Ing. Lobotka Peter, CSc.

Dvurečenskij, A., Cigáň, A., Lobotka, P., Radnóczi, G., Škrátek, M., Benyó, J., Kováčová, E., Majerová, M., , and Maňka, J.: Colloids of HEA nanoparticles in an imidazolium-based ionic liquid prepared by magnetron sputtering: Structural and magnetic properties,  J. Alloys Compounds 896 (2022) 163089.

1. Tan, M.: Crystals 12 (2022) 1828.
2. Feng, J.: Front. Bioengn. Biotechnol. 10 (2022) 977282.
3. Babu, S.M.: J. Molecul. Liquids 364 (2022) 119989.
4. Biliak, K.: Nanoscale Adv. 5 (2023) 955.

Rýger, I., Lobotka, P., Steiger, A., Chromik, Š., Lalinský, T., Raida, Z., Pítra, K., Zehetner, J., Španková, M., Gaži, Š., Sojková, M., and Vanko, G.: Uncooled antenna-coupled microbolometer for detection of terahertz radiation, J. Infrared, Millimet., Terahertz Waves 42 (2021) 462–478.

1. Yu, X.: Applied Surface Sci 570 (2021) 151221.
2. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
3. Vera-Reveles, G.: Electronics 11 (2022) 1665.
4. Aji, A.P.: Sensors 22 (2022) 5107.
5. Aji, A.P.: IEEE Access 11 (2023) 29323.

Cigáň, A., Lobotka, P., Dvurečenskij, A., Škrátek, M., Radnóczi, G., Majerová, M., Czigány, Z., Maňka, J., Vávra, I., and Mičušík, M.: Characterization and magnetic properties of nickel and nickel-iron nanoparticle colloidal suspensions in imidazolium-based ionic liquids prepared by magnetron sputtering,  J. Alloys Compounds 768 (2018) 625-634.

1. Solano, R.: Environment. Sci Pollut. Res. 28 (2021) 16962.
2. Sergievskaya, A.: Beilstein J. Nanotechnol. 13 (2022) 10.
#       3. Pandey, A.: Recent Advances in Cancer Diagnostics and Therapy: A Nanobased Approach. CRC Press 2022, pp.1-204. ISBN 978-100-320-194-6.

Lalinský, T., Dzuba, J., Vanko, G., Kutiš, V., Paulech, J., Gálik, G., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0.33MnO3 microbolometer made on circular SOI membrane, Sensors Actuators A 265 (2017) 321–328.

1. Yan, F.: Thin Solid Films 698 (2020) 137872.

Lalinský, T., Vanko, G., Dzuba, J., Kutiš, V., Gálik, G., Paulech, J., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0,33MnO3 microbolometer made on circular SOI membrane, Procedia  Engn. 168 (2016) 733-736.

1. Kim, CH.: Trans. Electr. Electron. Mater. 23 (2022) 19.

Lobotka, P. and Kunzo, P.: Carbon nanoparticles/polymer composites for sensing. In: Handbook of Polymer Nanocomposites. Processing, Performance and Application. Vol. B: Carbon Nanotube Based Polymer Composites. Eds: K.K.Kar, J.K.Pandey, S.Rana. Berlin:  Springer-Verlag 2015. ISBN: 978-3-642-45228-4. P. 577-601.

1. Rivera, M.: Materials 10 (2017) 986.
2. Yusoff, M.M.: Measurement 149 (2020) UNSP 106982.

Kunzo, P., Lobotka, P., and Kováčová, E.: Modification of polyaniline-based gas sensor by electrophoretic deposition of metal nanoparticles in ionic liquids, Key Engn. Mater. 654 (2015) 224-229.

1. Pandey, S.: J. Sci-Adv. Mater. Dev. 1 (2016) 431.

Bertók, T., Šedivá, A., Filip, J., Ilčíková, M., Kasak, P., Velič, D., Jane, E., Mravcová, M., Rovenský, J., Kunzo, P., Lobotka, P., Šmatko, V., Vikartovská, A., and Tkáč, J.: Carboxybetaine modified interface for electrochemical glycoprofiling of antibodies isolated from human serum. Langmuir 31 (2015) 7148-7157.

 1. Sun, M.: Electroch. Acta 190 (2016) 186.
2. Bhattarai, J. K.: J. Electroanalytical Chem. 780  (2016) 311.
3. Akiba, U.: Sensors 16  (2016) 2045.
4. Zhang, X.: Archivum Immun. Therapiae Experiment. 65  (2017) 111.
5. Cui, M.: Sensors Actuators B 244 (2017) 742.
6. Rodovalho, V.R.: Biosensors & Bioelectron. 100 (2018) 577.
7. Farzin, L.: J. Pharmaceut. Biomed. Anal. 147 (2018) SI 185.
8. Gao, Y.: Analyt. Biochem. 597 (2020) 113686.
9. Lorencova, L.: In Glyconanotechnol.: Nanoscale Approach for Novel Glycan Analysis and their Medical Use (2020) 109.

Misják, F., Nagy, K., Lobotka, P., and Radnóczi, G.: Electron scattering mechanisms in Cu-Mn films for interconnect applications. J. Applied Phys. 116 (2014) 083507.

 1. Cao, F.: Vacuum 122 (2015) 122.
2. Wang, Y.: Vacuum 126 (2016) 51.
3. Fang, J. S.: Applied Surface Sci 364 (2016) 358.
4. Miao, T.: RSC Adv. 8 (2018) 20679.
5. Karalis, D.G.: Engn. Failure Anal. 94 (2018) 69.
6. Furgeaud, C.: Acta Materialia 159 (2018) 286.
7. Lee, H.-Y.: Coatings 9 (2019) 118.
8. Lee, H.-Y.: Adv. Mater. Sci Engn. 2019 (2019) 6578350.
9. Dong, Z.: Scripta Mater.‏ 187 (2020) 296.
10. Yoo, E.: Mater. Character. 166 (2020) 110451.
11. Wang, Y.-P.: ACS Applied Electron. Mater. 2 (2020) 1653.
12. Sun, H.: Nanotechnol. Rev. 9 (2020) 990.
13. Malekzadeh, M.: Chem. Soc Rev. 50 (2021) 7132.
14. Moon, J.H.: J. Mater. Sci Technol. 105 (2022) 17.
15. Scott, E.A.: Nanotechnol. 33 (2022) 375503.
16. Ribeiro, P.R.T.: J. Magnet. Magnet. Mater. 541 (2022) 168537.
17. Huan, J.: Magnetochem. 9 (2023) 97.

Chromik, Š., Štrbik, V., Dobročka, E., Roch, T., Rosová, A., Španková, M., Lalinský, T., Vanko, G., Lobotka, P., Ralbovský, M., and Choleva, P.: LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers, Applied Surface Sci 312 (2014) 30-33.

1. Zhao, S.: Adv. Applied Ceram. 116 (2017) 180.
2. Jiang, J.: Ceramics Inter. 44 (2018) 3915.
3. Galik, G.: AIP Conf. Proc. 1996 (2018) 020011.
4. Ji, F.: Mater. Res. Express 6 (2019) 086326.
5. Dong, G.: Ceramics Inter. 45 (2019) 12162.
6. Shi, Q.: Adv. Electron. Mater. 5 (2019) 1900020.
7. Liu, S.: J. Micromech. Microengn. 29 (2019) 065008.
8. Yu, X.: J. Sol-Gel Sci. Technol. 90 (2019) 221.
9. Liu, Y.: Ceramics Inter. A 45 (2019) 24070.
10. Li, H.: J. Alloys Comp. 810 (2019) UNSP 151908.
11. Pu, X.: J. Material. Sci-Mater. Electr. 30 (2019) 19862.
12. Li, H.: J. Alloys Comp. 847 (2020) 156417.
13. Chu, K.: J. Material. Sci-Mater. Electr. 31 (2020) 12389.
14. Chu, K.: Ceramics Inter. 46 (2020) 7568.
15. Liu, Y.: Ceramics Inter. 47 (2021) 7674.
16. Guan, X.L.: Ceramics Inter. 47 (2021) 18931.
17. Guan, X.: J. Alloys Comp. 876 (2021) 160173.
18. Yang, S.: Ceramics Inter. 47 (2021) 29631.
19. Yu, Z.: Ceramics Inter. 47 (2021) 33202.
20. Yu, X.: Applied Surface Sci 570 (2021) 151221.
21. Guan, X.: J. Alloys Comp. 895 (2022) 162555.
22. Chaluvadi, S.K.: Applied Surface Sci 579 (2022) 152095.
23. Guan, X.: Applied Phys. A 128 (2022) 362.
24. Guan, X.L.: Ceramics Inter. 48 (2022) 11094.
25. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
26. Guan, X.L.: Applied Phys. Lett. 121 (2022) 202203.
27. Wu, K.K.: Ceramics Inter. 49 (2023) 1344.
28. Yan, Y.X.: Ceramics Inter. 49 (2023) 669.
29. Sarkar, N.: Electron. Mater. Lett. 19 (2023) 384.
30. Gu, X.: Ceramics Inter. 49 (2023) A22952.

Lobotka, P., Radnóczi, G., Czigány, Zs., Vávra, I., Držík, M., Micusik, M., Dobročka, E., and Kunzo, P.: Preparation of nickel, nickel-iron, and silver-copper nanoparticles in ionic liquids. In: IEEE Proc. 17th Inter. Conf. on Solid-State Sensors, Actuators and Microsyst. – Transducers 2013 & EUROSENSORS XXVII. Barcelona 2013. IEEE 2013. ISBN: 978-1-4673-5981-8. P. 2021-2024.

1. Verma, C.: J. Molecular Liquids 276 (2019) 826.
#     2. Abdulhadi, O.O.: J. Phys.: Conf. Ser. 2114 (2021) 012083.
#     3. Mahdi, A.I.A.: Inter. J. Drug Deliv. Technol. 12 (2022) 1233.

Kunzo, P., Lobotka, P., Šmatko, V., and Vávra, I.: Polyaniline-functionalized polyacarbonate filter as a flow-through gas sensor. In: IEEE Proc. 17th Inter. Conf. on Solid-State Sensors, Actuators and Microsyst. – Transducers 2013 & EUROSENSORS XXVII. Barcelona 2013. IEEE 2013. ISBN: 978-1-4673-5981-8. P. 270-272.

1. Kumar, M.R.: Environment. Chem. Lett. 17 (2019) 767.

Kunzo, P., Lobotka, P., Kováčová, E., Chrisstopoulou, K., Papoutsakis, L., Anastasiadis, S., Križanová, Z., and Vávra, I.: Nanocomposites of polyaniline and titania nanoparticles for gas sensors, Phys. Status Solidi a 210 (2013) 2341-2347.

1. McNally, T.: Phys. Status Solidi A 210 (2013) 2249.
2. Li, X.: J. Alloys Compounds 645 (2015) 553.
3. Bandgar, D. K.: RSC Adv. 5 (2015) 68964.
4. Tsizh, B.: Molecular Crystals Liquid Crystals 639 (2016) 19.
#     5. Pang, Z.: Colloids Surfaces A 494 (2016) 248.
6. Liu, C.: Sensors Actuators B 246 (2017) 85.
7. Pandey, S.: J. Sci-Adv. Mater. Dev. 1 (2016) 431.
8. Jha, R.K.: New J. Chem. 42 (2018) 735.
9. Wang, S.: Nano Energy 51 (2018) 231.
10. Aksimentyeva, O.I.: Molecular Crystals Liquid Cryst. 670 (2018) SI3.
#   11. Tsizh, B.: Proc. UkrMiCo 2018, pp. 9047579.
12. Kulkarni, S. B.: Sensors Actuators B 288 (2019) 279.
13. Tsizh, B.: Sensors Actuators A 315 (2020) 112273.
14. Rasool, A.: J. Alloys Comp. 854 (2021) 156661.
15. Tsizh, B.: Molecul. Cryst. Liquid Cryst. 716 (2021) 112.
16. Li, X.L.: Mater. Sci Engn. B 271 (2021) 115272.
17. Horbenko, Y.: Acta Phys. Polonica A 141 (2022) 386.

Kunzo, P., Lobotka, P., Micusik, M., and Kováčová, E.: Palladium-free hydrogen sensor based on oxygen-plasma-treated polyaniline thin film, Sensors Actuators B 171-172 (2012) 838-845.

1. Ouyang, Y.J.: Surface Engn. 29 (2013) 312.
2. Chen, C.: Electrochimica Acta 97 (2013) 112.
3. Ishpal, K.A.: J. Applied Phys. 113 (2013) 094504.
4. Seo, H.-K.: Talanta 104 (2013) 219.
5. Ciric-Marjanovic, G.: Synthetic Metals 177 (2013) 1.
6. Buzanovskii, V.A.: Instrum. Systems: Monitor., Control, Diagn. (2014) 28.
7. Sinha, M.: Mater. Res. Express 2 (2015) 076401.
8. Ameen, S.: In Advanced Functional Mater. Wiley 2015, ISBN: 978-111899897-7, pp. 3-57.
9. Puliyalil, H.: Frontiers Chem. Sci Engn. 10 (2016) 265.
10. Pandey, S.: J. Sci-Adv. Mater. Dev. 1 (2016) 431.
11. Kumar, L.: Sensors Actuators B 240 (2017) 408.
12. Rivera, M.: Materials 10 (2017) 986.
13. Rozemarie, M.L.: IOP Conf. Ser. 209 (2017) 012063.
14. Wang, S.: Applied Surface Sci 428 (2018) 1070.
15. Cvelbar, U.: Plasma Process. Polymer. 16 (2019) SIe1700228.
16. Bafandeh, N.: Polymer Bull. 77 (2020) 3697.
17. Nasresfahani, S.: Synthetic Metals 265 (2020) 116404.
18. Nami-Ana, S.F.: ACS Applied Mater. Interfaces 13 (2021) 39791.
19. Upadhye, D.S.: J. Mater. Sci-Mater. Electron. 33 (2022) 23016.
20. Jagtap, S.J. Macromolecul. Sci B 61 (2022) 942.

Lobotka, P., Kunzo, P., Kováčová, E., Vávra, I., Križanová, Z., Šmatko, V., Stejskal, J., Konyushenko, E., Omastová, M., Spitalsky, Z., Micusik, M., and Krupa, I.: Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing, Thin Solid Films 519 (2011) 4123-4127.

  1. Matejik, D.: Key Engn. Mater. 495 (2012) 83.
2. Sharma, A.L.: Polymer 51 (2012) 1382.
3. Wang, Y.: Applied Surface Sci 259 (2012) 486.
4. Kan, K.: Advan. Mater. Res. 554-556 (2012) 661.
5. Ghosh, P.: Smart Mater. Struct. 22 (2013) 035004.
6. Gu, Y.: Colloids Surfaces A 433 (2013) 166.
7. Ciric-Marjanovic, G.: Synthetic Metals 170 (2013) 31.
8. Singh, A.: RSC Adv. 3 (2013) 5506.
9. Yun, J.: J. Nanomater. (2013) 184345.
10. Mekki, A.: J. Colloid Interface Sci 418 (2014) 185.
11. Li, H.: J. Nanosci Nanotechnol. 14 (2014) 3087.
12. Merian, T.: Sensors Actuators B 203 (2014) 626.
13. Zhang, L.: Sensors Actuators B 216 (2015) 293.
14. Zhang, L.: Current Applied Phys. 15 (2015) 789.
15. Kaushik, A.: Chemical Rev. 115 (2015) 4571.
16. Sinha, M.: Mater. Research Express 2 (2015) 076401.
17. Jaisutti, R.: IEEE Sensors (2015) 1586.
18. Fennell, J.F.: Angewandte Chemie 55 (2016) 1266.
19. Liu, P.: J. Mater. Sci-Mater. in Electron. 27 (2016) 7776.
20. Bora, A.: Sensors Actuators B 253 (2017) 977.
21. Yoon, J.-W.: Lab on a Chip 17 (2017) 3537.
22. Mello, P.D.: Thin Solid Films 656 (2018) 14.
23. Tanguy, N.R.: Sensors Actuators B 257 (2018) 1044.
24. Her, S.-C.: J. Applied Biomater. Funct. Mater. 16 (2018) 10.
25. Zhao, T.: Nanotechnol. 29 (2018) 405504.
26. Saoudi, M.: Polymer Composites 40 (2019) SIE821.
27. Ansari, M.O.: Polymers Polymeric Comp.-Ref. Ser. (2019) 911.
28. Wong, Y.C.: J. Electrochem. Soc 167 (2019) 037503.
29. Ali, S.S.: Sensors Actuat. B‏ 320 (2020) 128364.
30. Taghizadeh, M.: Iran. J. Chem. Chem. Engn.-Inter. Eng. Ed. 39 (2020) 281.
31. Xuan, J.: RSC Adv. 10 (2020) 39786.
32. Matindoust, S.: React. Function. Polymers 165 (2021) 104962.
33. Saoudi, M.: Polymers 13 (2021 ) 2595.
34. Nahirniak, S.: Sensors 22 (2022) 972.
35. Pauly, A.: Polymers 14 (2022) 891.
#     36. Nellaiappan, S.: Engn. Mater. (2021) 159.
37. Majeed, A.H.H.: Inter. J. Polymer Sci 2022 (2022) 9047554.
38. Su, P.-G.: Analyt. Methods 14 (2022) 4113.
39. Mostafa, M.H.: Mater. Chem. Phys. 291 (2022) 126699.
40. Meroni, D.: Materials 16 (2023) 1304.
41. Pauly, A.: Polymers 14 (2022) 891.
42. Nahirniak, S.: Sensors 22 (2022) 972.

Španková, M., Chromik, Š., Vávra, I., Štrbik, V., Liday, J., Vogrinčič, P., Espinos, J., and Lobotka, P.: Epitaxial LSMO films grown on GaAs substrates with MgO buffer layer Phys. Status Solidi A 206 (2009) 1456-1460.

1. Sahu, D.R.: J. Alloys Compounds 503 (2010) 163.
2. Cesaria, M.: J. Physics Conf. Series 292 (2011) 012003.
3. Sahu, D.R.: J. Phys. Chem. Solids 73 (2012) 622.
4. Paul, N.: IEEE EDKCON 2018, p. 55.

Chromik, Š., Španková, M., Vávra, I., Liday, J., Vogrinčič, P., Lobotka, P., : Preparation and structural properties of MgO films grown on GaAs substrate. Applied Surface Sci 254 (2008) 3635-3637.

1. Miranda E.: Microelectr. Reliability 49 (2009) 1052.
#    2. Miranda, E.: Proc. Inter. Symp. Phys. Failure Analysis Integr. Circ. – IPFA 2009. P. 71.
3. Kim, K.-H.: Crystal Growth & Design 11 (2011) 2889.
4. Torelli, P.: Nanotechnol. 23 (2012) 465202.
5. Sarkar, A.: Nanotechnol. 26 (2015) 165203.
6. Mudiyanselage, K.: Surface Sci‏ 699 (2020) 121625.

Lobotka, P., Lalinský, T., Španková, M., Vávra, I., Chromik, Š., Haščík, Š., Šmatko, V., Mozolová, Ž., Kováčová, E., Dérer, J., Gaži, Š., and Gierlowski, P.: Antenna-coupled uncooled THz microbolometer based on micromachined GaAs and LSMO thin film, IEEE Sensors (2008) 604-607.

1. Paul, N.: IEEE EDKCON 2018, p. 55.

Sedlačková, K., Ujvári, T., Grasin, R., Lobotka, P., Bertóti, I., Radnóczi, G., : C-Ti nanocomposite thin films: structure, mechanical and electrical properties. Vacuum 82 (2007) 214-216.

1. Wang, Y.H.: Applied Surface Sci 254 (2008) 5085.
2. Abrasonis G.: J. Phys. Chem. C 113 (2009) 8645.
3. Kataria, S.: Surface Interface Anal. 42 (2010) 7.
4. Berndt, M.: J. Applied Phys. 109 (2011) 063503.
5. Onoprienko, A. A.: Surface Coatings Technol. 206 (2012) 3450.
6. Grigore, E.: Surface Coatings Technol. 211 (2012) 192.
7. Balazsi, K.: Mater. Sci Engn. C 33 (2013) 1671.
8. Balazsi, K.: J. European Ceramic Soc 33 (2013) SI2217.
9. Chen, Y.-M.: Surface Coatings Technol. 228 (2013) S210.
10. Han, C.-S.: Korean J. Metals Mater. 52 (2014) 163.
11. Olah, N.: J. European Ceramic Soc 34 (2014) SI3421.
12. Balazsi, K.: Green Biorenewable Biocomp.: from Knowledge to Industrial Appl.  (2015) 27.
13. Heras, I.: Solar Energy Mater. Solar Cells 157  (2016) 580.
14. Dalouji, V.: Optik 148 (2017) 1.
15. Yang, S.: Particulate Sci Technol. 36 (2018) 141.
#    16. Balázsi, K.: Vacuum 164 (2019) 121.
17. Wang, C.: Renewab. Sustainab. Energy Rev. 134 (2020) 110277.
18. Balazsi, K.: Inter. J. Applied Ceramic Technol. 19 (2022) 753.

Španková, M., Chromik, Š., Vávra, I., Sedlačková, K., Lobotka, P., Lucas, S., and Stanček, S. : Epitaxial LSMO films grown on MgO single crystalline substrates. Applied Surface Sci 253 (2007) 7599-7603.

1. Zhu, X.D.: Applied Surface Sci 254 (2007) 532.
2. Ikegami, T.: Applied Phys. Lett. 92 (2008) 153304.
3. Kang, Y.M.: J. Applied Phys. 105 (2009) 07D711.
4. Izyumskaya, N.: Critical Rev. Solid State Mater. Sci 34 (2009) 89.
5. Lau, H.K.: Phys. Status Solidi A 206 (2009) Sp. Iss. SI 2182.
6. Choi, S.G.: Thin Solid Films 518 (2010) 4432.
7. Gao, H.: Applied Phys. Lett. 98 (2011) 123105.
8. Fang, S.: J. Mater. Sci Technol. 27 (2011) 223.
9. Cheng, H.: Applied Phys. Lett. 98 (2011) 172107.
10. Wu, X.: Applied Phys. Lett. 100 (2012)122408.
11. Mukherjee, D.: J. Applied Phys. 111 (2012) 064102.
12. Zhu, X.: Ceramics Inter. 38 (2012) 6405.
13. Mukherjee, D.: J. Applied Phys. 112 (2012) 083910.
#    14. Cheng, H.: Proc. IEEE 11th Inter. Conf. Solid-State Integrat. Circuit Technol. (2012) 6467855.
15. Navasery, M.: Inter. J. Electrochem. Sci 8 (2013) 6905.
16. Mishra, A.: Thin Solid Films 534 (2013) 67.
17. Navasery, M.: Inter. J. Electrochem. Sci 8 (2013) 467.
18. Zhu, X.: Ceramics Inter. 39 (2013) 9025.
19. Navasery, M.: J. Mater. Sci-Mater. Electron. 25 (2014) 1317.
20. Jain, S.: AIP Conf. Proc. 1591 (2014) 1609.
21. Cerniuke, I.: Radiation interaction with materials and its use in Technol.  2014. P. 286.
22. Vengalis, B.: Lithuanian J. Phys. 55 (2015) 132.
23. Xie, H.: Physica B 477 (2015) 14.
24. Duan, Z.: Ceramics Inter. 42 (2016) 14100.
25. Zhang, Y.-P.: Royal Soc Open Sci 5 (2018) 171376.
26. Rasic, D.: ACS Applied Mater. Interfaces 10 (2018) 21001.
27. Rasic, D.: Acta Materialia 163 (2019) 189.
28. Mandal, S.: Crystals 11 (2021) 1493.
29. Vukmirovic, J.: Ceram. Inter. 49 (2023) 2366.

Majchrák, P., Dérer, J., Lobotka, P., Vávra, I., Frait, Z., Horváth, D., : Ferromagnetic resonance study of exchange and dipolar interactions in discontinuous multilayers. J. Applied Phys. 101 (2007) 113911.

1. Schmool, D.: Handbook of Magnetic Materials 18 (2009) 111.
2. Ge, S.: J. Nanosci Nanotechnol. 10 (2010) 6411.
3. Singh, A.K.: J. Phys. D 46 (2013) 445005.
4. Yalcin, O.: J. Magnet. Magnet. Mater. 373 (2015) 144.
5. Schmool, D.S.: Solid State Phys. 67 (2016) 1.
6. Alvarado-Seguel, P.: Phys. Rev. B 100 (2019)144415.

Majchrák, P., Vávra, I., Lobotka, P., Dérer, J., Frait, Z., Horváth, D., : FMR in nanosystems – discontinous multilayers Fe/SiO2/Fe Modern Phys. Lett. B 21 (2007) 1201-1206.

       1. Schmool, D.: Handbook of Magnetic Materials 18 (2009) 111.
2. Schmool, D.S.: Solid State Phys. 67 (2016) 1.

Lobotka, P., Dérer, J., Vávra, I., de Julián Fernandez, C., Mattei, G., Mazzoldi, P., : Single-electron transport and magnetic properties of Fe-SiO2 nanocomposites prepared by ion implantation. Phys. Rev. B 75 (2007) 024423-1-7.

    1. Li, M.F.: Applied Phys. A 89 (2007) 807.
2. Arita, M.: Superlatt. Microst. 44 (2008) 449.
3. Kumar, P.: J. Vacuum Sci Technol. B 26 (2008) L36.
4. Sharma, S.K.: J. Phys.-Condensed Matt. 20 (2008) 285211.
5. Takahashi, K.: J. Vacuum Sci Technol. B 27 (2009) 805.
6. Zhu, P.L.: J. Applied Phys. 106 (2009) 043907.
7. Kennedy, J.: Nanotechnol. 22 (2011) 115602.
8. Leveneur, J.: Applied Phys. Lett. 98 (2011) 053111.
9. Leveneur, J.: J. Phys. Chem. C 115 (2011) 20978.
10. Kennedy, J.: J. Materials Sci 47 (2012) 1127.
11. Leveneur, J.: Mater. Sci Forum 700 (2012) 37.
12. Prokhorov, A. V.: Proc. SPIE 8414  (2012) 84140E.
13. Prokhorov, A.V.: J. Experim. Theoretical Phys. 115 (2012) 1.
14. Prokhorov, A.V.: Optics Spectroscop. 113 (2012) 305.
15. Barinov, I.O.: Proc. SPIE 8772 (2013) 87720H.
16. Mao, Z.: Nanoscale Research Lett. 9 (2014) 501.
17. Wang, H.: Nanoscale Research Lett. 9 (2014) 346.
#   18. Kennedy, J.: Inter. J. ChemTech Research 6 (2014) 3294.
19. Kanamaru, Y.: 14th IEEE Inter. Conf. Nanotechnol. – IEEE-NANO 2014. 6968058, p. 719.
20. Prakash, T.: J. Alloys Compounds 667 (2016) 255.
21. Ma, Y.: AIP Adv. 6 (2016) 055929.
22. Prakash, T.: Mater. Research Express 3  (2016) 126102.
23.Williams, G.V.M.: Nuclear Instrum. Methods in Phys. Res. B 409 (2017) 187.
24. Leveneur, J.: Emergent Mater.‏ 2 (2019) 313.

Chayka, O., Kraus, L., Lobotka, P., Sechovsky, V., Kocourek, T., and Jelinek, M.: High field magnetoresistance in Co–Al–O nanogranular films. J. Magnetics Magn. Mater. 300 (2006) 293-299.

 1.Liu, K.W.: Applied Phys. Lett. 90 (2007) art. no. 092507.
2. Tan, R.P.: Phys. Rev. Lett. 99 (2007) art. no. 176805
3. Jang, S.J.: Phys. Rev. B 76 (2007) art. no. 212403
4. Tan, R.P.: J. Magnetism Magnetic Mater. 320 (2008) L55.
5. Tan, R.P.: J. Applied Phys. 104 (2008) 023908.
6. Tan, R.P.: J. Applied Phys. 103 (2008) 07F317.
7. Tan, R.P.: Phys. Rev. B 79 (2009) 174428.
8. Sarkar, T.: J. Nanosci Nanotechnol. 9 (2009) 5315.
9. Silva, H.G.: J. Applied Phys. 106 (2009) 113910.
10. Tanase, S.I.: Materials Chem. Phys. 130 (2011) 327.
11. Tanase, S.I.: J. Supercond. Novel Magnetism 24 (2011) 2313.
12. Yu, T.: Applied Phys. Lett. 102 (2013) 022401.
13. Leveneur, J.: Emergent Mater.‏ 2 (2019) 313.

Sedlačková, K., Lobotka, P., Vávra, I., and Radnóczi, G.: Structural, electrical and magnetic properties of carbon–nickel composite thin films, Carbon 43 (2005) 2192-2198.

1. Kukielka, S.: Surface Coatings Technol. 200 (2006) 6258.
2. Bystrzejewski, M.: Fullerenes Nanotubes Carbon Nanostr. 15 (2007 167.
3. Kukielka, S.: Rev. Advanced Mater. Sci 15 (2007) 127.
4. Xiong, Y.: J. Magnetism Magnetic Mater. 320 (2008) 107.
5. Huang, L.B.: Physica B 403 (2008) 3434.
6. Abrasonis, G.: J. Physical Chem. C 112 (2008) 12628.
7. Abrasonis, G.: J. Physical Chem. C 112 (2008) 17161.
8. Han, B.G.: Smart Mater. Struct. 18 (2009) 065007.
9. Abrasonis, G.: J. Phys. Chem. C 113 (2009) 8645.
10. Abrasonis, G.: J. Applied Phys. 105 (2009) 083518.
11. Kumar, P.: Bull. Mater. Sci 32 (2009) 263.
12. Koppert, R.: Solid State Sci 11 (2009) 1797.
13. Berndt, M.: Plasma Processes Polymers 6 (2009) S902.
#   14. Zhou, S.: Proc. SPIE 7364 (2009) 736406.
15. Zhou, S.Q.: Acta Materialia  57 (2009) 4758.
16. Lewin, E.: J. Mater. Chem. 20 (2010) 5950.
17. Khun, N.W.: Surface Coatings Technol. 204 (2010) 3125.
18. Han, B.G.: Smart Mater. Struct. 19 (2010) 065012.
19. Han, B.G.: Materials Sci Technol. 26 (2010) 865.
20. VijaiBharathy, P.: Thin Solid Films 519 (2010) 1623.
21. Koppert, R.: Tm-Technisches Messen 77 (2010) 631.
22. Berndt, M.: J. Applied Phys. 109 (2011) 063503.
23. Bagdasarova, K. A.: Solid State Phenomena  168-169 (2011) 349.
24. Haslam, G.E.: Physical Chemistry Chemical Phys. 13 (2011) 12968.
25. El Mel, A.A.: Carbon 49 (2011) 4595.
26. Zhang, Y.: Advanced Mater. Research 311-313 (2011) 76.
27. Xu, Nai Y.: Electronic Compon. Technol. Conf. (2011)1234.
28. Gao, X.-L.: Chinese Phys. Lett. 29 (2012) 027102.
29. El Mel, A. A.: J. Applied Phys. 111 (2012) 114309.
30. Paul, R.: Applied Surface Sci 258 (2012) 5850.
31. Koppert, R.: Diamond Related Mater. 25 (2012) 50.
32. Bharathy, P. V.: Surface Interface Anal. 44 (2012) 288.
33. Krause, M.: Applied Phys. Lett. 101 (2012) 053112.
34. Kairaitis, G.: Radiation Interaction wtih Material and Its Use in Technologies (2012) 286.
35. Uhlig, S.: Diamond Related Mater. 34 (2013) 25.
36. Achour, A.: Diamond Related Mater. 34 (2013) 76.
37. Veprek, S.: J. Vacuum Sci Technol. A 31 (2013) 050822.
38. Kairaitis, G.: Medziagotyra 19 (2013) 264.
#   39. Bosworth, D.: Mater. Res. Soc Symp. Proc. 1451 (2013) 145.
40. Kairaitis, G.: Vacuum 99 (2014) 284.
41. Nedfors, N.: Surface Coatings Technol. 253 (2014) 100.
42. Bettini, L.G.: Nanotechnol. 25 (2014) 435401.
43. Zhou, Z.: Nanoscale 6 (2014) 12591.
#  44. Yang, J.: Comput. Cond. Matter 1 (2014) 51.
#  45. Han, B.: In Self-Sensing Concrete in Smart Structures. Elsevier 2014. ISBN: 978-012800658-0 pp. 1-385.
#    46. Wett, D.: Mater. Sci Forum 825-826 (2015) 548.
47. Dalouji, V.: Surface Rev. Lett. 23 (2016) 1650002.
48. Dalouji, V.: Europ. Phys. J.+ 131 (2016) 84.
49. Syugaev, A.V.: J. Solid State Electrochem. 20 (2016) 775.
50. Olah, N.: Surface Coatings Technol. 302 (2016) 410.
51. Bayer, B.C.: J. Phys. Chem. C 120 (2016) 22571.
52. Heras, I.: Solar Energy Mater. Solar Cells 157  (2016) 580.
53. Talu, S.: Microscopy Res. Techniq. 79  (2016) 1208.
54. Mihailescu, I.N.: Inter. J. Pharmaceut. 515  (2016) 592.
55. Bouts, N.: Carbon 111 (2017) 878.
56. Nygren, K.: J. Mater. Sci 52  (2017) 8231.
57. Bouts, N.: Thin Solid Films 630 (2017) 38.
58. Torkashvand, M.: J. Pharmaceut. Biomedical Anal. 139  (2017) 156.
59. Han, B.: J. Intelligent Mater. Systems Struct. 28  (2017) 699.
60. Dalouji, V.: Optik 148 (2017) 1.
61. Dalouji, V.: Chinese Phys. Lett. 35 (2018) 026501.
62. Dalouji, V.: Rare Metals 37 (2018) 143.
63. Dalouji, V.: Optik 156 (2018) 338.
64. Nguyen, M.-T.: Metals Mater. Inter. 24 (2018) 821.
65. Zhou, H.: Applied Surface Sci 440 (2018) 448.
66. Solovyev, A.A.: Thin Solid Films 650 (2018) 37.
67. Dalouji, V.: Chinese Phys. Lett. 35 (2018) 026501.
68. Dutta, H.: Ceramics Inter. 44 (2018) 14857.
69. Dalouji, V.: Silicon 10 (2018) 2889.
70. Karapepas, C.: J. Reinforced Plastics Compos. 37 (2018) 1378.
71. Kairaitis, G.: Surface Coatings Technol. 352 (2018) 120.
72. Asareh, N.: Optical Quantum Electron. 51 (2019) 373.
73. Kairaitis, G.: Coatings 10 (2020) 21.
74. Wang, C.: Renewab. Sustainab. Energy Rev. 134 (2020) 110277.
75. Odetola, P.: J. Metals Mater. Minerals ‏ 30 (2020) 119.
76. Suszko, T.: Applied Surface Sci 591 (2022) 153134.

Osvald, J., Kuzmík, J., Konstantinidis, G., Lobotka, P., Georgakilas, A., : Temperature dependence of GaN Schottky diodes I–V characteristics. Microelectronic Engn. 81 (2005) 181-187.

  1. Das, S.N.: Vacuum 81 (2007) 843.
2. Chiang, H.P.: Thin Solid Films 515 (2007) 6953.
3. Das, S.N.: J. Phys. D 40 (2007) 7291.
4. Pipinys, P.: Lithuanian J. Phys. 47 (2007) 51.
5. Cho, H.K.: J. Phys. D 41 (2008) 175107.
6. Lu, C.Z.: J. Vacuum Sci Technol. B 26 (2008) 1987.
7. Kim, H.: Applied Phys. Lett.  93 (2008) 192902.
8. Ravinandan, M.: J. Optoelectr. Advanced Mater. 10 (2008) 2787.
9. Quai, R.: Gallium Nitride Electronics. Springer Ser. Mater. Sci. Berlin: Springer-Verlag (2008) Chap. 2. ISBN 978-3-540-71890.
10. Ravinandan, M. : Semicond. Sci Technol. 24 (2009) 035004.
11. Dogan, S.: Physica E 41 (2009) 646.
12. Cinar, K.: J. Applied Phys. 106 (2009) 073717.
13. Yildrim, N.: J. Applied Phys. 108 (2010) 114506.
14. Lin, Y.: Thin Solid Films 519 (2010) 829.
15. Pipinys, P.: Adv. Cond. Matt. Phys. (2010) 526929.
16. Ejderha, K.: Mater. Sci Semicond. Process. 14 (2011) 5.
17. Chen, Y.: Proc. SPIE 7980 (2011) 79801E.
18. Ameur, K.: Sensor Lett. 9 (2011) SI. 2268.
19. Reddy, N.: Bull. Mater. Sci 35 (2012) 53.
20. Peta, K.R.: J. Crystal Growth 378 (2013) 299.
21. Elgawadi, A.: J. Phys. Cond. Matt. 25 (2013) 335803.
22. Grodzicki, M.: Applied Surface Sci 304 (2014) 24.
23. Ejderha, K.: European Phys. J.-Applied Phys. 68 (2014) Iss. 2.
24. Reddy, P.: J. Applied Phys. 116 (2014) 123701.
#     25. Munir, T.: Adv. Mater. Research 895 (2014) 439.
#     26. Wang, R.X.: In Gallium Nitride: Structure, Thermal Properties and Applications. Nova Sci Publ 2014 ISBN: 978-163321388-3. P. 119.
27. Dogan, H.: Physica B 457 (2015) 48.
28. Liu, C.: Comput. Mater. Sci 107 (2015) 170.
29. Tao, X.: Proc. Inter. Symp. Phys. Failure Analysis of Integrated Circuits –  IPFA 2015. Art. no. 7224418, p. 430.
30. Ejderha, K.: Silicon 9 (2017) 395.
31. Tao, X.-H.: Chinese Phys. Lett. 34 (2017) 038501.
32. Turut, A.: J. Optoelectron. Adv. Mater. 19 (2017) 424.
33. Asha, B.: J. Electronic Mater.47 (2018) 4140.
34. Wang, T.-T.: Chinese Phys. Lett. 36 (2019) 057101.
35. Khachariya, D.: J. Applied Phys. 128 (2020) 064501.
36. Reddy, P.: Semicond. Sci Technol. 35 (2020) 055007.
37. Ahmed, N.: Digest J. Nanomater. Biostruct.‏ 15 (2020) 399.
38. Liu, W.: IEEE Electron Dev. Lett.‏ 41 (2020) 1468.
39. Khachariya, D.: Applied Phys. Lett. 118 (2021) 122103.
40. Jadhav, A.: J. Electron Mater. 50 (2021) 3731.
41. Helal, H.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields (2021) 2916.
42. Ahmed, N.: Physica Scripta 96 (2021) 065211.
43. Deniz, A.R.: J. Mater. Sci-Mater. Electron. 33 (2022 ) 5233.
44. Helal, H.: Europ. Phys. J. Plus 137 (2022) 450.
45. Khachariya, D.: Applied Phys. Lett. 120 (2022) 172109.

Baláž, P., Godočíková, E., Kriľová, L., Lobotka, P., and Gock, E.: Preparation of nanocrystalline materials by high-energy milling. Mater. Sci Engn. A 386 (2004) 442-446.

1. Rosas, G.: J. Nanosci Nanotechnol. 5 (2005) 2133.
2. Schoonen, M.A.A.: Rev. Mineral. Geochemistry 64 (2006) 179.
3. Gong, J.: Proc. Advances in Management Technol. (2006) 331.
4. Karaman, I.: J. Materials Sci 42 (2007) 1561.
5. Grass, R.N.: J. Materials Chemistry 17 (2007) 1485.
6. Pilchak, A.L.: Philosoph. Magazine 87 (2007) 4567.
7. Athanassiou, E.K.: Chem. Mater. 19 (2007) 4847.
8. Gong, J.: Sci China E 50 (2007) 302.
9. Gong, J.: Proc. Advances in Management Technol. (2007) 634.
10. Cho, H.J.: J. Power Sources 176 (2008) 96.
11. Koszor, O.: Key Engn. Mater. 409 (2009) 369.
12. He, W.: J. Central South Univ. Technol. 16 (2009) 708.
#     13. Duan, X.-C.: Fenmo Yejin Cailiao Kexue yu Gongcheng/Mater. Sci Engn. Powder Metall. 14 (2009) 169.
#     14. Peng, Y.-X.: Cailiao Kexue yu Gongyi/Mater. Sci Technol. 17 (2009) 113.
15. Tapaszto, O.: Ceramics Inter. 36 (2010) 2247.
16. Ma, G.: Surface Coatings Technol. 221 (2013) 142.
17. Serrano, T.: Lecture Notes in Engn. Computer Sci 3 (2013) 2087.
18. Nayak, P.: Metallurg. Mater. Trans. A 45A (2014) 2132.
19. Zhu, Y.: Applied Clay Sci 114 (2015) 315.
20. Michalkova, M.: Ceramics Inter. 42  (2016) 15787.
21. Kurama, H.: Ceramics Inter. 43 (2017) S391.
22. Shi, J.: Key Engn. Mater. 777 KEM (2018) 150.
23. Kurama, H.: J. Austral. Ceramic Soc‏ 56 (2020) 559.
24. Saidov, K.M.: IOP Conf. Ser.: Mater. Sci Engn. 1008 (2020)
25. Zanker, S.: Zeitschrift Anorg. Allgemeine Chemie 648 (2022) SI00026.

Lobotka, P., Vávra, I., Fendrych, F., and Chayka, O.: Structural and electrical manifestation of ageing in thin-film Fe–Ta–O nanocomposite prepared by plasma jet technique. Physica Status Solidi A 201 (2004) 1493-1499.

#       1. Kumar, P.: Inter. J. Nanosci 7 (2008) 255.

Lobotka, P., Radnóczi, G., Czigány, Zs., Vávra, I., Držík, M., Micusik, M., Dobročka, E., and Kunzo, P.: Preparation of nickel, nickel-iron, and silver-copper nanoparticles in ionic liquids. In: IEEE Proc. 17th Inter. Conf. on Solid-State Sensors, Actuators and Microsyst. – Transducers 2013 & EUROSENSORS XXVII. Barcelona 2013. IEEE 2013. ISBN: 978-1-4673-5981-8. P. 2021-2024.

1. Verma, C.: J. Molecular Liquids 276 (2019) 826.
#     2. Abdulhadi, O.O.: J. Phys.: Conf. Ser. 2114 (2021) 012083.

Lobotka, P., Vávra, I., Fendrych, F., Kraus, L., : Electric transport in composite Fe–Ta–O granular film prepared by plasma jet technique. J. Magnetism Magnetic Mater. 240 (2002) 491-493.

      1. Masubuchi, Y.: J. American Ceramic Soc 94 (2011) 765.
2. Kennedy, J.: J. Materials Sci 47 (2012) 1127.

Fendrych, F., Kraus, L., Chayka, O., Lobotka, P., Vávra, I., Tous, J., Studnicka, V., Frait, Z., : Preparation of nanostructured magnetic films by the plasma jet technique. Monatshefte fur Chemie 133 (2002) 773-784.

 1. Gubin, S.P.:Uspekhi Khimii 74 (2005) 539.
2. Khajeh, M.: Chemical Rev. 113 (2013) 7728.
#    3. Demydenko, M.G.: J. Nano- and Electron. Phys. 6 (2014) 04046.
4. Gawande, M.B.: Coordination Chem. Rev. 288 (2015) 118.
5. Sharma, N.: RSC Adv. 5 (2015) 53381.
6. Chu, X.: Magnetic Nanomaterials: Fundamentals, Synthesis Appl. 2017. P. 83-120.

Aliev, F., Schad, R., Lobotka, P., Vávra, I., Seynaeve, E., Moshchalkov, V., Bruynseraede, Y., : Nonlinear electron transport in magnetic multilayers Applied Phys. Lett. 75 (1999) 704-706.

   1. Nonoyama, S.: J. Phys. Soc Japan 70 (2001) 2395.

Vávra, I., Lobotka, P., Dérer, J., Gaži, Š., Wallenberg, L., Holý, V., Kubena, A., Sobota, J., : Stacked Josephson junction based on Nb/Si superlattice J. Low Temper. Phys. 106 (1997) 373.

     1. Kuplevashky, S.V.: Phys. Rev. B 56 (1997) 7858.
2. Kuplevashky, S.V.: Phys. Rev. B 60 (1999) 7496.
3. Yusuf, S.M.: J. Magnetism Magnetic Mater. 199 (1999) 564.
*   4. Vávra, O.: Kand. diz. práca. Bratislava, ElÚ SAV 2002. 71 s.
5. Kashyap, S.: Thin Solid Films 531 (2013) 312.
6. Xing, J.: Applied Phys. Lett. 104 (2014) 163105.

Lobotka, P., Vávra, I., Gaži, Š., Dérer, J., : Vertically stacked (Nb/Si) 10 Josephson Junction Czechoslovak J. Phys. 46 (1996) 701.

      1. Fedorenko, A.I.: J. Experimen. Theoretical Phys. 90 (2000) 1010.

Lobotka, P., Vávra, I., Machajdík, D., Jergel, M., Gaži, Š., Rosseel, E., Baert, M., Bruynseraede, Y., Forsthuber, M., Hilscher, G., : Commensurate vortex lattice in superconducting Nb/Ti multilayers Physica C 229 (1994) 231.

      1. Ziese, M.: Phys. Rev. B 53 (1996) 8658.
2. Carneiro, G.: Phys. Rev. B 57 (1998) 6077.
3. Lehrer, R.A.: Phys. Rev. B 58 (1998) 12385.
4. Berger, J.: Phys. Rev. B 59 (1999) 8896.
5. Han, SW.: Phys. Rev. B 62 (2000) 9784.
6. Fogel, N.Y.: Low Temp. Phys. 27 (2001) 752.
7. Silva, C.C.D.: Physica C 354 (2001) 232.
8. Han, S.W.: J. Korean Phys. Soc. 42 (2003) 394.
9. Han, S.W.: Physica B 336 (2003)162.
10. Eisenmenger, J.: Physica C 411 (2004) 136.
11. Gavrilkin, S.Y.: Supercond. Sci Technol. 23 (2010) 065019.

Rosseel, E., Baert, M., Temst, K., Moshchalkov, V., Bruynseraede, Y., Lobotka, P., Vávra, I., Senderák, R., and Jergel, M.: Critical fields of W/Si multilayers Physica C 225 (1994) 262.

1. Matsuo, Y.: Physica C 277 (1997) 138.
2. Matsuo, Y.: Physica C 299 (1998) 23.
3. Florya, I.N.: Low Temp. Phys. 44 (2018) 221.
4. Lau, Y.-C.: J. Phys.-Mater. 3 (2020) 034001.

Gömöry, F., Lobotka, P., Fröhlich, K., : Variable temperature insert for AC susceptiibility measurements at AC field amplitude up to 0.1T Cryogenics 34 (1994) 837.

     1. Chen, D.X.: Measurement Sci Technol. 15 (2004) 1195.
2. Laurent, P.: Measurement Sci Technol. 19 (2008) 085705.
3. Lousberg, G.P.: Supercond. Sci Technol. 22 (2009) 045009.
#   4. Laurent, P.: In Advanced Instrument Engn.: Measurement, Calibration, and Design. IGI Global: 2013 ISBN: 978-1-4666-4165-5. P. 208.

Takács, S., Gömöry, F., Pevala, A., Lobotka, P., : Penetration field in superconductors with considerable flux creep and flux flow Supercond. Sci Technol. 5 (1992) S452.

*    1. Campbell, A.M.: Magnetic Susceptibility  of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 129.
2. Brandt, E.: Physica Scripta T45 (1992) 63.

Luby, Š., Majková, E., Lobotka, P., Vávra, I., Jergel, M., Senderák, R., Grno, L., : Superconductivity of tungsten-silicon multilayers Physica C 197 (1992) 37.

     1. Fogel, N.Y.: Phys. Rev. B 53 (1996) 71.

Takács, S., Gömöry, F., Lobotka, P., : Frequency dependence of AC susceptibility due to the viscous motion of flux lines IEEE Trans. Magn. 27 (1991) 1057.

*    1. Campbell, A.M.:  Proc. Inter. Symp. on AC Superconductors. Bratislava: EÚ SAV 1991. P. 182.
*    2. Goldfarb,  R.B.: Magnetic Susceptibility  of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 49.
*    3. Campbell, A.M.: Magnetic Susceptibility  of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 129.
4. Leblanc, D.: Phys. Rev. B 45 (1992) 5443.
5. Brandt, E.H.: Phys. Scripta 45 (1992) 63.
6. Bogomolov, V.N.: Physica C 208 (1993) 371.
7. Polichetti, M.: Physica C 235-240 (1994) 3217.
8. Lee, C.Y.: Physica C 256 (1996) 183.
9. Qin, M.J.: Phys. Rev. B 54 (1996) 7536.
*   10. Campbell, A.M.: Handbook Applied  Supercond. Vol.1.Bristol: IOP 1998. P. 186.
11. Di Gioacchino, D.: Phys. Rev. B 59 (1999) 11539.
12. Ray, A.: Materials Research Bulletin 37 (2002) 833.
13. Ozturk, A.: Supercond. Sci Technol. 18 (2005) 1029.
14. Celebi, S.: J. Applied Phys. 100 (2006) Art. No. 073912.
15. Tsukamoto, O.: Supercond. Sci Technol. 20 (2007) 974.
16. Celebi, S.: Supercond. Sci Technol. 22 (2009) 034018.
17. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.
18. Thakur, K.P.: Supercond. Sci Technol. 24 (2011)  045006.
19. Ozturk, A.: European Phys. J.-Applied Phys. 80 (2017) 30601.

Gömöry, F., Takács, S., Lobotka, P., : Flux penetration into high Tc superconductors in AC magnetic fields. In: Studies of High Temp. Superconductors 6. Ed.A.V.Narlikar. New York: Nova Sci Publ. 1990. P. 315.

     1. Brandt, E.H.: Inter. J. Mod. Phys. B 5 (1991) 751.
2. Brandt, E.H.: Phys. Scripta 45 (1992) 63.
3. Campbell, A.M.: IEEE Trans. Applied Supercond. 5 (1995) 682.
*    4.  Brongersma, S.H.: Vort. Config. Supercon. Film Proefsch. Leiden 1995.

Takács, S., Gömöry, F., Lobotka, P., : The influence of viscous flux flow on AC losses of high Tc superconductors Physica B 165 (1990) 1399.

     1. Bozec, X.: Physica C 179 (1991) 22.
2. Senoussi, S.: J. de Phys. 111 2 (1992) 1041 R.
3. Lee, C.Y.: Physica C 256 (1996) 183.
*    4. Campbell, A.M.: Handbook Applied Supercond. Vol.1. Bristol: IOP 1998. P. 186.
5. Polak, M.: Supercond. Sci Technol. 20 (2007) S293.

Gömöry, F., Takács, S., Lobotka, P., Fröhlich, K., Plecháček, V., : AC magnetization of high Tc superconductors at low superimposed DC fields Physica C 160 (1989) 1.

     1. Wahid, S.F.: Physica C 170 (1990) 395.
2. Campbell, A.M.: Physica C 172 (1990) 253.
3. Loegel, B.: Supercond. Sci Technol. 3 (1990) 504.
4. Gianelli, A.: Physica A 168 (1990) 277.
5. Campbell, A.M.: Supercond. Sci Technol. 3 (1990) 450.
6. Ludwig, F.: Physica C 177 (1991) 401.
7. Campbell, A.M.: IEEE Trans. Magnet. 27 (1991) 1660.
8. Doyle, R.A.: Supercond. Sci Technol. 4 (1991) S274.
9. Forsthuber, M.: Physica C 177 (1991) 401.
*   10. Campbell, A.M.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York, Plenum Press 1991. P. 129.
*   11. Nicolo, M.: PhD Thesis. Boulder: Univ. Colorado 1991.
12. Wahid, S.F.: Physica C 194 (1992) 211.
13. Gjolmesli, S.: Physica C 220 (1994) 33.
14. Lee, S.: Japan. J. Applied Phys. 33 (1994) 3889.
15. Martinez, E.: Physica C 289 (1997) 1.
16. Ramsbottom, H.D.: J. Phys. C 9 (1997) 4437.
17. Babu, N.H.: Physica C 302 (1998) 167.
18. Ramsbottom, H.D.: J. Applied Phys. 85 (1999) 3732.
19. Thakur, K.P.: Supercond. Sci Technol. 24 (2011) 045006.

Hanic, F., Polák, M., Horváth, I., Gömöry, F., Lobotka, P., Plesch, G., Gáliková, L., : Characterization on doped and substituted high Tc superconductors Y(Ce)-Ba(Sr)-Cu-O (1:2:3) British Ceramic Trans. J. 88 (1989) 35.

     1. Panova, T.I.: J. Applied Chem. (Rus.) 63 (1990) 2173.
2. Dollmore, D.: Anal. Chem. 62 (1990) R44.
3. Send, D.: J. Physics-Cond. Matt. 3 (1991) 1181.

Gömöry, F. and Lobotka, P.: Determination of shielding current density in bulk cylindrical samples of high Tc superconductors from AC susceptibility measurement Solid State Comm. 66 (1988) 645.

1. Ciccarello, I.: Europhys. Lett. 7 (1988) 185.
2. Nikolo, M.: Phys. Rev. B 39 (1989) 6615.
3. Emmen, J.H.P.M.: J. Less Comm. Metals 151 (1989) 63.
4. Koziol, Z.: J. de Physique 50 (1989) 3123.
5. Murphy, D.: Solid State Comm. 69 (1989) 367.
6. Chen, D.-X.: Cryogenics 29 (1989) 800.
7. Muller, K.-H.: Physica C 159 (1989) 717.
8. Berg, P.: Modern Phys. Lett. B 15 (1989) 1163.
9. Koziol, Z.: Physica C 159 (1989) 182.
10. Loegel, B.: Physica C 159 (1989) 816.
11. Gjomesli, S.: Physica C 162-4 (1989) 339.
12. Neumann, C.: J. Less Comm. Metals 151 (1989)
13. Mehdaouiet, A.: J. Applied Phys. 66 (1989) 1497.
14. Blazey, K.W.: Solid State Comm. 72 (1989) 1199.
15. Pruss, A.: Phys. Status Solidi A 116 (1989) 793.
16. Mehdaouiet, A.: Phys. Status Solidi A 116 (1989) 777.
17. Mehdaouiet, A.: E-MRS Spring Meeting, Strassbourg 1990.
*   18. Koziol, Z.: Proc. Europ. Conf. Ustroň 1989. P. 575.
*   19. Malozemoff,  A.P.:  Physical  Properties  of High Temperature Superconductors. New York: World Sci. 1989. P. 71.
*   20. Nganga, L.: PhD.Thesis. Univ. Bordeaux 1990.
21. Forsthuber, M.: Topics in Solid State Sci. 99 (1990) 69.
22. Choy, Jim-Ho: Bull. Korea Chem. Soc. 11 (1990) 560.
23. Ishida, T.: Phys. Rev. B 41 (1990) 8937.
24. Gould, A.: IEEE Trans. Magnetics 25 (1990) 3224.
25. Shaw, G.: IEEE Trans. Magnetics 25 (1990) 3512.
26. Win, W.: Physica C 172 (1990) 217.
27. Win, W.: Physica C 172 (1990) 233.
28. Nganga, L.: J. Less Comm. Metals 164-165 (1990) 208.
29. Mehdaouiet, A.: Coll. de Phys. C1 51 (1990) 997.
30. Chen, D.-X.: Physica C 168 (1990) 652.
31. Muller, K.-H.: Physica C 168 (1990) 585.
32. Heintz, J.M.: Eur. J. Solid State Inorg. Chem. 27 (1990) 703.
33. Luchini, C.: Phys. Status Solidi B 157 (1990) K123.
34. Chen, K.X.: Modern Phys. Lett. B 4 (1990) 63.
35. Shindé, S.L.: Phys. Rev. B 41 (1990) 8388.
36. Loegel, B.: Supercond. Sci Technol. 3 (1990) 504.
37. Loegel, B.: Cryogenics 30 (1990) 623.
38. Piechota, J.: Physica Scripta 42 (1990) 109.
39. Kraak, W.: Physica Status Solidi a 120 (1990) 185.
40. Chen, D.X.: J. Applied Phys. 70 (1991) 5463.
41. Ludwig, F.: Physica C 177 (1991) 401.
*   42. Dyomin, A.V.: Fizika niz. temp. 17 (1991) 1014.
43. Forsthuber, M.: Physica C 177 (1991) 401.
44. Kadyrbaev, A.R.: Pisma ŽTF 17 (1991) 70.
45. Leyva, G.: Solid State Comm. 78 (1991) 887.
46. Mehdaouiet, A.: Supercond. Sci Technol. 4 (1991) S334.
*   47. Nikolo, M.: PhD Thesis. Boulder: Univ. Colorado 1991.
48. Loegel, B.: Physica C 179 (1991) 15.
*   49. Goldfarb, R.B.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 49.
*   50. Chen, Q.Y.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 81
*   51. Marohnic, Z.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 267
*   52. Loegel, B.: Magnetic Susceptibility of Superconductors and
Other Spin Systems. New York: Plenum Press 1991. P. 365
*   53. Polák,  M.: Proc. 2nd Czechosl.-Italian Symp. on  Supercond. Bratislava: Veda 1991. P. 61.
*   54. Huťka, P.: Proc. 2nd  Czechosl.-Italian Symp. on  Supercond. Bratislava: Veda 1991. P. 113.
*   55. Polák, M.: Proc. 6th  Int. Symp. on Weak Supercond. Singapore: World Sci. Publ. 1991. P. 43.
56. Forsthuber, M.: Phys. Rev. B 45 (1992) 7996.
57. Grinchenko, Y.A.: Supercond. Sci Technol. 5 (1992) S468.
58. Leblanc, D.: Phys. Rev. B 45 (1992) 5443.
59. Senoussi,S.: J. Phys. III 2 (1992) R1041.
60. Li, J.W.: Phys. Rev. B 46 (1992) 9190.
61. Cesnak, L.:Czechosl. J. of Phys. 42 (1992) 1025.
62. Tsymbal, L.T.: Fizika niz. temp. 18 (1992) 1191.
63. Mehdaoui, A.: Mater. Sci Engn. B 18 (1993) 141.
64. Xing, W.: Physica C 205 (1993) 311.
65. Loegel, B.: Physica C 210 (1993) 432.
66. Bodi, A.C.: J. Supercond. 6 (1993) 243.
67. Ravi, S.: Physica C 230 (1994) 51.
68. Serfoso, G.: J. Mater. Sci Lett. 13 (1994) 693.
69. Ravi, S.: Phys. Rev. B 49 (1994) 13082.
70. Wang, Z.D.: Physica Status Solidi B 184 (1994) K15.
71. Loegel, B.: Silic. Industriels 59 (1994) 93.
72. Rinaldi, D.: Nuovo Cimento D 17 (1995) 381.
73. Guo, S.H.: Physica C 247 (1995) 115.
74. Khokhlov, V.A.: Fiz. Nizkich Temp. 21 (1995) 200.
75. Berling, D.: Solid State Comm. 97 (1996) 731.
76. Kumar, N.H.: Phys. Rev. B 53 (1996) 15281.
77. Kumaraswamy, B.V.: Phys. Rev. B 53 (1996) 6759.
78. Ma,  L.P.:  Rev.  Sci Instr. 67 (1996)   1570.
79. Berling, D.: Supercond. Sci Technol. 9 (1996) 205.
80. Ghosh, A.K.: Solid State Comm. 104 (1997) 695.
81. Mehdaoui, A.: J. Mater. Research 12 (1997) 2226.
82. Ji, Z.M.: Physica C 279 (1997) 233.
83. Han, G.C.: Applied Phys. Lett. 71 (1997) 1860.
84. Kimishima, Y.: Cryogenics 38 (1998) 763.
85. Tampieri, A.:  Physica C 298 (1998) 10.
86. Ravi, S.: Physica C 295 (1998) 277.
87. Berling, D.: J. de Physique IV 8 (1998) 57.
88. Celebi, S.: Physica C 309 (1998) 131.
89. Deac, I.G.: Inter. J. Modern Phys. B 13 (1999) 1645.
90. Di Gioacchino, D.: Phys. Rev. B 59 (1999) 11539.
91. Li, J.G.: Physica C 325 (1999) 109.
92. Kimishima, : Supercond. Sci Technol. 13 (2000) 295.
93. Sedky, A.: J. Magnetics Magnetic Mater. 237 (2001) 22.
94. Malik, A.I.: Physica C 377 (2002) 421.
95. Ray, A.: J. Supercond. 15 (2002) 201.
96. Tampieri, A.: Physica C 400 (2004) 97.
97. Sprio, S.: Euro Ceramics VIII, PTS 1-3 SE Key Engn. Materials 264-268 (2004) 1201.
98. Sedky, A.: Physica C 403 (2004) 297.
100. Agarwal, S.K.: J. Physics & Chem. Solids 66 (2005) 729.
101. Keshri, S.: Czechoslov. J. Phys. 55 (2005) 73.
102. das Virgens MG.: Phys. Rev. B 71 (2005) 064520.
103. Yegen, D.: Chinese J. Phys. 44 (2006) 233.
104. Sedky, A.: Solid State Comm. 139 (2006) 126.
105. Nayak, P.K.: Solid State Comm. 138 (2006) 377.
106. Yegen, D.: Physica C 466 (2007) 5.
107. Ozturk, O.: Physica B 399 (2007) 94.
108. Terzioglu, C.: J. Materials Sci 42 (2007) 4636.
109. Sprio, S.: J. Materials Sci 19 (2008) 1012.
110. Terzioglu, C.: J. Phys.: Conf. Series 153 (2009) 012029.
111. Khurram, A.A.: Physica C 471 (2011) 35.
112. Chen D-X.: Supercond. Sci Technol. 24 (2011) 075004.
113. Ansari, I.A.: Physica Scripta  84 (2011) 065701.
114. Yildirim, G.: J. Supercond. Novel Magnetism 24 (2011) 2153.
115. Arlina, A.: J. Supercond. Novel Magnetism 28 (2015) 1953.
116. Mancusi, D.: J. Phys.-Cond. Matt. 29 (2017) 425701.
117. Roy, S.: Physica C 580 (2021) 1353766.
118. Khene, S.: J. Nanopart. Res. 23 (2021) 236.

Lobotka, P., Gömöry, F., : The complex AC susceptibility of superconducting YBaCuO thin film and bulk samples Physica Status Solidi A 109 (1988) 205.

     1. Müller, K.-H.: Physica C 159 (1989) 717.
2. Wahid, S.F.: Physica C 170 (1990) 395.
3. Polturak, E.: Rev. Sci Instrum. 61 (1990) 1759.
*    4. Nganga, L.: PhD. Thesis. Bordeaux: 1990.
5. Artemov, A.N.: Fizika niz. temp. 17 (1991) 1380.
6. Artemov, A.N.: Phys. Lett. A 157 (1991) 85.
7. Forsthuber, M.: Physica C 177 (1991) 401.
8. Gupta, A.: Physica C 184 (1991) 393.
*    9. Huťka, P.: Proc. 2nd Czechosl.-Italian  Symp. on Supercond. Bratislava: Veda 1991. P. 61.
*   10. Polturak, E.: Magnetic Susceptibility of Superconductors and Other Spin Systems. New York: Plenum Press 1991. P. 423.
11. Fabbricatore, P.: J. Applied Phys. 73 (1993) 1873.
12. Fabbricatore, P.: Cryogenics 33 (1993) 1170.
13. Fabbricatore, P.: J. Applied Phys. 73 (1993) 1873.
14. Fereira, E.M.: Physica C 349 (2001) 235.

Vávra, I., Lobotka, P., Zachar, F., Osvald, J., : TEM in situ observation of electromigration damage in Al-Cu stripe Physica Status Solidi A 63 (1981) 363.

     1. Rodbell, K.P.: Thin Solid Films 108 (1983) 95.
2. Zehe, A.: J. Phys. F 16 (1986) 407.
3. Luby, S.: Thin Solid Films 116 (1984) 97.
4. Fantini, F.: Microelectr. Reliability 24 (1984) 275.
*    5. Chang, C.Y: Mater. Res. Soc. Symp. Proc. 255. Materials Research 1991. P. 125.
6. Lloyd, J.R.: J. Applied Phys. 71 (1992) 3231.
7. Vook, R.W.: Applied Surface Sci 60-1 (1992) 71.
8. Fritzsch, B.: Crystal Research Technol. 28 (1993) K44.
9. Vook, R.W.: Mater. Chem. Phys. 36 (1994) 199.
10. Patrinos, A.J.: J. Applied Phys. 75 (1994) 7292.
11. Arzt, E.: J. Applied Phys. 76 (1994) 1563.
12. Lloyd, J.R.: Applied Phys. Lett. 69 (1996) 2486.
13. Rirge, S.P.: Applied Phys. Lett. 69 (1996) 2367.
14. Okabayashi, H.: Applied Phys. Lett. 68 (1996) 1066.
15. Okabayashi, H.: Japan. J. Applied Phys. 35 (1996) 1102.
16. Shih, W.C.: Thin Solid Films 292 (1997) 103.
17. Zehe, A.: Microelectron. Reliab. 42 (2002) 1849.
18. Zehe, A.: Crystal Research Technol. 37 (2002) 817.
19. Zehe, A.: Modern Phys. Lett. B 16 (2002) 299.
20. Zehe, A.: Mater. Lett. 57 (2003) 3729.

Lobotka, P., Vávra, I., : TEM in situ observation of electromigration damage in Al-Cu strips Physica Status Solidi A 63 (1981) 655.

     1. Rodbell, K.P.: Thin Solid Films 108 (1983) 95.
2. Luby, S.: Thin Solid Films 116 (1984) 97.
3. Zehe, A.: J. Phys. F 16 (1986) 407.
*   4. Chang, C.Y: Mater. Res. Soc. Symp. Proc. 255. Materials Research 1991. P. 125.
5. Vook, R.W.: Applied Surface Sci 60-61 (1992) 71.
6. Vook, R.W.: Mater. Chem. Phys. 36 (1994) 199.
7. Okabayashi, H.: Japan. J. Applied Phys. 35 (1996) 1102.
8. Okabayashi, H.: Applied Phys. Lett. 68 (1996) 1066.
9. Shih, W.C.: Thin Solid Films 292 (1997) 103.
#   10. Spolenak, R.: In: In-Situ Electron Microscopy: Applications in Physics, Chemistry and Materials Science. Eds. G.Dehm et al. Wiley-VCH Verlag 2012. ISBN: 978-352-7319-732. P. 279-301.

Vávra, I., Lobotka, P., : TEM in situ observation of electromigration in Al stripes with quasi bamboo structure Physica Status Solidi A 65 (1981) K107.

     1. Luby, S.: Thin Solid Films 116 (1984) 97.
2. Büschel, M.: Zeitchrift der Tech. Univ. Dresden 35 (1986) 3.
*   3. Chang, C.Y: Mater. Res. Soc. Symp. Proc. 255. Materials Research 1991. P. 125.
4. Vook, R.W.: Applied Surface Sci 60-1 (1992) 71.
5. Vook, R.W.: Mater. Chemistry Phys. 36 (1994) 199.
6. Shih, W.C.: J. Electr. Mater. 23 (1994) 1315.
7. Patrinos, A.J.: J. Applied Phys. 75 (1994) 7292.
8. Arzt, E.: J. Applied Phys. 76 (1995)  1563.
9. Shih, W.C.: Thin Solid Films 292 (1997) 103.

Luby, Š., Lobotka, P., Bezák, V., : Electromigration behaviour and the lifetime of aluminium thin film conductors under superimposed d.c. and noise powering Physica Status Solidi A 60 (1980) 539.

1. Zehe, A.: J. Phys. F 16 (1986) 407.
2. Fritzsch, B.: Crystal Res. Technol. 28 (1993) K44.
3. Zehe, A.: Microelectron. Reliab. 42 (2002) 1849.
4. Zehe, A.: Crystal Research Technol. 37 (2002) 817.
5. Zehe, A.: Modern Phys. Lett. B 16 (2002) 299.
6. Zehe, A.: Mater. Lett. 57 (2003) 3729.
7. Zehe, A.: J. Molecular Structure 709 (2004) 215.
8. Zehe, A.: Materials Sci Forum 480 (2005) 463.
#   9. Grovenor, C.R.M.: Microelectronic Mater. eBook Published 2017 eBook ISBN 978-135-143-154-5. 544 p.