Sci 254 (2007) 532.
2. Ikegami, T.: Applied Phys. Lett. 92 (2008) 153304.
3. Kang, Y.M.: J. Applied Phys. 105 (2009) 07D711.
4. Izyumskaya, N.: Critical Rev. Solid State Mater. Sci 34 (2009) 89.
5. Lau, H.K.: Phys. Status Solidi A 206 (2009) Sp. Iss. SI 2182.
6. Choi, S.G.: Thin Solid Films 518 (2010) 4432.
7. Gao, H.: Applied Phys. Lett. 98 (2011) 123105.
8. Fang, S.: J. Mater. Sci Technol. 27 (2011) 223.
9. Cheng, H.: Applied Phys. Lett. 98 (2011) 172107.
10. Wu, X.: Applied Phys. Lett. 100 (2012)122408.
11. Mukherjee, D.: J. Applied Phys. 111 (2012) 064102.
12. Zhu, X.: Ceramics Inter. 38 (2012) 6405.
13. Mukherjee, D.: J. Applied Phys. 112 (2012) 083910.
#    14. Cheng, H.: Proc. IEEE 11th Inter. Conf. Solid-State Integrat. Circuit Technol. (2012) 6467855.
15. Navasery, M.: Inter. J. Electrochem. Sci 8 (2013) 6905.
16. Mishra, A.: Thin Solid Films 534 (2013) 67.
17. Navasery, M.: Inter. J. Electrochem. Sci 8 (2013) 467.
18. Zhu, X.: Ceramics Inter. 39 (2013) 9025.
19. Navasery, M.: J. Mater. Sci-Mater. Electron. 25 (2014) 1317.
20. Jain, S.: AIP Conf. Proc. 1591 (2014) 1609.
21. Cerniuke, I.: Radiation interaction with materials and its use in Technol.  2014. P. 286.
22. Vengalis, B.: Lithuanian J. Phys. 55 (2015) 132.
23. Xie, H.: Physica B 477 (2015) 14.
24. Duan, Z.: Ceramics Inter. 42 (2016) 14100.
25. Zhang, Y.-P.: Royal Soc Open Sci 5 (2018) 171376.
26. Rasic, D.: ACS Applied Mater. Interfaces 10 (2018) 21001.
27. Rasic, D.: Acta Materialia 163 (2019) 189.
28. Mandal, S.: Crystals 11 (2021) 1493.

Majchrák, P., Dérer, J., Lobotka, P., Vávra, I., Frait, Z., Horváth, D., : Ferromagnetic resonance study of exchange and dipolar interactions in discontinuous multilayers. J. Applied Phys. 101 (2007) 113911.

1. Schmool, D.: Handbook of Magnetic Materials 18 (2009) 111.
2. Ge, S.: J. Nanosci Nanotechnol. 10 (2010) 6411.
3. Singh, A.K.: J. Phys. D 46 (2013) 445005.
4. Yalcin, O.: J. Magnet. Magnet. Mater. 373 (2015) 144.
5. Schmool, D.S.: Solid State Phys. 67 (2016) 1.
6. Alvarado-Seguel, P.: Phys. Rev. B 100 (2019)144415.

Majchrák, P., Vávra, I., Lobotka, P., Dérer, J., Frait, Z., Horváth, D., : FMR in nanosystems – discontinous multilayers Fe/SiO2/Fe Modern Phys. Lett. B 21 (2007) 1201-1206.

       1. Schmool, D.: Handbook of Magnetic Materials 18 (2009) 111.
2. Schmool, D.S.: Solid State Phys. 67 (2016) 1.

Lobotka, P., Dérer, J., Vávra, I., de Julián Fernandez, C., Mattei, G., Mazzoldi, P., : Single-electron transport and magnetic properties of Fe-SiO2 nanocomposites prepared by ion implantation. Phys. Rev. B 75 (2007) 024423-1-7.

    1. Li, M.F.: Applied Phys. A 89 (2007) 807.
2. Arita, M.: Superlatt. Microst. 44 (2008) 449.
3. Kumar, P.: J. Vacuum Sci Technol. B 26 (2008) L36.
4. Sharma, S.K.: J. Phys.-Condensed Matt. 20 (2008) 285211.
5. Takahashi, K.: J. Vacuum Sci Technol. B 27 (2009) 805.
6. Zhu, P.L.: J. Applied Phys. 106 (2009) 043907.
7. Kennedy, J.: Nanotechnol. 22 (2011) 115602.
8. Leveneur, J.: Applied Phys. Lett. 98 (2011) 053111.
9. Leveneur, J.: J. Phys. Chem. C 115 (2011) 20978.
10. Kennedy, J.: J. Materials Sci 47 (2012) 1127.
11. Leveneur, J.: Mater. Sci Forum 700 (2012) 37.
12. Prokhorov, A. V.: Proc. SPIE 8414  (2012) 84140E.
13. Prokhorov, A.V.: J. Experim. Theoretical Phys. 115 (2012) 1.
14. Prokhorov, A.V.: Optics Spectroscop. 113 (2012) 305.
15. Barinov, I.O.: Proc. SPIE 8772 (2013) 87720H.
16. Mao, Z.: Nanoscale Research Lett. 9 (2014) 501.
17. Wang, H.: Nanoscale Research Lett. 9 (2014) 346.
#   18. Kennedy, J.: Inter. J. ChemTech Research 6 (2014) 3294.
19. Kanamaru, Y.: 14th IEEE Inter. Conf. Nanotechnol. – IEEE-NANO 2014. 6968058, p. 719.
20. Prakash, T.: J. Alloys Compounds 667 (2016) 255.
21. Ma, Y.: AIP Adv. 6 (2016) 055929.
22. Prakash, T.: Mater. Research Express 3  (2016) 126102.
23.Williams, G.V.M.: Nuclear Instrum. Methods in Phys. Res. B 409 (2017) 187.
24. Leveneur, J.: Emergent Mater.‏ 2 (2019) 313.

Chayka, O., Kraus, L., Lobotka, P., Sechovsky, V., Kocourek, T., and Jelinek, M.: High field magnetoresistance in Co–Al–O nanogranular films. J. Magnetics Magn. Mater. 300 (2006) 293-299.

 1.Liu, K.W.: Applied Phys. Lett. 90 (2007) art. no. 092507.
2. Tan, R.P.: Phys. Rev. Lett. 99 (2007) art. no. 176805
3. Jang, S.J.: Phys. Rev. B 76 (2007) art. no. 212403
4. Tan, R.P.: J. Magnetism Magnetic Mater. 320 (2008) L55.
5. Tan, R.P.: J. Applied Phys. 104 (2008) 023908.
6. Tan, R.P.: J. Applied Phys. 103 (2008) 07F317.
7. Tan, R.P.: Phys. Rev. B 79 (2009) 174428.
8. Sarkar, T.: J. Nanosci Nanotechnol. 9 (2009) 5315.
9. Silva, H.G.: J. Applied Phys. 106 (2009) 113910.
10. Tanase, S.I.: Materials Chem. Phys. 130 (2011) 327.
11. Tanase, S.I.: J. Supercond. Novel Magnetism 24 (2011) 2313.
12. Yu, T.: Applied Phys. Lett. 102 (2013) 022401.
13. Leveneur, J.: Emergent Mater.‏ 2 (2019) 313.

Sedlačková, K., Lobotka, P., Vávra, I., and Radnóczi, G.: Structural, electrical and magnetic properties of carbon–nickel composite thin films, Carbon 43 (2005) 2192-2198.

1. Kukielka, S.: Surface Coatings Technol. 200 (2006) 6258.
2. Bystrzejewski, M.: Fullerenes Nanotubes Carbon Nanostr. 15 (2007 167.
3. Kukielka, S.: Rev. Advanced Mater. Sci 15 (2007) 127.
4. Xiong, Y.: J. Magnetism Magnetic Mater. 320 (2008) 107.
5. Huang, L.B.: Physica B 403 (2008) 3434.
6. Abrasonis, G.: J. Physical Chem. C 112 (2008) 12628.
7. Abrasonis, G.: J. Physical Chem. C 112 (2008) 17161.
8. Han, B.G.: Smart Mater. Struct. 18 (2009) 065007.
9. Abrasonis, G.: J. Phys. Chem. C 113 (2009) 8645.
10. Abrasonis, G.: J. Applied Phys. 105 (2009) 083518.
11. Kumar, P.: Bull. Mater. Sci 32 (2009) 263.
12. Koppert, R.: Solid State Sci 11 (2009) 1797.
13. Berndt, M.: Plasma Processes Polymers 6 (2009) S902.
#   14. Zhou, S.: Proc. SPIE 7364 (2009) 736406.
15. Zhou, S.Q.: Acta Materialia  57 (2009) 4758.
16. Lewin, E.: J. Mater. Chem. 20 (2010) 5950.
17. Khun, N.W.: Surface Coatings Technol. 204 (2010) 3125.
18. Han, B.G.: Smart Mater. Struct. 19 (2010) 065012.
19. Han, B.G.: Materials Sci Technol. 26 (2010) 865.
20. VijaiBharathy, P.: Thin Solid Films 519 (2010) 1623.
21. Koppert, R.: Tm-Technisches Messen 77 (2010) 631.
22. Berndt, M.: J. Applied Phys. 109 (2011) 063503.
23. Bagdasarova, K. A.: Solid State Phenomena  168-169 (2011) 349.
24. Haslam, G.E.: Physical Chemistry Chemical Phys. 13 (2011) 12968.
25. El Mel, A.A.: Carbon 49 (2011) 4595.
26. Zhang, Y.: Advanced Mater. Research 311-313 (2011) 76.
27. Xu, Nai Y.: Electronic Compon. Technol. Conf. (2011)1234.
28. Gao, X.-L.: Chinese Phys. Lett. 29 (2012) 027102.
29. El Mel, A. A.: J. Applied Phys. 111 (2012) 114309.
30. Paul, R.: Applied Surface Sci 258 (2012) 5850.
31. Koppert, R.: Diamond Related Mater. 25 (2012) 50.
32. Bharathy, P. V.: Surface Interface Anal. 44 (2012) 288.
33. Krause, M.: Applied Phys. Lett. 101 (2012) 053112.
34. Kairaitis, G.: Radiation Interaction wtih Material and Its Use in Technologies (2012) 286.
35. Uhlig, S.: Diamond Related Mater. 34 (2013) 25.
36. Achour, A.: Diamond Related Mater. 34 (2013) 76.
37. Veprek, S.: J. Vacuum Sci Technol. A 31 (2013) 050822.
38. Kairaitis, G.: Medziagotyra 19 (2013) 264.
#   39. Bosworth, D.: Mater. Res. Soc Symp. Proc. 1451 (2013) 145.
40. Kairaitis, G.: Vacuum 99 (2014) 284.
41. Nedfors, N.: Surface Coatings Technol. 253 (2014) 100.
42. Bettini, L.G.: Nanotechnol. 25 (2014) 435401.
43. Zhou, Z.: Nanoscale 6 (2014) 12591.
#  44. Yang, J.: Comput. Cond. Matter 1 (2014) 51.
#  45. Han, B.: In Self-Sensing Concrete in Smart Structures. Elsevier 2014. ISBN: 978-012800658-0 pp. 1-385.
#    46. Wett, D.: Mater. Sci Forum 825-826 (2015) 548.
47. Dalouji, V.: Surface Rev. Lett. 23 (2016) 1650002.
48. Dalouji, V.: Europ. Phys. J.+ 131 (2016) 84.
49. Syugaev, A.V.: J. Solid State Electrochem. 20 (2016) 775.
50. Olah, N.: Surface Coatings Technol. 302 (2016) 410.
51. Bayer, B.C.: J. Phys. Chem. C 120 (2016) 22571.
52. Heras, I.: Solar Energy Mater. Solar Cells 157  (2016) 580.
53. Talu, S.: Microscopy Res. Techniq. 79  (2016) 1208.
54. Mihailescu, I.N.: Inter. J. Pharmaceut. 515  (2016) 592.
55. Bouts, N.: Carbon 111 (2017) 878.
56. Nygren, K.: J. Mater. Sci 52  (2017) 8231.
57. Bouts, N.: Thin Solid Films 630 (2017) 38.
58. Torkashvand, M.: J. Pharmaceut. Biomedical Anal. 139  (2017) 156.
59. Han, B.: J. Intelligent Mater. Systems Struct. 28  (2017) 699.
60. Dalouji, V.: Optik 148 (2017) 1.
61. Dalouji, V.: Chinese Phys. Lett. 35 (2018) 026501.
62. Dalouji, V.: Rare Metals 37 (2018) 143.
63. Dalouji, V.: Optik 156 (2018) 338.
64. Nguyen, M.-T.: Metals Mater. Inter. 24 (2018) 821.
65. Zhou, H.: Applied Surface Sci 440 (2018) 448.
66. Solovyev, A.A.: Thin Solid Films 650 (2018) 37.
67. Dalouji, V.: Chinese Phys. Lett. 35 (2018) 026501.
68. Dutta, H.: Ceramics Inter. 44 (2018) 14857.
69. Dalouji, V.: Silicon 10 (2018) 2889.
70. Karapepas, C.: J. Reinforced Plastics Compos. 37 (2018) 1378.
71. Kairaitis, G.: Surface Coatings Technol. 352 (2018) 120.
72. Asareh, N.: Optical Quantum Electron. 51 (2019) 373.
73. Kairaitis, G.: Coatings 10 (2020) 21.
74. Wang, C.: Renewab. Sustainab. Energy Rev. 134 (2020) 110277.
75. Odetola, P.: J. Metals Mater. Minerals ‏ 30 (2020) 119.
76. Suszko, T.: Applied Surface Sci 591 (2022) 153134.

Osvald, J., Kuzmík, J., Konstantinidis, G., Lobotka, P., Georgakilas, A., : Temperature dependence of GaN Schottky diodes I–V characteristics. Microelectronic Engn. 81 (2005) 181-187.

  1. Das, S.N.: Vacuum 81 (2007) 843.
2. Chiang, H.P.: Thin Solid Films 515 (2007) 6953.
3. Das, S.N.: J. Phys. D 40 (2007) 7291.
4. Pipinys, P.: Lithuanian J. Phys. 47 (2007) 51.
5. Cho, H.K.: J. Phys. D 41 (2008) 175107.
6. Lu, C.Z.: J. Vacuum Sci Technol. B 26 (2008) 1987.
7. Kim, H.: Applied Phys. Lett.  93 (2008) 192902.
8. Ravinandan, M.: J. Optoelectr. Advanced Mater. 10 (2008) 2787.
9. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
10. Ravinandan, M. : Semicond. Sci Technol. 24 (2009) 035004.
11. Dogan, S.: Physica E 41 (2009) 646.
12. Cinar, K.: J. Applied Phys. 106 (2009) 073717.
13. Yildrim, N.: J. Applied Phys. 108 (2010) 114506.
14. Lin, Y.: Thin Solid Films 519 (2010) 829.
15. Pipinys, P.: Adv. Cond. Matt. Phys. (2010) 526929.
16. Ejderha, K.: Mater. Sci Semicond. Process. 14 (2011) 5.
17. Chen, Y.: Proc. SPIE 7980 (2011) 79801E.
18. Ameur, K.: Sensor Lett. 9 (2011) SI. 2268.
19. Reddy, N.: Bull. Mater. Sci 35 (2012) 53.
20. Peta, K.R.: J. Crystal Growth 378 (2013) 299.
21. Elgawadi, A.: J. Phys. Cond. Matt. 25 (2013) 335803.
22. Grodzicki, M.: Applied Surface Sci 304 (2014) 24.
23. Ejderha, K.: European Phys. J.-Applied Phys. 68 (2014) Iss. 2.
24. Reddy, P.: J. Applied Phys. 116 (2014) 123701.
#     25. Munir, T.: Adv. Mater. Research 895 (2014) 439.
#     26. Wang, R.X.: In Gallium Nitride: Structure, Thermal Properties and Applications. Nova Sci Publ 2014 ISBN: 978-163321388-3. P. 119.
27. Dogan, H.: Physica B 457 (2015) 48.
28. Liu, C.: Comput. Mater. Sci 107 (2015) 170.
29. Tao, X.: Proc. Inter. Symp. Phys. Failure Analysis of Integrated Circuits –  IPFA 2015. Art. no. 7224418, p. 430.
30. Ejderha, K.: Silicon 9 (2017) 395.
31. Tao, X.-H.: Chinese Phys. Lett. 34 (2017) 038501.
32. Turut, A.: J. Optoelectron. Adv. Mater. 19 (2017) 424.
33. Asha, B.: J. Electronic Mater.47 (2018) 4140.
34. Wang, T.-T.: Chinese Phys. Lett. 36 (2019) 057101.
35. Khachariya, D.: J. Applied Phys. 128 (2020) 064501.
36. Reddy, P.: Semicond. Sci Technol. 35 (2020) 055007.
37. Ahmed, N.: Digest J. Nanomater. Biostruct.‏ 15 (2020) 399.
38. Liu, W.: IEEE Electron Dev. Lett.‏ 41 (2020) 1468.
39. Khachariya, D.: Applied Phys. Lett. 118 (2021) 122103.
40. Jadhav, A.: J. Electron Mater. 50 (2021) 3731.
41. Helal, H.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields (2021) 2916.
42. Ahmed, N.: Physica Scripta 96 (2021) 065211.
43. Deniz, A.R.: J. Mater. Sci-Mater. Electron. 33 (2022 ) 5233.
44. Helal, H.: Europ. Phys. J. Plus 137 (2022) 450.
45. Khachariya, D.: Applied Phys. Lett. 120 (2022) 172109.

Baláž, P., Godočíková, E., Kriľová, L., Lobotka, P., and Gock, E.: Preparation of nanocrystalline materials by high-energy milling. Mater. Sci Engn. A 386 (2004) 442-446.

1. Rosas, G.: J. Nanosci Nanotechnol. 5 (2005) 2133.
2. Schoonen, M.A.A.: Rev. Mineral. Geochemistry 64 (2006) 179.
3. Gong, J.: Proc. Advances in Management Technol. (2006) 331.
4. Karaman, I.: J. Materials Sci 42 (2007) 1561.
5. Grass, R.N.: J. Materials Chemistry 17 (2007) 1485.
6. Pilchak, A.L.: Philosoph. Magazine 87 (2007) 4567.
7. Athanassiou, E.K.: Chem. Mater. 19 (2007) 4847.
8. Gong, J.: Sci China E 50 (2007) 302.
9. Gong, J.: Proc. Advances in Management Technol. (2007) 634.
10. Cho, H.J.: J. Power Sources 176 (2008) 96.
11. Koszor, O.: Key Engn. Mater. 409 (2009) 369.
12. He, W.: J. Central South Univ. Technol. 16 (2009) 708.
#     13. Duan, X.-C.: Fenmo Yejin Cailiao Kexue yu Gongcheng/Mater. Sci Engn. Powder Metall. 14 (2009) 169.
#     14. Peng, Y.-X.: Cailiao Kexue yu Gongyi/Mater. Sci Technol. 17 (2009) 113.
15. Tapaszto, O.: Ceramics Inter. 36 (2010) 2247.
16. Ma, G.: Surface Coatings Technol. 221 (2013) 142.
17. Serrano, T.: Lecture Notes in Engn. Computer Sci 3 (2013) 2087.
18. Nayak, P.: Metallurg. Mater. Trans. A 45A (2014) 2132.
19. Zhu, Y.: Applied Clay Sci 114 (2015) 315.
20. Michalkova, M.: Ceramics Inter. 42  (2016) 15787.
21. Kurama, H.: Ceramics Inter. 43 (2017) S391.
22. Shi, J.: Key Engn. Mater. 777 KEM (2018) 150.
23. Kurama, H.: J. Austral. Ceramic Soc‏ 56 (2020) 559.
24. Zanker, S.: Zeitschrift Anorg. Allgemeine Chemie 648 (2022) SI00026.

Lobotka, P., Vávra, I., Fendrych, F., and Chayka, O.: Structural and electrical manifestation of ageing in thin-film Fe–Ta–O nanocomposite prepared by plasma jet technique. Physica Status Solidi A 201 (2004) 1493-1499.

#       1. Kumar, P.: Inter. J. Nanosci 7 (2008) 255.

Lobotka, P., Radnóczi, G., Czigány, Zs., Vávra, I., Držík, M., Micusik, M., Dobročka, E., and Kunzo, P.: Preparation of nickel, nickel-iron, and silver-copper nanoparticles in ionic liquids. In: IEEE Proc. 17th Inter. Conf. on Solid-State Sensors, Actuators and Microsyst. – Transducers 2013 & EUROSENSORS XXVII. Barcelona 2013. IEEE 2013. ISBN: 978-1-4673-5981-8. P. 2021-2024.

1. Verma, C.: J. Molecular Liquids 276 (2019) 826.

Lobotka, P., Vávra, I., Fendrych, F., Kraus, L., : Electric transport in composite Fe–Ta–O granular film prepared by plasma jet technique. J. Magnetism Magnetic Mater. 240 (2002) 491-493.

      1. Masubuchi, Y.: J. American Ceramic Soc 94 (2011) 765.
2. Kennedy, J.: J. Materials Sci 47 (2012) 1127.

Fendrych, F., Kraus, L., Chayka, O., Lobotka, P., Vávra, I., Tous, J., Studnicka, V., Frait, Z., : Preparation of nanostructured magnetic films by the plasma jet technique. Monatshefte fur Chemie 133 (2002) 773-784.

 1. Gubin, S.P.:Uspekhi Khimii 74 (2005) 539.
2. Khajeh, M.: Chemical Rev. 113 (2013) 7728.
#    3. Demydenko, M.G.: J. Nano- and Electron. Phys. 6 (2014) 04046.
4. Gawande, M.B.: Coordination Chem. Rev. 288 (2015) 118.
5. Sharma, N.: RSC Adv. 5 (2015) 53381.
6. Chu, X.: Magnetic Nanomaterials: Fundamentals, Synthesis Appl. 2017. P. 83-120.

Aliev, F., Schad, R., Lobotka, P., Vávra, I., Seynaeve, E., Moshchalkov, V., Bruynseraede, Y., : Nonlinear electron transport in magnetic multilayers Applied Phys. Lett. 75 (1999) 704-706.

   1. Nonoyama, S.: J. Phys. Soc Japan 70 (2001) 2395.

Vávra, I., Lobotka, P., Dérer, J., Gaži, Š., Wallenberg, L., Holý, V., Kubena, A., Sobota, J., : Stacked Josephson junction based on Nb/Si superlattice J. Low Temper. Phys. 106 (1997) 373.

     1. Kuplevashky, S.V.: Phys. Rev. B 56 (1997) 7858.
2. Kuplevashky, S.V.: Phys. Rev. B 60 (1999) 7496.
3. Yusuf, S.M.: J. Magnetism Magnetic Mater. 199 (1999) 564.
*   4. Vávra, O.: Kand. diz. práca. Bratislava, ElÚ SAV 2002. 71 s.
5. Kashyap, S.: Thin Solid Films 531 (2013) 312.
6. Xing, J.: Applied Phys. Lett. 104 (2014) 163105.

Lobotka, P., Vávra, I., Gaži, Š., Dérer, J., : Vertically stacked (Nb/Si) 10 Josephson Junction Czechoslovak J. Phys. 46 (1996) 701.

      1. Fedorenko, A.I.: J. Experimen. Theoretical Phys. 90 (2000) 1010.

Lobotka, P., Vávra, I., Machajdík, D., Jergel, M., Gaži, Š., Rosseel, E., Baert, M., Bruynseraede, Y., Forsthuber, M., Hilscher, G., : Commensurate vortex lattice in superconducting Nb/Ti multilayers Physica C 229 (1994) 231.

      1. Ziese, M.: Phys. Rev. B 53 (1996) 8658.
2. Carneiro, G.: Phys. Rev. B 57 (1998) 6077.
3. Lehrer, R.A.: Phys. Rev. B 58 (1998) 12385.
4. Berger, J.: Phys. Rev. B 59 (1999) 8896.
5. Han, SW.: Phys. Rev. B 62 (2000) 9784.
6. Fogel, N.Y.: Low Temp. Phys. 27 (2001) 752.
7. Silva, C.C.D.: Physica C 354 (2001) 232.
8. Han, S.W.: J. Korean Phys. Soc. 42 (2003) 394.
9. Han, S.W.: Physica B 336 (2003)162.
10. Eisenmenger, J.: Physica C 411 (2004) 136.
11. Gavrilkin, S.Y.: Supercond. Sci Technol. 23 (2010) 065019.

Rosseel, E., Baert, M., Temst, K., Moshchalkov, V., Bruynseraede, Y., Lobotka, P., Vávra, I., Senderák, R., and Jergel, M.: Critical fields of W/Si multilayers Physica C 225 (1994) 262.

1. Matsuo, Y.: Physica C 277 (1997) 138.
2. Matsuo, Y.: Physica C 299 (1998) 23.
3. Florya, I.N.: Low Temp. Phys. 44 (2018) 221.
4. Lau, Y.-C.: J. Phys.-Mater. 3 (2020) 034001.

Gömöry, F., Lobotka, P., Fröhlich, K., : Variable temperature insert for AC susceptiibility measurements at AC field amplitude up to 0.1T Cryogenics 34 (1994) 837.

     1. Chen, D.X.: Measurement Sci Technol. 15 (2004) 1195.
2. Laurent, P.: Measurement Sci Technol. 19 (2008) 085705.
3. Lousberg, G.P.: Supercond. Sci Technol. 22 (2009) 045009.
#   4. Laurent, P.: In Advanced Instrument Engn.: Measurement, Calibration, and Design. IGI Global: 2013 ISBN: 978-1-4666-4165-5. P. 208.

Takács, S., Gömöry, F., Pevala, A., Lobotka, P., : Penetration field in superconductors with considerable flux creep and flux flow Supercond. Sci Technol. 5 (1992) S452.

*    1. Campbell, A.M.: Magnetic Susceptibility  of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 129.
2. Brandt, E.: Physica Scripta T45 (1992) 63.

Luby, Š., Majková, E., Lobotka, P., Vávra, I., Jergel, M., Senderák, R., Grno, L., : Superconductivity of tungsten-silicon multilayers Physica C 197 (1992) 37.

     1. Fogel, N.Y.: Phys. Rev. B 53 (1996) 71.

Takács, S., Gömöry, F., Lobotka, P., : Frequency dependence of AC susceptibility due to the viscous motion of flux lines IEEE Trans. Magn. 27 (1991) 1057.

*    1. Campbell, A.M.:  Proc. Inter. Symp. on AC Superconductors. Bratislava: EÚ SAV 1991. P. 182.
*    2. Goldfarb,  R.B.: Magnetic Susceptibility  of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 49.
*    3. Campbell, A.M.: Magnetic Susceptibility  of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 129.
4. Leblanc, D.: Phys. Rev. B 45 (1992) 5443.
5. Brandt, E.H.: Phys. Scripta 45 (1992) 63.
6. Bogomolov, V.N.: Physica C 208 (1993) 371.
7. Polichetti, M.: Physica C 235-240 (1994) 3217.
8. Lee, C.Y.: Physica C 256 (1996) 183.
9. Qin, M.J.: Phys. Rev. B 54 (1996) 7536.
*   10. Campbell, A.M.: Handbook Applied  Supercond. Vol.1.Bristol: IOP 1998. P. 186.
11. Di Gioacchino, D.: Phys. Rev. B 59 (1999) 11539.
12. Ray, A.: Materials Research Bulletin 37 (2002) 833.
13. Ozturk, A.: Supercond. Sci Technol. 18 (2005) 1029.
14. Celebi, S.: J. Applied Phys. 100 (2006) Art. No. 073912.
15. Tsukamoto, O.: Supercond. Sci Technol. 20 (2007) 974.
16. Celebi, S.: Supercond. Sci Technol. 22 (2009) 034018.
17. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.
18. Thakur, K.P.: Supercond. Sci Technol. 24 (2011)  045006.
19. Ozturk, A.: European Phys. J.-Applied Phys. 80 (2017) 30601.

Gömöry, F., Takács, S., Lobotka, P., : Flux penetration into high Tc superconductors in AC magnetic fields. In: Studies of High Temp. Superconductors 6. Ed.A.V.Narlikar. New York: Nova Sci Publ. 1990. P. 315.

     1. Brandt, E.H.: Inter. J. Mod. Phys. B 5 (1991) 751.
2. Brandt, E.H.: Phys. Scripta 45 (1992) 63.
3. Campbell, A.M.: IEEE Trans. Applied Supercond. 5 (1995) 682.
*    4.  Brongersma, S.H.: Vort. Config. Supercon. Film Proefsch. Leiden 1995.

Takács, S., Gömöry, F., Lobotka, P., : The influence of viscous flux flow on AC losses of high Tc superconductors Physica B 165 (1990) 1399.

     1. Bozec, X.: Physica C 179 (1991) 22.
2. Senoussi, S.: J. de Phys. 111 2 (1992) 1041 R.
3. Lee, C.Y.: Physica C 256 (1996) 183.
*    4. Campbell, A.M.: Handbook Applied Supercond. Vol.1. Bristol: IOP 1998. P. 186.
5. Polak, M.: Supercond. Sci Technol. 20 (2007) S293.

Gömöry, F., Takács, S., Lobotka, P., Fröhlich, K., Plecháček, V., : AC magnetization of high Tc superconductors at low superimposed DC fields Physica C 160 (1989) 1.

     1. Wahid, S.F.: Physica C 170 (1990) 395.
2. Campbell, A.M.: Physica C 172 (1990) 253.
3. Loegel, B.: Supercond. Sci Technol. 3 (1990) 504.
4. Gianelli, A.: Physica A 168 (1990) 277.
5. Campbell, A.M.: Supercond. Sci Technol. 3 (1990) 450.
6. Ludwig, F.: Physica C 177 (1991) 401.
7. Campbell, A.M.: IEEE Trans. Magnet. 27 (1991) 1660.
8. Doyle, R.A.: Supercond. Sci Technol. 4 (1991) S274.
9. Forsthuber, M.: Physica C 177 (1991) 401.
*   10. Campbell, A.M.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York, Plenum Press 1991. P. 129.
*   11. Nicolo, M.: PhD Thesis. Boulder: Univ. Colorado 1991.
12. Wahid, S.F.: Physica C 194 (1992) 211.
13. Gjolmesli, S.: Physica C 220 (1994) 33.
14. Lee, S.: Japan. J. Applied Phys. 33 (1994) 3889.
15. Martinez, E.: Physica C 289 (1997) 1.
16. Ramsbottom, H.D.: J. Phys. C 9 (1997) 4437.
17. Babu, N.H.: Physica C 302 (1998) 167.
18. Ramsbottom, H.D.: J. Applied Phys. 85 (1999) 3732.
19. Thakur, K.P.: Supercond. Sci Technol. 24 (2011) 045006.

Hanic, F., Polák, M., Horváth, I., Gömöry, F., Lobotka, P., Plesch, G., Gáliková, L., : Characterization on doped and substituted high Tc superconductors Y(Ce)-Ba(Sr)-Cu-O (1:2:3) British Ceramic Trans. J. 88 (1989) 35.

     1. Panova, T.I.: J. Applied Chem. (Rus.) 63 (1990) 2173.
2. Dollmore, D.: Anal. Chem. 62 (1990) R44.
3. Send, D.: J. Physics-Cond. Matt. 3 (1991) 1181.

Gömöry, F. and Lobotka, P.: Determination of shielding current density in bulk cylindrical samples of high Tc superconductors from AC susceptibility measurement Solid State Comm. 66 (1988) 645.

1. Ciccarello, I.: Europhys. Lett. 7 (1988) 185.
2. Nikolo, M.: Phys. Rev. B 39 (1989) 6615.
3. Emmen, J.H.P.M.: J. Less Comm. Metals 151 (1989) 63.
4. Koziol, Z.: J. de Physique 50 (1989) 3123.
5. Murphy, D.: Solid State Comm. 69 (1989) 367.
6. Chen, D.-X.: Cryogenics 29 (1989) 800.
7. Muller, K.-H.: Physica C 159 (1989) 717.
8. Berg, P.: Modern Phys. Lett. B 15 (1989) 1163.
9. Koziol, Z.: Physica C 159 (1989) 182.
10. Loegel, B.: Physica C 159 (1989) 816.
11. Gjomesli, S.: Physica C 162-4 (1989) 339.
12. Neumann, C.: J. Less Comm. Metals 151 (1989)
13. Mehdaouiet, A.: J. Applied Phys. 66 (1989) 1497.
14. Blazey, K.W.: Solid State Comm. 72 (1989) 1199.
15. Pruss, A.: Phys. Status Solidi A 116 (1989) 793.
16. Mehdaouiet, A.: Phys. Status Solidi A 116 (1989) 777.
17. Mehdaouiet, A.: E-MRS Spring Meeting, Strassbourg 1990.
*   18. Koziol, Z.: Proc. Europ. Conf. Ustroň 1989. P. 575.
*   19. Malozemoff,  A.P.:  Physical  Properties  of High Temperature Superconductors. New York: World Sci. 1989. P. 71.
*   20. Nganga, L.: PhD.Thesis. Univ. Bordeaux 1990.
21. Forsthuber, M.: Topics in Solid State Sci. 99 (1990) 69.
22. Choy, Jim-Ho: Bull. Korea Chem. Soc. 11 (1990) 560.
23. Ishida, T.: Phys. Rev. B 41 (1990) 8937.
24. Gould, A.: IEEE Trans. Magnetics 25 (1990) 3224.
25. Shaw, G.: IEEE Trans. Magnetics 25 (1990) 3512.
26. Win, W.: Physica C 172 (1990) 217.
27. Win, W.: Physica C 172 (1990) 233.
28. Nganga, L.: J. Less Comm. Metals 164-165 (1990) 208.
29. Mehdaouiet, A.: Coll. de Phys. C1 51 (1990) 997.
30. Chen, D.-X.: Physica C 168 (1990) 652.
31. Muller, K.-H.: Physica C 168 (1990) 585.
32. Heintz, J.M.: Eur. J. Solid State Inorg. Chem. 27 (1990) 703.
33. Luchini, C.: Phys. Status Solidi B 157 (1990) K123.
34. Chen, K.X.: Modern Phys. Lett. B 4 (1990) 63.
35. Shindé, S.L.: Phys. Rev. B 41 (1990) 8388.
36. Loegel, B.: Supercond. Sci Technol. 3 (1990) 504.
37. Loegel, B.: Cryogenics 30 (1990) 623.
38. Piechota, J.: Physica Scripta 42 (1990) 109.
39. Kraak, W.: Physica Status Solidi a 120 (1990) 185.
40. Chen, D.X.: J. Applied Phys. 70 (1991) 5463.
41. Ludwig, F.: Physica C 177 (1991) 401.
*   42. Dyomin, A.V.: Fizika niz. temp. 17 (1991) 1014.
43. Forsthuber, M.: Physica C 177 (1991) 401.
44. Kadyrbaev, A.R.: Pisma ŽTF 17 (1991) 70.
45. Leyva, G.: Solid State Comm. 78 (1991) 887.
46. Mehdaouiet, A.: Supercond. Sci Technol. 4 (1991) S334.
*   47. Nikolo, M.: PhD Thesis. Boulder: Univ. Colorado 1991.
48. Loegel, B.: Physica C 179 (1991) 15.
*   49. Goldfarb, R.B.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 49.
*   50. Chen, Q.Y.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 81
*   51. Marohnic, Z.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 267
*   52. Loegel, B.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 365
*   53. Polák,  M.: Proc. 2nd Czechosl.-Italian Symp. on  Supercond. Bratislava: Veda 1991. P. 61.
*   54. Huťka, P.: Proc. 2nd  Czechosl.-Italian Symp. on  Supercond. Bratislava: Veda 1991. P. 113.
*   55. Polák, M.: Proc. 6th  Int. Symp. on Weak Supercond. Singapore: World Sci. Publ. 1991. P. 43.
56. Forsthuber, M.: Phys. Rev. B 45 (1992) 7996.
57. Grinchenko, Y.A.: Supercond. Sci Technol. 5 (1992) S468.
58. Leblanc, D.: Phys. Rev. B 45 (1992) 5443.
59. Senoussi,S.: J. Phys. III 2 (1992) R1041.
60. Li, J.W.: Phys. Rev. B 46 (1992) 9190.
61. Cesnak, L.:Czechosl. J. of Phys. 42 (1992) 1025.
62. Tsymbal, L.T.: Fizika niz. temp. 18 (1992) 1191.
63. Mehdaoui, A.: Mater. Sci Engn. B 18 (1993) 141.
64. Xing, W.: Physica C 205 (1993) 311.
65. Loegel, B.: Physica C 210 (1993) 432.
66. Bodi, A.C.: J. Supercond. 6 (1993) 243.
67. Ravi, S.: Physica C 230 (1994) 51.
68. Serfoso, G.: J. Mater. Sci Lett. 13 (1994) 693.
69. Ravi, S.: Phys. Rev. B 49 (1994) 13082.
70. Wang, Z.D.: Physica Status Solidi B 184 (1994) K15.
71. Loegel, B.: Silic. Industriels 59 (1994) 93.
72. Rinaldi, D.: Nuovo Cimento D 17 (1995) 381.
73. Guo, S.H.: Physica C 247 (1995) 115.
74. Khokhlov, V.A.: Fiz. Nizkich Temp. 21 (1995) 200.
75. Berling, D.: Solid State Comm. 97 (1996) 731.
76. Kumar, N.H.: Phys. Rev. B 53 (1996) 15281.
77. Kumaraswamy, B.V.: Phys. Rev. B 53 (1996) 6759.
78. Ma,  L.P.:  Rev.  Sci Instr. 67 (1996)   1570.
79. Berling, D.: Supercond. Sci Technol. 9 (1996) 205.
80. Ghosh, A.K.: Solid State Comm. 104 (1997) 695.
81. Mehdaoui, A.: J. Mater. Research 12 (1997) 2226.
82. Ji, Z.M.: Physica C 279 (1997) 233.
83. Han, G.C.: Applied Phys. Lett. 71 (1997) 1860.
84. Kimishima, Y.: Cryogenics 38 (1998) 763.
85. Tampieri, A.:  Physica C 298 (1998) 10.
86. Ravi, S.: Physica C 295 (1998) 277.
87. Berling, D.: J. de Physique IV 8 (1998) 57.
88. Celebi, S.: Physica C 309 (1998) 131.
89. Deac, I.G.: Inter. J. Modern Phys. B 13 (1999) 1645.
90. Di Gioacchino, D.: Phys. Rev. B 59 (1999) 11539.
91. Li, J.G.: Physica C 325 (1999) 109.
92. Kimishima, : Supercond. Sci Technol. 13 (2000) 295.
93. Sedky, A.: J. Magnetics Magnetic Mater. 237 (2001) 22.
94. Malik, A.I.: Physica C 377 (2002) 421.
95. Ray, A.: J. Supercond. 15 (2002) 201.
96. Tampieri, A.: Physica C 400 (2004) 97.
97. Sprio, S.: Euro Ceramics VIII, PTS 1-3 SE Key Engn. Materials 264-268 (2004) 1201.
98. Sedky, A.: Physica C 403 (2004) 297.
100. Agarwal, S.K.: J. Physics & Chem. Solids 66 (2005) 729.
101. Keshri, S.: Czechoslov. J. Phys. 55 (2005) 73.
102. das Virgens MG.: Phys. Rev. B 71 (2005) 064520.
103. Yegen, D.: Chinese J. Phys. 44 (2006) 233.
104. Sedky, A.: Solid State Comm. 139 (2006) 126.
105. Nayak, P.K.: Solid State Comm. 138 (2006) 377.
106. Yegen, D.: Physica C 466 (2007) 5.
107. Ozturk, O.: Physica B 399 (2007) 94.
108. Terzioglu, C.: J. Materials Sci 42 (2007) 4636.
109. Sprio, S.: J. Materials Sci 19 (2008) 1012.
110. Terzioglu, C.: J. Phys.: Conf. Series 153 (2009) 012029.
111. Khurram, A.A.: Physica C 471 (2011) 35.
112. Chen D-X.: Supercond. Sci Technol. 24 (2011) 075004.
113. Ansari, I.A.: Physica Scripta  84 (2011) 065701.
114. Yildirim, G.: J. Supercond. Novel Magnetism 24 (2011) 2153.
115. Arlina, A.: J. Supercond. Novel Magnetism 28 (2015) 1953.
116. Mancusi, D.: J. Phys.-Cond. Matt. 29 (2017) 425701.
117. Roy, S.: Physica C 580 (2021) 1353766.
118. Khene, S.: J. Nanopart. Res. 23 (2021) 236.

Lobotka, P., Gömöry, F., : The complex AC susceptibility of superconducting YBaCuO thin film and bulk samples Physica Status Solidi A 109 (1988) 205.

     1. Müller, K.-H.: Physica C 159 (1989) 717.
2. Wahid, S.F.: Physica C 170 (1990) 395.
3. Polturak, E.: Rev. Sci Instrum. 61 (1990) 1759.
*    4. Nganga, L.: PhD. Thesis. Bordeaux: 1990.
5. Artemov, A.N.: Fizika niz. temp. 17 (1991) 1380.
6. Artemov, A.N.: Phys. Lett. A 157 (1991) 85.
7. Forsthuber, M.: Physica C 177 (1991) 401.
8. Gupta, A.: Physica C 184 (1991) 393.
*    9. Huťka, P.: Proc. 2nd Czechosl.-Italian  Symp. on Supercond. Bratislava: Veda 1991. P. 61.
*   10. Polturak, E.: Magnetic Susceptibility of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 423.
11. Fabbricatore, P.: J. Applied Phys. 73 (1993) 1873.
12. Fabbricatore, P.: Cryogenics 33 (1993) 1170.
13. Fabbricatore, P.: J. Applied Phys. 73 (1993) 1873.
14. Fereira, E.M.: Physica C 349 (2001) 235.

Vávra, I., Lobotka, P., Zachar, F., Osvald, J., : TEM in situ observation of electromigration damage in Al-Cu stripe Physica Status Solidi A 63 (1981) 363.

     1. Rodbell, K.P.: Thin Solid Films 108 (1983) 95.
2. Zehe, A.: J. Phys. F 16 (1986) 407.
3. Luby, S.: Thin Solid Films 116 (1984) 97.
4. Fantini, F.: Microelectr. Reliability 24 (1984) 275.
*    5. Chang, C.Y: Mater. Res. Soc. Symp. Proc. 255. Materials Research 1991. P. 125.
6. Lloyd, J.R.: J. Applied Phys. 71 (1992) 3231.
7. Vook, R.W.: Applied Surface Sci 60-1 (1992) 71.
8. Fritzsch, B.: Crystal Research Technol. 28 (1993) K44.
9. Vook, R.W.: Mater. Chem. Phys. 36 (1994) 199.
10. Patrinos, A.J.: J. Applied Phys. 75 (1994) 7292.
11. Arzt, E.: J. Applied Phys. 76 (1994) 1563.
12. Lloyd, J.R.: Applied Phys. Lett. 69 (1996) 2486.
13. Rirge, S.P.: Applied Phys. Lett. 69 (1996) 2367.
14. Okabayashi, H.: Applied Phys. Lett. 68 (1996) 1066.
15. Okabayashi, H.: Japan. J. Applied Phys. 35 (1996) 1102.
16. Shih, W.C.: Thin Solid Films 292 (1997) 103.
17. Zehe, A.: Microelectron. Reliab. 42 (2002) 1849.
18. Zehe, A.: Crystal Research Technol. 37 (2002) 817.
19. Zehe, A.: Modern Phys. Lett. B 16 (2002) 299.
20. Zehe, A.: Mater. Lett. 57 (2003) 3729.

Lobotka, P., Vávra, I., : TEM in situ observation of electromigration damage in Al-Cu strips Physica Status Solidi A 63 (1981) 655.

     1. Rodbell, K.P.: Thin Solid Films 108 (1983) 95.
2. Luby, S.: Thin Solid Films 116 (1984) 97.
3. Zehe, A.: J. Phys. F 16 (1986) 407.
*   4. Chang, C.Y: Mater. Res. Soc. Symp. Proc. 255. Materials Research 1991. P. 125.
5. Vook, R.W.: Applied Surface Sci 60-61 (1992) 71.
6. Vook, R.W.: Mater. Chem. Phys. 36 (1994) 199.
7. Okabayashi, H.: Japan. J. Applied Phys. 35 (1996) 1102.
8. Okabayashi, H.: Applied Phys. Lett. 68 (1996) 1066.
9. Shih, W.C.: Thin Solid Films 292 (1997) 103.
#   10. Spolenak, R.: In: In-Situ Electron Microscopy: Applications in Physics, Chemistry and Materials Science. Eds. G.Dehm et al. Wiley-VCH Verlag 2012. ISBN: 978-352-7319-732. P. 279-301.

Vávra, I., Lobotka, P., : TEM in situ observation of electromigration in Al stripes with quasi bamboo structure Physica Status Solidi A 65 (1981) K107.

     1. Luby, S.: Thin Solid Films 116 (1984) 97.
2. Büschel, M.: Zeitchrift der Tech. Univ. Dresden 35 (1986) 3.
*   3. Chang, C.Y: Mater. Res. Soc. Symp. Proc. 255. Materials Research 1991. P. 125.
4. Vook, R.W.: Applied Surface Sci 60-1 (1992) 71.
5. Vook, R.W.: Mater. Chemistry Phys. 36 (1994) 199.
6. Shih, W.C.: J. Electr. Mater. 23 (1994) 1315.
7. Patrinos, A.J.: J. Applied Phys. 75 (1994) 7292.
8. Arzt, E.: J. Applied Phys. 76 (1995)  1563.
9. Shih, W.C.: Thin Solid Films 292 (1997) 103.

Luby, Š., Lobotka, P., Bezák, V., : Electromigration behaviour and the lifetime of aluminium thin film conductors under superimposed d.c. and noise powering Physica Status Solidi A 60 (1980) 539.

1. Zehe, A.: J. Phys. F 16 (1986) 407.
2. Fritzsch, B.: Crystal Res. Technol. 28 (1993) K44.
3. Zehe, A.: Microelectron. Reliab. 42 (2002) 1849.
4. Zehe, A.: Crystal Research Technol. 37 (2002) 817.
5. Zehe, A.: Modern Phys. Lett. B 16 (2002) 299.
6. Zehe, A.: Mater. Lett. 57 (2003) 3729.
7. Zehe, A.: J. Molecular Structure 709 (2004) 215.
8. Zehe, A.: Materials Sci Forum 480 (2005) 463.
#   9. Grovenor, C.R.M.: Microelectronic Mater. eBook Published 2017 eBook ISBN 978-135-143-154-5. 544 p.