Ing. Šoltýs Ján, PhD.

Vetrova, Iu.V., Zelent, M., Šoltýs, J., Gubanov, V.A., Sadovnikov, A.V., Ščepka, T., Dérer, J., Stoklas, R., Cambel, V., and Mruczkiewicz, M.: Investigation of self-nucleated skyrmion states in the ferromagnetic/nonmagnetic multilayer dot, Applied Phys. Lett. 118 (2021) 212409.

1. Heyderman, L.: Applied Phys. Lett. 119 (2021) 080401.

Kityk, A., Protsenko, V., Danilov, F.I., Pavlík, V, Hnatko, M, and Šoltýs, J.:  Enhancement of the surface characteristics of Ti-based biomedical alloy by electropolishing in environmentally friendly deep eutectic solvent (Ethaline), Colloids Surfaces A 613 (2021) 126125.

1. Lebedeva, O.: Metals 11 (2021) 959.

Marcin, M., Pribulová, Z., Kačmarčík, J., Medvecká, Z., Klein, T., Verchenko, V.Yu., Cambel, V., Šoltýs, J., and Samuely, P.: One or two gaps in Mo8Ga41 superconductor? Local Hall-probe magnetometry study, Supercond. Sci Technol. 34 (2021) 035017.

1. Ryzynska, Z.: J. Phys. Chem. C 125 (2021) 11294.

Marcin, M., Pribulová, Z., Kačmarčík, J., Verchenko, V.Yu., Shevelkov, A.V., Cambel, V., Šoltýs, J., and Samuely, P.: Local magnetometry of superconducting Mo8Ga41 and Mo7VGa41: vortex pinning study, Acta Phys. Polonica A 137 (2020) 794-796.

1. Ryzynska, Z.: J. Phys. Chem. C 125 (2021) 11294.

Szívós, J., Pothorszky, S., Šoltýs, J., Serényi, M., An, H., Gao, T., Deák, A., Shi, J., and Sáfrán, G.: CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media, Applied Surface Sci 435 (2018) 31-38.

1. Abbas, S.K.: J. Magnetism Magn. Mater. 469 (2019) 196.
2. Toyama, R.: Mater. Res. Express 7 (2020) 066101.
3. Toyama, R.: Japan. J. Applied Phys. 59 (2020) 075504.

Sečianska, K., Šoltýs, J. and Cambel, V.: Study of magnetic micro-ellipses by cantilever sensor, Acta Phys. Polonica A 131 (2017) 833-836.

1. Nilsen, M.: J. Micromech. Microengn. 29 (2019) 025014.

Neilinger, K., Šoltýs, J., Mruczkiewicz, M., Dérer, J., and Cambel, V.: Dual-cantilever magnetometer for study of magnetic interactions between patterned permalloy microstructures, J. Magnetism Magnetic Mater. 444 (2017) 354-360.

1. Yu, Y.: Japan. J. Applied Phys. 57 (2018) 090312.

Pribulová, Z., Medvecká, Z., Kačmarčík, J., Komanický, V., Klein, T., Rodière, P., Levy-Bertrand, F., Michon, B., Marcenat, C., Husaníková, P., Cambel, V., Šoltýs, J., Karapetrov, G., Borisenko, S., Evtushinsky, D., Berger, H., and Samuely, P.: Magnetic and thermodynamic properties of CuxTiSe2 single crystals, Phys. Rev. B 95 (2017) 174512.

1. Ekino, T.: J. Phys.-Cond. Matt. 29 (2017) 505602.
2. Banerjee, A.: Phys. Rev. B 98 (2018) 104206.

Medvecká, Z., Klein, T., Cambel, V., Šoltýs, J., Karapetrov, G., Levy-Bertrand, F., Michon, B., Marcenat, C., Pribulová, Z., and Samuely, P.: Observation of a transverse Meissner effect in CuxTiSe2 single crystals, Phys. Rev. B 93 (2016) 100501(R).

1. Lian, C.: Phys. Rev. B 100 (2019) 205423.
2. Lian, C.: Nature Comm. 11 (2020) 43.
3. Krajenbrink, A.: Phys. Rev. E 103 (2021) 042120.

Blaho, M., Gregušová, D., Haščík, Š., Seifertová, A., Ťapajna, M., Šoltýs, J., Šatka, A., Nagy, L., Chvála, A., Marek, J., Carlin, J.-F., Grandjean, N., Konstantinidis, G., and Kuzmík, J.: Technology of integrated self-aligned E/Dmode n++GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics, Semicond. Sci Technol. 31 (2016) 065011.

1. Kumar, S.: IEEE Calcutta Conf. – CALCON 2020, pp.‏ 378. ‏.

Kačmarčík, J., Pribulová, Z., Samuely, T., Szabó, P., Cambel, V., Šoltýs, J., Herrera, E., Suderow, H., Correa-Orellana, A., Prabhakaran, D., Samuely, P., : Single-gap superconductivity in ẞ-Bi2Pd. Phys. Rev. B 93 (2016) 144502.

1. Biswas, P.K.: Phys. Rev. B 93 (2016) 220504.
2. Che, L.: Phys. Rev. B 94 (2016) 024519.
3. Xu, C. Q.: Phys. Rev. B 94 (2016) 165119.
4. Guan, S.-Y.: Sci Adv.2 (2016) e1600894.
5. Zheng, J.-J.: Phys. Rev. B 95 (2017) 014512.
6. Saib, S.: Intermetall.84 (2017) 136.
7. Mitra, S.: Phys. Rev. B 95 (2017) 134519.
8. Lv, Y.-F.: Sci Bull.62 (2017) 852.
9. Iwaya, K.: Nature Comm. 8 (2017) 976.
10. Choi, H.: Phys. Rev. Mater. 1 (2017) 034201.
11. Wang, B.T.: J. Phys.-Cond. Matt. 29 (2017) 325501.
#   12. Xu, C.Q.: Phys. Rev. B 96 (2017) 064528.
13. Zhou, Y.: Phys. Rev. B 99 (2019) 054501.
14. Xu, T.: Phys. Rev. B 100 (2019) 161109.
15. Li, Y.: Science 366 (2019) Iss. 6462, p. 238-+.
16. Kolapo, A.: Sci Rep. 9 (2019) 12504.
17. Chen, J.: Phys. Rev. B 101 (2020) 054514.
18. Liu, P.-F.: Phys. Rev. B 102 (2020) 155406.
19. Yan, D.Y.: Supercond. Sci Technol. 34 (2021) 035025.

Ščepka, T., Polakovič, J., Šoltýs, J., Tóbik, J., Kulich, M., Kúdela, R., Dérer, J., and Cambel, V.: Individual vortex nucleation/annihilation in ferromagnetic nanodots with broken symmetry observed by micro/Hall magnetometry, AIP Adv. 5 (2015) 117205.

1. Ehrmann, A.: J. Magnetism Magnetic Mater. 475 (2019) 727.

Precner, M., Fedor, J., Šoltýs, J., and Cambel, V.: Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples. Nanotechnol. 26 (2015) 055304.

 1. Wang, L.: Nanoscale Res. Lett. 11 (2016) 342.
2. Liu, J.: Micron 102 (2017) 15.
#          3. Passeri, D.: In Magnetic characterization techniques for nanomater. Springer 2017. ISBN 978-3-662-52779-5, p. 209.
4. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
5. Zhang, Y.: J. Controlled Release 322 (2020)‏ 401.

Precner, M., Fedor, J., Tóbik, J., Šoltýs, J., and Cambel, V.: High resolution tips for switching magnetization MFM, Acta Phys. Polonica A 126 (2014) 386-387.

1. Schoenherr, P.: Materials 10 (2017) 1051.
2. Puttock, R.: IEEE Trans.Magnet. 53 (2017) 6500805.
3. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.

Štrbik, V., Reiffers, M., Dobročka, E., Šoltýs, J., Španková, M., Chromik, Š., : Epitaxial LSMO thin films with correlation of electrical and magnetic properties above 400K. Applied Surface Sci 312 (2014) 212-215.

1. Dutta, P.: J. Alloys Compounds 653 (2015) 585.
2. Shiota, T.: Thin Solid Films 593 (2015) 1.
#     3. Zhang, S.: Applied Surface Sci 335 (2015) 115.
4. Yan, F.: Mater. Character. 124 (2017) 90.
5. Arango, I. C.: J. Phys. Conf. Ser. 935 (2017) UNSP012028.
#    6. Zhang, X.: Hsueh Pao/J. Chinese Ceramic Soc 45 (2017) 1303.
7. Zhang, F.: Nanoscale Research Lett. 13 (2018) 24.
8. Rasic, D.: ACS Applied Mater. Interfaces 10 (2018) 21001.
9. Mandal, S.: J. Magnet. Magnet. Mater. 527 (2021) 167771.

Cambel, V., Precner, M., Fedor, J., Šoltýs, J., Tóbik, J., Ščepka, T., Karapetrov, G., : High resolution switching magnetization magnetic force microscopy. Applied Phys. Lett. 102 (2013) 062405.

1. Li, Z.: Sci Reports 4 (2014) 5594.
2. Li, Z.: NANOSCALE 6 (2014) 11163.
3. Liu, D.: Applied Phys. Lett. 107 (2014) 103110.
4. Li, Z.: Phys. Chem. Chem. Phys. 18 (2016) 28254.
5. Li, Z.: Mater. Sci-Poland 34 (2016) 924.
6. Kinoshita, Y.: Nanotechnol. 28(2017) 485709.
7. Cao, Y.: Nanotechnol. 29(2018) 305502.
8. Kumar, P.: J. Applied Phys. 123 (2018)214503.
9. Chou, W.Y.: ACS Applied Mater. Interfac. 13 (2021) 34962.

Hudec, B., Hušeková, K., Rosová, A., Šoltýs, J., Rammula, R., Kasikov, A., Uustare, T., Mičušík, M., Omastová, M., Aarik, J., and Fröhlich, K.: Impact of plasma treatment on electrical properties of TiO2/RuO2 based DRAM capacitor, J. Phys. D 46 (2013) 385304.

1. Pointet, J.: J. Vacuum Sci Technol. A 32 (2014) 01A120.
2. Wang, W.: Sci Reports 4 (2014) 4452.
3. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
4. Jeon, W.: J. Mater. Chem. C 2 (2014) 9993.
5. Seok, J.: Phys. Chem. Chem. Phys. 17 (2015) 3004.
6. Luo, W.-B.: Chemical Comm. 51 (2015) 8269.
7. Liu, C.: Adv. Mater. Interfac. 3 (2016) 1500503.
8. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
9. Kim, H.: J. Nanosci Nanotechnol. 17 (2017) 2906.
10. Nabatame, T.: ECS Trans. 80 (2017) 365.
11. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
12. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
13. Nong, S.: J. American Chem. Soc 140 (22018) 5719.
14. Li, M.: Applied Surface Sci 439 (2018) 612.
15. Li, X.: Applied Surface Sci 470 (2019) 306.
16. Bi, L.: J. Alloys Comp. 845 (2020) 156271.
17. Tsuji, R.: ACS Omega 5 (2020) 6090.
18. Zhang, J.: Catal. Sci Technol. 10 (2020) 1518.
19. Park, H.: Chemosphere ‏265 (2021) 129166.
20. Jung, E.Y.: Nanotechnol. 32 (2021) 045201.
21. dos Reis, M.N.G.: J. Electroanalyt. Chem. 895 (2021) 115461.

Šoltýs, J., Gaži, Š., Fedor, J., Tóbik, J., Precner, M., Cambel, V., : Magnetic nanostructures for non-volatile memories. Microelectr. Engn. 110 (2013) 474-478.

        1. Hluchy, L.: Comput. Informat. 35 (2016) 1386.

Barančeková Husaníková, P., Fedor, J., Dérer, J., Šoltýs, J., Cambel, V., Iavarone, M., May, S., and Karapetrov, G.: Magnetization properties and vortex phase diagram of CuxTiSe2 single crystals. Phys. Rev. B 88 (2013) 174501.

1. Kaul, A.B.: J. Mater. Research 29 (2014) 348.
2. Hui, Z.: J. Applied Phys. 115 (2014) 033905.
3. Abdel-Hafiez, M.: Sci Rep. 6 (2016) 31824.
4. Song, Y.J.: Physica Status Solidi B 253 (2016) 1517.
5. Pervin, R.: Mater. Res. Express 5 (2018) 076001.
6. Lian, C.: Phys. Rev. B 100 (2019) 205423.
7. Lian, C.: Nature Comm. 11 (2020) 43.
8. Shokri, A.: Physica B 612 (2021) 412977.

Kúdela, R., Šoltýs, J., Vincze, A., and Novák, J.: Tellurium delta-doped InGaP layers grown by metalorganic vapour phase epitaxy. Phys. Status Solidi RRL 7 (2013) 443–446.

1. Gibson, B.: J. Anal. Atomic Spectrom. 29 (2014) 1969.
2. Bedair, S.M.: Applied Phys. Lett. 108 (2016) 203903.

Cambel, V., Tóbik, J., Šoltýs, J., Fedor, J., Precner, M., Gaži, Š., Karapetrov, G., : The influence of shape anisotropy on vortex nucleation in Pacman-like nanomagnets,. J. Magnetism Magnetic Mater. 336 (2013) 29-36.

1. Galvao, S.B.: Mater. Lett. 115 (2014) 38.
2. Hluchy, L.: Comput. Informat. 35 (2016) 1386.
3. Zheng, Y.: Rep. Progress in Phys. 80 (2017) 086501.
4. Ziegelwanger, H.: J. Comput. Phys. 346 (2017) 152.

Hasenöhrl, S., Eliáš, P., Šoltýs, J., Stoklas, R., Laurenčíková, A., Novák, J., : Zinc-doped gallium phosphide nanowires for photovoltaic structures,. Applied Surface Sci 269 (2013) 72-76.

1. Chandiramouli, R.: Mater. Sci Engn. B 194 (2015) 55.
2. Lee, S.: ACS Applied Mater. & Interfaces 8 (2016) 16178.
3. Horley, P.: Physica E 83 (2016) 227.
4. Chen, J.-Y.: CRYSTENGCOMM 19 (2017) 975.
5. Mohammad, R.: Inter. J. Modern Phys. C 28 (2017) Iss. 3.
6. Kim, D.-H.: J. Electronic Mater. 46 (2017) 4750.

Meško, M., Vretenár, V., Kotrusz, P., Hulman, M., Šoltýs, J., Skákalová, V., : Carbon nanowalls synthesis by means of atmospheric dcPECVD method. Phys. Status Solidi B 249 (2012) 2625–2628.

1. Bo, Z.: Phys. Status Solidi B 251 (2014) 155.
2. Zhang, X.: Phys. Status Solidi B 251 (2014) 829.
3. Mishin, M.V.: Russian J. General Chem. 85 (2015) 1209.
4. Zou, H.H.: Composites B 73 (2015) 57.
5. Bo, Z.: Phys. Status Solidi B 252 (2015) 2236.
6. Michniak, P.: NANOCON 2015. P. 143.
7. Li, M.: Advanced Sci 3 (2016) 1600003.
8. Bo, Z.: Phys. Status Solidi B 254 (2017) 1600804.
9. Vesel, A.: Materials 12 (2019) 2968.
10. Li, L.: Applied Phys. Lett. 115 (2019) 081101.
11. Jasek, O.: Diamond Related Mater. 105 (2020) 107798.
12. Sobczyk, A.T.: Applied Sci-Basel 11 (2021) 5845.

Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Stoklas, R., Laurenčíková, A., Mikulics, M., : Electrical and photoluminescence properties of individual GaP nanowires doped by zinc Phys. Status Solidi a 209 (2012) 2505-2509.

1. Jiang, H.-B.: Chinese Sci Bull. 59 (2014) SI2135.
2. Wallentin, J.: Nano Lett. 14 (2014) 1707.
3. Tomioka, K.: J. Phys. D 47 (2014) SI394001.
4. Liao, G.: Sci Rep. 6 (2016) 28240.

Hasenöhrl, S., Novák, J., Vávra, I., Šoltýs, J., Kučera, M., and Šatka, A.: Epitaxial growth of GaP/InxGa1-xP (xIn ≥ 0,27) virtual substrate for optoelectronic applications, J. Electr. Engn. 62 (2011) 93-98.

1. Shi, B.: J. Applied Phys. 127 (2020) 033102.
2. Turkoglu, A.: Solid State Comm. 334 (2021) 114390.

Novák, J., Vávra, I., Križanová, Z., Hasenöhrl, S., Šoltýs, J., Reiffers, M., Štrichovanec, P., : Dependence of Curie temperature on surface strain in InMnAs epitaxial structures. Applied Surface Sci 256 (2010) 5672-5675.

1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.
2. Bouravleuv, A.: Applied Phys.Lett. 105 (2014) 232101.
3. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.
4. Marcal, L.A.B.: Phys. Rev. B 96 (2017) 245301.

Hušeková, K., Dobročka, E., Rosová, A., Šoltýs, J., Šatka, A., Fillot, F., Fröhlich, K., : Growth of RuO2 thin films by liquid injection atomic layer deposition. Thin Solid Films 518 (2010) 4701-4704.

1. Over, H.: Chemical Rev. 112 (2012) 3356.
2. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
3. Hamalainen, J.: Chem. Mater. 26 (2014) SI786.
4. Park, J.-Y.:  J. Alloys Comp. 610 (2014) 529.
5. Gregorczyk, K.E.: ACS NANO 9 (2015) 464.
6. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
7. Nabatame, T.: ECS Trans. 80 (2017) 365.
8. Lin, C.: J. Electrochem. Soc 166 (2019) D476.
9. Lee, J.H.: Thin Solid Films 701 (2020) 137950.

Čičo, K., Gregušová, D., Gaži, Š., Šoltýs, J., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Optimization of the ohmic contact processing in InAlN/GaN high electron mobility transistors for lower temprerature of annealing, Phys. Status Solidi c 7 (2010) 108-111.

1. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
2. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
3. Bergsten, J.: Semicond. Sci Technol. 30 (2015) 105034.
4. Li, Q.: AIP Adv. 7 (2017) 125103.
5. Li, Q.: Acta Phys. Sinica 67 (2018) 027303.
6. Yoshida, T.: Japan. J. Applied Phys. 57 (2018) 110302.
7. Lin, Y.-K.: Semicond. Sci Technol.33 (2018) 095019.

Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Vávra, I., : Study of the growth and structural properties of InMnAs dots grown on high-index surfaces by MOVPE. Mater. Sci Semicond. Proc. 13 (2010) 167-172.

            1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.

Kúdela, R., Kučera, M., Dobročka, E., Šoltýs, J., : AlGaAs/InGaP interfaces in structures prepared by MOVPE. J. Crystal Growth 311 (2009) 3123-3129. (APVV 51-045705).

       1. Farag, A.A.M.: J. Alloys Compounds 509 (2011) 8056.

Cambel, V., Martaus, J., Šoltýs, J., Kúdela, R., Gregušová, D., : Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices. Ultramicroscopy 108 (2008) 1021-1024.

       1. Voves, J.: Microelectr. Engn. 86 (2009) 561.
2. Simeone, F.C.: J. Phys. Chem. C 113 (2009) 18987.
#    3. Abdullah, A.M.: Inter. J. Nanosci 9 (2010) 251.
#    4. Hu, K.: Inter. J. Nanomanufact. 9 (2013) 19.

Martaus, J., Gregušová, D., Cambel, V., Kúdela, R., Šoltýs, J., : New approach to local anodic oxidation of semiconductor heterostructures. Ultramicroscopy 108 (2008) 1086-1089.

       1. Pust, S.E.: Nanotechnology 20 (2009) 075302.
2. Simeone, F.C.: J. Phys. Chem. C 113 (2009) 18987.
3. Janousek, M.: Microelectr. Engn. 87 (2010) 1066.
#     4. Hu, X.-D.: Nami Jishu yu Jingmi Gongcheng/Nanotechnol. Precision Engn. 8 (2010) 352.
#     5. Abdullah, A.M.: Inter. J. Nanosci 9 (2010) 251.
#    6. Tian, L.: Scientia Sinica Chimica 49 (2019) 455.

Cambel, V., Martaus, J., Šoltýs, J., Kúdela, R., Gregušová, D., : AFM nanooxidation process – technology perspective for mesoscopic structures. Surface Sci. 601 (2007) 2717-2723. (APVV 51-045705).

   1. Parisse, P.: Mater. Sci Engn. B 165 (2009) 227.
2. Jo, Y.D.: Applied Phys. Lett. 96 (2010) 082105.
3. Bukauskas, V.: Surface Interface Anal. 42 (2010) 991.
4. Lin, C.W.: Applied Surface Sci 264 (2013) 280.
5. Han, C.: Bull. Korean Chem. Soc 36 (2015) 1024.
6. Batkova, M.: Europ. Phys. J.-Applied Phys. 73 (2016) 30301.
7. Mollick, S.A.: Nanotechnol. 27 (2016) 435302.

Bartolome, E., Pavau, A., Guitierrez, J., Granados, X., Pomar, A., Puig, T., Obradors, X., Cambel, V., Šoltýs, J., Gregušová, D., Chen, D., Sanchez, A., : Artificial magnetic granularity effects on patterned epitaxial YBa2Cu3O7-x thin films. Phys. Rev. B 76 (2007) 094508.

     1. Vestgarden, J. I.: Phys. Rev. B 85 (2012) 014516.
2. Janu, Z.: Physica C 501 (2014) 55.

Cambel, V., Karapetrov, G., Novosad, V., Bartolome, E., Gregušová, D., Fedor, J., Kúdela, R., Šoltýs, J., :Novel Hall sensors developed for magnetic field imaging systems. J. Magnetism Magn. Mater. 316 (2007) 232-235. (APVV 51-045705).

        1. Cheng, Y.H.: Physical Rev. B 80 (2009) 174412.
2. Tian, W.: Rev. Sci Instrum. 84 (2013) 035004.

Šoltýs, J., Cambel, V., Kúdela, R., Eliáš, P., : Study into the shape of oxide lines formed by LAO – influence an oxidized material. Surface Sci 601 (2007) 2876-2880.

   1. Kim, T.Y.: Surface Sci 601 (2007) 4910.

Cambel, V. and Šoltýs, J.The influence of sample conductivity on local anodic oxidation by the tip of atomic force microscope. J. Applied Phys. 102 (2007) 074315.

1. Parisse, P.: Mater. Sci Engn. B 165 (2009) 227.
2. Jo, Y.D.: Applied Phys. Lett. 96 (2010) 082105.
3. Moriya, R.: Japan. J. Applied Phys. 52 (2013) UNSP 055201.
4. Kumar, A.: World Sci Ser. in Nanosci Nanotechnol. 7 (2013) 253.
5. Han, C.: Bull. Korean Chem. Soc 36 (2015) 1024.
6. Faucett, A.C.: Carbon 95 (2015) 1069.
*   7. Kumar A.: In Electro-Chemo-Mechanics of Solids. Eds. S. Bishop et al. Springer, Cham 2017. ISBN: 978-3-319-51405-5. P. 137-160.
8. Ryu, Y.K.: Nanosci Technol. ‏2019 pp. 143-172.
9. Collomb, D.: J. Phys.-Cond. Matt. 33 (2021) 243002.

Haščík, Š., Eliáš, P., Šoltýs, J., Martaus, J., Hotový, I., : CCl4-based reactive ion etching of semi-insulating GaAs and InP. Czechoslov. J. Phys. B 56 (2006) S1169-S1173.

       1.Venugopal, V.: Surface Sci 602 (2008) 3000.
2. Park, Y.H.: Microelectr. Engn. 87 (2010) 548.
3. Lee, J.W.: Thin Solid Films 518 (2010) 6488.

Gregušová, D., Eliáš, P., Öszi, Z., Kúdela, R., Šoltýs, J., Fedor, J., Cambel, V., Kostič, I., : Technology and properties of a vector hall sensor. Microelectronics J. 37 (2006) 1543-1546.

#     1.Rybak, M.: Przeglad Wlokienniczy 61 (2007) 39.
2. Dai, C.-L.: Microelectronics J. 39 (2008) 744.
3. Peters, V.: IEEE Trans. Magn. 49 (2013) 109.
4. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Eliáš, P., Martaus, J., Šoltýs, J., Kostič, I., : Micromachining of mesa and pyramidal-shaped objects in (1 0 0) InP substrates. J. Micromech. Microengn. 15 (2005) 1007-1014.

*     1. Siwak, N.P.: PhD Thesis. Univ. Maryland 2007.
2. Chappell, G.A.: Optical Mater. Express 10 (2020)‏ 3328.

Španková, M., Vávra, I., Chromik, Š., Harasek, S., Lupták, R., Šoltýs, J., Hušeková, K., : Structural properties of Y2O3 thin films grown on Si(1 0 0) and Si(1 1 1) substrates,. Materials Sci Engn. B 116 (2005) 30-33.

     1. Goto, T.: Surface Coatings Technol. 201 (2007) 5776.
2. Cheng, X.R.: Physica B 404 (2009) 146.
3. Qiao, Y.: J. Rare Earths 27 (2009) 406.
4. Fang, Z.B.: Chinese Phys. B 18 (2009) 3542.
5. Chambers, S.A.: Advanced Mater. 22 (2010 219.
6. Meng, Q.G.: Chem. Mater. 22 (2010) 6056.
7. Zhu, J.: Thin Solid Films 519 (2011) SI4894.
8. Zhang, H.: J. Alloys Compounds 539 (2012) 40.
9. Tsipis, A.C.: Phys. Chemistry Chemical Phys. 14 (2012) 14917.
10. Tsipis, A.: Inter. J. Quantum Chem. 113 (2013) SI694.
11. Li, Q.: Inter. J. Hydrogen Energy 38 (2013) 4266.
12. Lei, P.: Surface Coat. Technol. 229 (2013) 226.
13. Chen, J.: Molecular Phys. 112 (2014) SI508.
14. Wu, Y.: Fusion Engn. Design 90 (2015) 105.
15. Lin, K.C.: Microelectron. Reliab. 55 (2015) 2198.
16. Wu Y.: Inter. J. Hydrogen Energy 41 (2016) 10374.
17. Wu Y.: Inter. J. Hydrogen Energy 41 (2016) 7425.
18. Wu Y.: Inter. J. Hydrogen Energy 41 (2016) SI16101.
19. Liu, Z.: Plasma Sci Technol.19 (2017) UNSP 095602.
20. Xia, J.: Applied Surface Sci 439 (2018) 545.

Písečný, P., Hušeková, K., Fröhlich, K., Harmatha, L., Šoltýs, J., Machajdík, D., Espinos, J., Jergel, M., and Jakabovič, J.: Growth of lanthanum oxide films for application as a gate dielectric in CMOS technology, Materials Sci Semicond. Process. 7 (2004) 231-236.

1. Bedoya, C.: Chemical Vapor Deposition 12 (2006) 46.
2. Leskela, M.: J. Alloys Compounds 418 (2006) 27.
3. Wang, X.G.: Materials Lett. 60 (2006) 2261.
4. Dakhel, A.A.: Proc. Inter. Conf. Microelectr. – ICM (2006) 115.
5. Dakhel, A.A.: J. Alloys Compounds 433 (2007) 6.
6. Dakhel, A.A.: Materials Chemistry Phys. 102 (2007) 266.
7. Dakhel, A.A.: Microelectr. Reliability 48 (2008) 395.
8. Tsai, W.C.: EDSSC 2008. IEEE Inter. Conf. P. 61.
9. Zhao, Y.: J. Applied Phys. 105 (2009) 034103.
10. Khanjani, S.: J. Coordination Chem. 62 (2009) 3343.
11. Khanjani, S.: J. Molecular Struct. 935 (2009) 27.
12. Kim, H.J.: J. Electroceram. 23 (2009) 258.
13. Ciontea, L.: Materials Res. Bull. 45 (2010) 1203.
14. Salavati-Niasari, M.: J. Alloys Compounds 509 (2011) 134.
15. Long Y.: J. Rare Earths 30 (2012) 48.
16. Zhao, Y.: Materials 5 (2012) 1413.
#    17. Zhao, Y.:  In High-k Gate Dielectrics for CMOS Technology. Weinheim: Wiley-VCH 2012. ISBN 978-3-527-33032-4. P. 185.
18. Mangla, O.: J.Mater. Sci 49 (2014) 1594.
19. Kharlamova, T.S.: Kinetics  Catal. 55 (2014) 361.
20. Mousavi-Kani, S.N.: Bulgarian Chem. Comm. 47 (2015) 80.
21. Yilmaz, E.: IEEE Trans. Nuclear Sci 63 (2016) 1301.
22. Al Akhrass, G.A.: RSC Adv. 6 (2016) 3433.
23. Pandey, A.: J. Phys. Chem. C 121 (2017) 481.
24. Goh, K.H.: Materials Sci Semicond. Process. 68 (2017) 302.
25. Brachetti-Sibaja, S.B.: Thin Solid Films 636 (2017) 615.
26. Adole, V.A.: J. Nanostruct. Chem. 9 (2019) 61.
27. Hare, B.J.: Industr. Engn. Chem. Res. 58 (2019) 12551.
28. Gangwar, B.P.: CHEMISTRYSELECT 5 (2020) 7548.
29. Morandi, S.: Sustain. Energy Fuels 4 (2020) 1469.

Novák, J., Hasenöhrl, S., Kučera, M., Šoltýs, J., : Nano-patterning surfaces by the self-organized growth of ordered and strained epitaxial layers. Superlatt. Microstruct. 36 (2004) 123-131.

1. Zhou, J.: Microelectr. J. 38 (2007) 1207.
2. Kaiju, H.: Applied Surface Sci 255 (2009) 3706.

Eliáš, P., Kostič, I., Šoltýs, J., Hasenöhrl, S., : Wet-etch bulk micromachining of (100) InP substrates. J. Micromech. Microengn. 14 (2004) 1205–1214.

1. Xu, G.Y.: Applied Phys. Lett. 89 (2006) 161102.
2. Xu, G.Y.: J. Crystal Growth 301-302 (2007) 927.
*         3. Arrioja, D. A. M.: PhD Thesis. Orlando: Univ. Central Florida 2006.
*         4. Lamontagne, B.: Optical waveguides: From Theory to Applied Technologies. Eds. M. L. Calvo,  V. Lakshminarayanan. CRC 2007. ISBN-10: 1-57444-698-3. P. 283.
*         5. Tang, D.: Semicond. Technol. 34 (2009) 543.
*         6. Mounier, M.: PhD Thesis. Sherbrooke: Univ. de Sherbrooke. 2009.
7. Chen, L: IEEE Photonics Technol. Lett. 22 (2010) 890.
8. Wu, W.: ACS Nano 5 (2011) 7488.
9. Andres-Garcia, B.: IEEE Trans. Antennas Propagation 59 (2011) 3164.
10. Yang, H.: Proc. SPIE 8439 (2012) 843925.
*       11. Kaspar, P.: PhD Thesis. Zürich: ETH 2012.
12. Nia, H.I.: ECS Solid State Lett. 2 (2013) P44.
*       13. Garcia, B.A.: PhD Thesis. Madrid: Univ. Carlos III de Madrid. 2013.
14. Kim, S.H.: Nano Lett. 15 (2015) 641.
15. Prinz, V.Y.: Sci Rep. 7 (2017) 43334.
16. Chappell, G.A.: Optical Mater. Express 10 (2020)‏ 3328.
17. Suttijalern, K.: J. Micromech. Microengn. 31 (2021) 085007.

Gregušová, D., Cambel, V., Fedor, J., Kúdela, R., Šoltýs, J., Lalinský, T., Kostič, I., Bending, S., : Fabrication of a vector Hall sensor for magnetic microscopy. Applied Phys. Lett. 82 (2003) 3704-3706.

     1. De Leo, C.: Advances Cryogenic Engn. 50 A,B  711 (2004) 709.
2. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.
3. Jordan, A.N.: Phys. Rev. B 77 (2008) art. no. 075334.
4. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) art. no. 142502.
5. Kweon, S.: J. Applied Phys. 105 (2009) 093906.
6. Vorobev, A.: Applied Phys. Lett. 103 (2013) 173513.
7. Chang, J.-H.: J. Phys. D 48 (2015) 405004.
8. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Šoltýs, J., Cambel, V., Fedor, J., : Study of tip-induced Ti-film oxidation in atomic force microscopy contact and non-contact mode Acta Physica Polonica A 103 (2003) 553-558.

      1. Tian, W.C.: Functional Thin Films and Nanostructures for Sensors: Synthesis, Physics, and Applications. Springer 2009. ISBN 978-0387362298. P. 65-84.
2. Batko, I.: Europ. Phys. J.-Applied Phys. 58 (2012) 20102.
3. Huang, J.-C.: Scanning 34 (2012) 347.
4. Batkova, M.: Europ. Phys. J.-Applied Phys. 73 (2016) 30301.
5. Batko, I.: Mater. Today-Proc. 3 (2016) 803.