Ing. Ťapajna Milan, PhD.

Gucmann, F., Nádaždy, P., Hušeková, K., Dobročka, E., Priesol, J., Egyenes, F., Šatka, A., Rosová, A., and Ťapajna, M.: Thermal stability of rhombohedral α- and monoclinic β-Ga2O3 grown on sapphire by liquid-injection MOCVD, Mater. Sci Semicond. Process. 156 (2023) 107289.

1. Jewel, M.U.: Physica Status Solidi A 220 (2023) 2300036.

Dobročka, E., Gucmann, F., Hušeková, K., Nádaždy, P., Hrubišák, F., Egyenes, F., Rosová, A., Mikolášek, M., and Ťapajna, M.: Structure and thermal stability of ε/κ-Ga2O3 films deposited by liquid-injection MOCVD, Materials 16 (2023) 20.

1. Girolami, M.: J. Mater. Chem. C 11 (2023) 3759.

Kozak,A., Hofbauerová, M., Halahovets, Y., Pribusová-Slušná, L., Precner, M., Mičušík, M., Orovčík, L., Hulman, M., Stepura, A., Omastová, M., Šiffalovič, P., and Ťapajna, M.: Nanofriction properties of mono- and double-layer Ti3C2Tx MXenes, ACS Appl. Mater. Interfaces 14 (2022) 36815–36824.

1. Rosenkranz, A.: Adv. Mater.35 (2023) 2207757.
2. Sattari, B.: Front. Mechan. Engn.8 (2022) 965877.
3. Guo, J.: ACS Applied Mater. Interfaces 14 (2022) 52566.
4. Rosenkranz, A.: Adv. Mater. 35 (2023) Iss. 5.
5. Zhang, K.P.: Tribol. Inter. 184 (2023) 108469.
6. Zhang, K.P.: Wear 526 (2023) 204953.
7. Guo, J.L.: Tribol. Inter. 186 (2023) 108611.

Kozak,A., Precner, M., Hutár, P., Bodík, M., Vegso, K., Halahovets, Y., Hulman, M., Siffalovic, P., and Ťapajna, M.: Angular dependence of nanofriction of mono- and few-layer MoSe2, Applied Surface Sci 567 (2021) 150807.

1. Bondarev, A.: ACS Applied Mater. Interfac. 14 (2022) 55051.
2. Yu, K.: Mater. Today Adv. 18 (2023) 100380.

Bodík, M., Sojková, M., Hulman, M., Ťapajna, M., Truchlý, M., Vegso, K., Jergel, M., Majková, E., Španková, M., and Šiffalovič, P.: Friction control by engineering the crystallographic orientation of the lubricating few-layer MoS2 films, Applied Surface Sci 540 (2021) 148328.

1. Golovynskyi, S.: Surfaces. Interfac. 26 (2021) 101343.
2. Sathyamoorthy, G.: Proc. Inst. Mechan. Engn. Part J-J. Engn. Tribol. 236 (2021) 1674.
3. Ren, A.H.: Engn. Failure Anal. 143 (2023) A106934.

Kuzmík, J., Adikimenakis, A., Ťapajna, M., Gregušová, D., Haščík, Š., Dobročka, E., Tsagaraki, K., Stoklas, R., and Georgakilas, A.: InN: breaking the limits of solid-state electronics, AIP Adv. 11 (2021) 125325.

1. Damas, G.B.: J. Chem. Phys. 158 (2023) 174313.

Onoprienko, A.A., Ivashchenko, V.I., Scrynskyy, P.L., Kovalchenko, A.M., Kozaka, A.O., Sinelnichenko, A.K., OlifanaE.I., Ťapajna, M., and Orovčík, L.: Structural and mechanical properties of Ti-B-C coatings prepared by dual magnetron sputtering, Thin Solid Films 730 (2021) 138723. (Not IEE SAS)

1. Luan, X.A.: Sensors Actuators A 346 (2022) 113865.

Ťapajna, M. and Koller, C.: Reliability Issues in GaN electronic devices. In Nitride semiconductor technology : power electronics and optoelectronic devices. Weinheim: Wiley-VCH, 2020, p. 199-253. ISBN 978-3-527-34710-0.

1. Wang, H.: IEEE J. Emerg. Select. Topics Power Electron. 9 (2021) 6476.
2. Sinnwell, M.: IEEE WIPDA 2021, p. 277.
3. Zafar, S.: IEEE Trans. Dev. Mater. Reliab. 23 (2023) 72.
4. Doring, P.: IEEE Trans. Electron Dev. 70 (2023) 947.

Egyenes-Pörsök, F., Gucmann, F., Hušeková, K., Dobročka, E., Sobota, M., Mikolášek, M., Fröhlich, K., and Ťapajna, M.: Growth of α- and β-Ga2O3 epitaxial layers on sapphire substrates using liquid-injection MOCVD, Semicond. Sci Technol. 35 (2020) 115002.

1. Tak, B.R.: J. Phys. D 54 (2021) 453002.
2. Zhou, J.G.: J. Mater. Res. 36 (2021) 4832.
3. Yang, D.: Electron. Mater. Lett. 18 (2022) 113.
4. Biswas, M.: APL Mater. 10 (2022) 060701.

Ťapajna, M.: Current understanding of bias-temperature instabilities in GaN MIS transistors for power switching applications, Crystals 10 (2020) 1153.

1. Ballestin-Fuertes, J.: Electron. 10 (2021) 677.
2. Kammeugne, RK.: IEEE Inter. Electron Devices Meet. 2021
3. Minetto, A.: IEEE Trans. Electron Dev. 68 (2021) 5003.
4. Minetto, A.: Microelectron. Reliab. 126(2021) SI114208.
#     5. Adamowicz, B.: IMFEDK Kansai 2021.
6. Waltl, M.: Crystals 12 (2022) 16.
7. Zhang, Y.: IEEE J. Electron Dev. Soc 10 (2022) 540.
8. Nelson, M.: Mechanic. Systems Signal Process. 182 (2023) 109536.
9. Gunaydin, Y.: IEEE Workshop On Wide Bandgap Power Dev. Appl. in Europe (WIPDA EUROPE) 2022.
#                10. Elangovan, S.: Proc. Inter. Symp. Phys.Failure Anal. Integrated Circuits –  IPFA 2022.
#              11. Benjelloun, M.: Compound Semicond. Week – CSW 2022.
#              12. Mishra, G.S.: Proc. IEEE Inter. Conf. Electron Dev. Soc – EDKCON 2022, pp. 235-240.
13. Kammeugne, R.K.: Solid-State Electron. 200 (2023) 108555.
14. Benjelloun, M.: IEEE Access 11 (2023) 40249.
15. Irokawa, Y.: ECS J. Solid State Sci Technol. 12 (2023) 055007.
16. Sun, Q.: Micro Nanostruct. 178 (2023) 207562.
17. Nguyen, D.D.: Semicond. Sci Technol. 38 (2023) 095010.

Ťapajna, M., Drobný, J., Gucmann, F., Hušeková, K., Gregušová, D., Hashizume, T., and Kuzmík, J.: Impact of oxide/barrier charge on threshold voltage instabilities in AlGaN/GaN metal-oxide-semiconductor heterostructures, Mater. Sci in Semicond Process.  91 (2019) 356-361.

1. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
2. Kim, H.: IEEE Access 10 (2022) 68724.

Pohorelec, O., Ťapajna, M., Gregušová, D., Gucmann, F., Hasenöhrl, S., Haščík, Š., Stoklas, R., Seifertová, A., Pécz, B., Tóth, L., and Kuzmík, J.: Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs, Applied Surface Sci 528 (2020) 146824.

1. Tian, Y.: Inter. J. Electrochem. Sci 15 (2020) 12682.

Ťapajna, M., Drobný, J., Gucmann, F., Hušeková, K., Gregušová, D., Hashizume, T., and Kuzmík, J.: Impact of oxide/barrier charge on threshold voltage instabilities in AlGaN/GaN metal-oxide-semiconductor heterostructures, Mater. Sci in Semicond Process.  91 (2019) 356-361.

1. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.

Kučera, M., Adikimenakis, A., Dobročka, E., Kúdela, R., Ťapajna, M., Laurenčíková, A., Georgakilas, A., and Kuzmík, J.: Structural, electrical, and optical properties of annealed InN films grown on sapphire and silicon substrates, Thin Solid Films 672 (2019) 114-119.

1. Andreev, B.A.: Semiconductors 53 (2019) 1357.
2. Cross, G. B.: J. Crystal Growth 536 (2020) 125574.
3. Wang, S.: Coatings 10 (2020) 1185.
4. Damas, G.B.: Applied Surface Sci 592 (2022) 153290.
#    5. Cao, B.: Adv. Function. Mater. 32 (2022) 2110715.

Gucmann, F., Ťapajna, M., Pohorelec, O., Haščík, Š., Hušeková, K., and Kuzmík, J.: Creation of two-dimesional electron gas and role of surface donors in III-N metal-oxide-semiconductor high-electron mobility transistors, Phys. Status Solidi A  215 (2018) 1800090.

1. Song, K.: J. Phys. D 53 (2020) 345107.
2. Shi, Y.: IEEE Trans. Electron Dev. 67 (2020) 2290.
3. Duong D.N.: J. Applied Phys. 127 (2020) 094501.
4. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021) 159.

Mikolášek, M., Fröhlich, K., Hušeková, K., Racko, J., Rehacek, V., Chymo, F., Ťapajna, M., and Harmatha, L.: Silicon based MIS photoanode for water oxidation: a comparison of RuO2 and Ni Schottky contacts, Applied Surface Sci 461 (2018) 48-53.

1. Quinn, J.: ACS Energy Lett. 4 (2019) 2632.
2. Silva, R.C.: Electron. Mater. Lett. 15 (2019) 645.
3. Hemmerling, J.: Adv. Energy Mater. 10 (2020) 1903354.
4. Li, O.L.: Applied Surface Sci 528 (2020) 146979.
5. Zhao, C.: ACS Applied Energy Mater. 3 (2020)‏ 8216.
6. Hemmerling, J.R.: Accounts Chem. Res. 54 (2021) 1992.
7. Boddula, R.: Chinese J. Catal. 42 (2021) 1387.
8. Karthik, P.E.: ACS Catal. 11 (2021) 12763.
9. Adiga, P.: J. Vacuum Sci Technol. A 40 (2022) 010801.
10. Cheng, C.H.: Energy Sci Engn. 10 (2022) 1526.
11. Li, Y.M.: ACS Mater. Lett. 4 (2022) 779.
12. Yuan, Y.X.: Applied Phys. Lett. 121 (2022) 173902.
13. Hu, S.: In: Springer Handbooks. Springer Sci Business Media Deutschland GmbH 2022, pp. 879.

Ťapajna, M., Vincze, A., Noga, P., Dobrovodsky, J., Šagátová, A., Hasenöhrl, S., Gregušová, D., and Kuzmík, J.: Determination of secondary-ions yield in SIMS depth profiling of Si, Mg, and C ions implanted GaN epitaxial layers. In: ASDAM 2018. Eds. J. Breza et al. IEEE 2018. ISBN 978-1-5386-7488-8. P. 141-144.

1. Senevirathna, M.K.I.: J. Vacuum Sci Technol. B 38 (2020) 044002.
2. Hajek, F.: J. Lumin. 236 (2021) 118127.
3. Lagzdina, E.: Nuclear Instrum. Methods Phys. Res. B 538 (2023) 218.

Fröhlich, K., Kundrata, I., Blaho, M., Precner, M., Ťapajna, M., Klimo, M., Šuch, O., and Škvarek, O.: Hafnium oxide and tantalum oxide based resistive switching structures for realization of minimum and maximum functions, J. Applied Phys. 124 (2018) 152109.

1. Aguirre, F.L.: IEEE Access 8 (2020)‏ 202174.
2. Aguirre, F.L.: J. Low Power Electron. Appl. 11 (2021) 9.
3. Aguirre, F.L.: Front. in Phys. 9 ( 2021) 735021.
4. Aguirre, F.L.: Micromach. 13 (2022) 2002.
5. Ge, P.Z.: Mater. Today Comm. 35 (2023) 105593.

Fröhlich, K., Kundrata, I., Blaho, M., Precner, M., Ťapajna, M., Klimo, M., Šuch, O., and Škvarek, O.: Performance of HfOx– and TaOx-based resistive switching structures in circuits for min and max functions implementation, MRS Adv. 3 (2018) Iss. 59, 3427-3432.

1. Garcia, H.: Microelectron. Engn. 216 (2019) 111083.

Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.

1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 (‏ 127101(2020.
4. Akkaya, A.: Mater. Today-Proc. 46 (2021) 6939.
5. Mohanty, S.: Applied Phys. Lett. 119 (2021) 042901.
6. Cheng, W.C.: J. Vacuum Sci Technol. B 40 (2022) 022212.
7. Shen, C.X.: Adv. Sci 9 (2022) 2104599.
8. Zhu, X.F.: J. Europ. Ceram. Soc 43 (2023) 4349.
9. Wu, N.T.: Semicond. Sci Technol. 38 (2023) 063002.

Ťapajna, M., Válik, L., Gucmann, F., Gregušová, D., Fröhlich, K., Haščík, Š., Dobročka, E., Tóth, L., Pécz, B., and Kuzmík, J.: Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density, J. Vacuum Sci Technol. B 35 (2017) 01A107.

1. Meer, M.: Semicond. Sci Technol. 32 (2017) 04LT02.
2. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
3. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Takhar, K.: Applied Surface Sci 481 (2019) 219.
6. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
7. Schiliro, E.: AIP Adv. 10 (2020) 125017.
8. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
9. Bhardwaj, N.: Applied Surface Sci 572 (2022) 151332.
10. Fiorenza, P.: Applied Surface Sci 579 (2022) 152136.
11. Schiliro, E.: ACS Applied Electr. Mater. 4 (2022) 406.
12. Lo Nigro, R.: Materials 15 (2022) 830.
13. Calzolaro, A.: Materials 15 (2022) 791.
14. Meer, M.: Semicond. Sci Technol. 37 (2022) 085007.
15. Paul, P.: ACS Applied Mater. Interfaces 15 (2023) 22626.

Kuzmík, J., Fleury, C., Adikimenakis, A., Gregušová, D., Ťapajna, M., Dobročka, E., Haščík, Š., Kučera, M., Kúdela, R., Androulidaki, M., Pogany, D., and Georgakilas, A.: Current conduction mechanism and electrical break-down in InN grown on GaN, Applied Phys. Lett. 110 (2017) 232103.

1. Shen, L.: Applied Surface Sci 476 (2019) 418.

Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.

1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) ‏ 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.
9. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.
10. Vauche, L.: ACS Applied Electron. Mater. 3 (2021) 1170.
11. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021)159.
12. Kaplar, R.: Ultrawide Bandgap Semicond. 107 (2021) 191.
13. Ahbab, S.S.: Proc. IEEE Inter. Women in Engn. (WIE) Conf. Electr. Computer Engn., WIECON-ECE 2021. IEEE 2022, p. 59.
14. Gong, J.R.: Japan. J. Applied Phys. 61 (2022) 011003.
15. Lin, Y.S.: Sci Adv. Mater. 4 (2022) 1419.
16. Nautiyal, P.: Microelectron. Reliab. 139 (2022) 114800.
17. Brivio, F.: Applied Phys. Lett. 123 (2023) 022104.

Blaho, M., Gregušová, D.,  Haščík, Š., Ťapajna, M., Fröhlich, K., Šatka, A., and Kuzmík, J.: Annealing, temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs, Applied Phys. Lett. 111 (2017) 033506.

1. Lee, C.-T.: AIP Adv. 4(2018) 045014.
2. Cui, P.: Sci Rep. 8 (2018) 9036.
3. Yahyazadeh, R.: J. Non-Oxide Glass. 11 (2019) 19.
4. Zhu, Q.: Chinese Phys. B 29 (2020) 047304.
5. Zhang, H.: Micro Nanostruct. 178 (2023) 207579.

Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.

1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.

Ťapajna, M., Válik, L., Gregušová, D., Fröhlich, K., Gucmann, F., Hashizume, T., and Kuzmík, J.: Treshold voltage instabilities in AlGaN/GaN MOS-HEMTs with ALD-grown Al2O3 gate dielectrics: relation to distribution of oxide/semiconductor interface state density. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 1-4.

1. Ding, L.: IEEE Conf. Computer Vision Pattern Recogn. 2018, pp. 6508-6516.
2. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.
3. Kim, H.: IEEE Access 10 (2022) 68724.

Ťapajna, M., Hilt, O., Bahat-Triedel, E., Würfl, H., and Kuzmík, J.: Gate reliability investigation in normally-off p-type-gan cap/AlGaN/GaN HEMTs under forward bias stress, IEEE Electron Device Lett. 37 (2016) 385 – 388.

1. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
2. Bahl, S.R.: IEEE Inter. Reliab. Phys. Symp. 2016. Art. No. 7574528, p. 4A31.
3. Meneghesso, G.: Proc. SPIE 10104 (2017) UNSP 1010419.
4. Tallarico, A.N.: IEEE Electron Device Lett. 38 (2017) 99.
5. Efthymiou, L.: Applied Phys. Lett. 110 (2017) 123502.
6. Meneghini, M.: IRPS 2017.
7. Meneghini, M.: IRPS 2017.
8. Zhou, Y.: IEEE J. Electron Dev. Soc 5 (2017) 340.
9. Rossetto, I.: Microelectr. Reliab. 76 (2017) SI298.
10. Tallarico, A.N.: IEEE Trans. Electron Dev. 65 (2018) 38.
11. Tsao, J.Y.: Adv. Electron. Mater. 4 (2018) 1600501.
12. Ge, M.: Physica Status Solidi A 215 (2018) 1700368.
13. Roccaforte, F.: Microelectron. Engn.187 (2018) 66.
14. Hao, R.: IEEE Trans. Electron Dev. 65 (2018) 1314.
15. Greco, G.: Mater. Sci Semicond. Process. 78 (2018) 96.
16. Mohanbabu, A.: Inter. J. Numer. Modell. 31 (2018) e2276.
17. Sayadi, L.: IEEE Trans. Electron Dev. 65 (2018) 2454.
18. Zhang, L.: IEEE Electron Device Lett. 39 (2018) 1026.
19. Wang, L.: 9th Inter. Conf. Electron. Packaging Technol. (ICEPT) 2018, pp. 961-964.
20. Longobardi, G.: IEEE Inter. Conf. Electr. Systems For Aircraft, Railway, Ship Propulsion Road Vehicles & Inter. Transport. Electrif. Conf. (ESARS-ITEC) 2018.
21. Stockman, A.: IEEE Trans. Electron Dev. 65 (2018) 5365.
22. Tajalli, A.: Microelectron. Reliab. 88-90 (2018) SI572.
23. Luekens, G.: IEEE Trans. Electron Dev. 65 (2018) 3732.
24. Zeng, F.: Electronics 7 (2018) 377.
#   25. Bisi, D.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 367-430.
26. Mukherjee, K.: IEEE Inter. Reliab. Phys. Symp. Proc. (2018) pp. 4B.41-4B.49.
27. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 876.
28. Moens, P.: IEEE Inter. Reliab. Phys. Symp. – IRPS 2019.
29. Stoffels, S.: IEEE Inter. Reliab. Phys. Symp. – IRPS 2019.
30. Tallarico, A.N.: IEEE Electron Device Lett. 40 (2019) 518.
31. Jiang, H.: IEEE Electron Device Lett. 40 (2019) 530.
32. Wang, Z.: IEEE Trans. Electron Dev. 66 (2019) 1917.
33. Ge, M.: IEEE Electron Device Lett. 40 (2019) 379.
34. Li, B.: Applied Phys. Express 12 (2019) 064001.
35. Roccaforte, F.: Materials 12 (2019) 1599.
36. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
37. He, J.: IEEE Trans. Electron Dev. 66 (2019) 3453.
38. Masin, F.: Applied Phys. Lett. 115 (2019) 052103.
39. Shi, Y.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2019, p. 423.
40. Yao, Y.: ICICDT 2019.
41. Zeng, C.: Applied Phys. Express 12 (2019) 121005.
42. del Alamo, J.A.: IEEE Trans. Electron Dev. 66 (2019) 4578.
43. Tallarico, A.N.: IEEE Trans. Electron Dev. 66 (2019) 4829.
44. Cui, P.: Applied Phys. Express 12 (2019) 104001.
45. Ge, M.: Chinese Phys. B 28 (2019) 107301.
46. Li, B.: IEEE Electron Device Lett. 40 (2019) 1389.
47. Wang, Z.: Proc. ISNE 2019, pp. 1-2.
#        48. Moens, P.: CS MANTECH 2019, Code 148134.
#        49. Meneghesso, G.: EDTM 2019, pp. 68-70.
50. Roy, C.: WiPDA 2019, pp. 181-186.
51. Longobardi, G.: ESARS-ITEC 2018 (2019) 8607788.
52. Wan, L.: Applied Phys. Lett. 116 (2020) 023504.
53. Wang, J.: IEEE Trans. Electron Dev. 67 (2020) 3564.
54. Tang, X.: Applied Phys. Lett. 117 (2020) 043501.
55. He, J.: Applied Phys. Lett. 116 (2020) Iss. 22.
56. Wang, C.: IEEE Electron Device Lett. 41 (2020) ‏ 545.
57. Wang, W.-F.: Chinese Phys. B 29 (2020) 047305.
58. Zhou, G.: IEEE Trans. Electron Dev. 67 (2020) 875.
59. Hamza, H.K.: Proc. ICDCS‘ 20‏ 2020, pp. 290-293.
60. Kini, R.L.: IEEE Access 8 (2020) 137312.
61. Subramanian, B.: J. Electronic Mater.‏ 49 (2020)‏ 4091.
62. Chen, T.: IEEE Applied Power Electron. Conf. Expos. – APEC 2020, pp. 2455-2461.
#     63. Zhang, X.: 21st Inter. Conf. Electronic Pack. Technol. – ICEPT 2020, Art. no. 9202882.
#     64. Cheng, W.-C.: IEEE 15th Intern. Conf. Solid-State Integrated Circuit Technol. – ICSICT 2020, Art. no. 9278368.
65. Liu, C.H.: IEEE Electron Device Lett. 42 (2021) ‏ 1432.
66. Zhang, L.: IEEE Electron Device Lett. 42 (2021) ‏ 22.
67. Sun, S.: Phys. Status Solidi A 218 (2021) SI2000565.
68. Jiang, H.: Semicond. Sci Technol. 36 (2021) 034001.
69. 69. Baba, S.: IEEE Access 9 (2021) 86488.
70. He, J.Q.: Adv. Electron. Mater. 7 (2021) 2001045.
71. Kim, T.H.: Micromachines 12 (2021) 291.
72. Li, S.: IEEE J. Emerg. Selec. Topics in Power Electron. 9 (2021) 2227.
73. Dalcanale, S.: IEEE Trans. Electron Dev. 68 (2021) 2220.
74. Zhou, GN.: IEEE Trans. Electron Dev. 68 (2021) 1518.
75. Zhong, Y.Z.: IEEE J. Emerg. Selec. Topics in Power Electron. 9 (2021) 3715.
76. Hua, M.Y.: IEEE Electron Device Lett. 42 (2021) 669.
77. Song, Y.L.: Micromachines 12 (2021) 751.
78. Wang, H.: Japan. J. Applied Phys. 60 (2021) 104001.
79. Song, S.D.: Chinese Phys. B 30 (2021) 047103.
80. Chiu, H.C.: Membranes 11 (2021) 727.
81. Millesimo, M.: IEEE Trans. Electron Dev. 68 (2021) 5701.
82. Tsai, W.S.: ECS J. Solid State Sci Technol. 10 (2021) 125003.
#            83. Mao, M.: ICEPT 2021.
#            84. Liu, C.H.: CS MANTECH 2021, pp. 89.
85. Zeng, C.K.: Applied Phys. Express 15 (2022) 016502.
86. Tang, J.L.: Chinese Phys. B 31 (2022) 018101.
87. Wang, H.: IEEE Trans. Electron Dev. 69 (2022) 2287.
88. Zhou, G.N.: IEEE Trans. Electron Dev. 69 (2022) 2282.
89. Qin, ZW.: Semicond. Sci Technol. 37 (2022) 045002.
90. Wang, H.C.: Micromachines 13 (2022) 807.
91. Huang, X.J.: Acta Physica Sinica 71 (2022) 108501.
92. Liu, K.: Semicond. Sci Technol. 37 (2022) 75005.
93. Huang, X.J.: Applied Phys. Express 15 (2022) 071010.
94. Guo, Y.J.: J. Phys. D 55 (2022) 355103.
95. Meneghini, M.: J. Applied Phys. 130 (2021) 181101.
96. Tang, X.: IEEE Proc. Inter. Symp. Power Semicond. Dev. & Ics 2022, p. 57.
97. Pu, T.: Chinese Phys. B 31 (2022)  127701.
98. Mounika, B.: Micro Nanostruct. 168 (2022) 207317.
99. Liu, S.Y.: IEEE Electron Device Lett. 43 (2022) 1621.
100. Chen, S.H.: Crystals 12 (2022)1521.
101. Greco, G.: Applied Phys. Lett. 121 (2022) 233506.
102. Haziq, M.: Micromachines 13 (2022) 2133.
103. Murray, S.K.: IEEE J. Emerg. Select. Topics in Power Electron. 10 (2022) 7150.
#           104. Mandal, M.: IECON Proc. 2022.
#           105. Liu, C.H.: CS MANTECH 2022, pp. 379-382.
#           106. Zhao, F.: Diangong Jishu Xuebao/Trans. China Electrotechn. Soc 37 (2022) 4664.
107. Chao, X .: IEEE Trans. Electron Dev. 70 (2023) 25.

Mikolášek, M., Racko, J., Řeháček, V., Harmatha, L., Ťapajna, M., and Fröhlich, K.: Silicon based metal-insulator-semiconductor structures for photoelectrochemical solar fuel generation. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 45-48.

1. Grosman, A.: J. Applied Phys. 129 (2021) 214504.

Blaho, M., Gregušová, D., Haščík, Š., Seifertová, A., Ťapajna, M., Šoltýs, J., Šatka, A., Nagy, L., Chvála, A., Marek, J., Carlin, J.-F., Grandjean, N., Konstantinidis, G., and Kuzmík, J.: Technology of integrated self-aligned E/Dmode n++GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics, Semicond. Sci Technol. 31 (2016) 065011.

1. Kumar, S.: IEEE Calcutta Conf. – CALCON 2020, pp.‏ 378.
2. Hofstetter, D.: Crystals 11 (2021) 1431.
#     3. Lee, D.: ACS Applied Nano Mater. 5 (2022) 18462.

Ťapajna, M., Hilt, O., Bahat-Triedel, E., Würfl, H., and Kuzmík, J.: Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors, Applied Phys. Lett. 107 (2015) 193506.

1. De Santi, C.: IEEE Electron Device Lett. 37 (2016) 611.
2. Meneghini, M.: Electronics 5 (2016) 14.
3. Marek, J.: ASDAM 2016. P. 173.
4. Zhang, K.: Applied Phys. Express 9 (2016) 121002.
5. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
6. Dong, B.: AIP Adv. 6 (2016) 095021.
7. De Santi, C.: Proc. SPIE 10124  (2017) UNSP 101240F.
8. Xie, R.: IEEE Trans. Power Electron. 32 (2017) 6416.
9. Efthymiou, L.: Applied Phys. Lett. 110 (2017) 123502.
10. Meneghini, M.: IRPS 2017.
11. Saito, W.: Microelectron. Reliab. 76 (2017) SI309.
12. Bai, Z.: J. Comput. Electron. 16 (2017) 748.
13. Zhong, Y.: Applied Surface Sci 420 (2017) 817.
14. Kim, K.S.: Japan. J. Applied Phys. 56 (2017) 091002.
15. Rossetto, I.: Microelectron. Reliab. 76 (2017) SI298.
#     16. Dong, B.: ICSICT 2016 – Proc.  2017, Art. no. 7998648.
#     17. Bisi, D.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 367-430.
18. De Santi, C.: Solid State Lighting Technol. Appl. Ser. 3 (2018) 15.
19. Chiu, H.-C.: IEEE Trans. Electron Dev. 65 (2018) 4820.
20. Pu, T.: Superlatt. Microstr. 120 (2018) 448.
21. Tang, X.: IEEE Electron Device Lett. 39 (2018) 1145.
22. Stockman, A.: IEEE Trans. Electron Dev. 65 (2018) 5365.
23. Bai, Z.: Superlatt. Microstr. 123 (2018) 257.
24. Sang, L.: J. Applied Phys. 123 (2018) 161423.
25. Li, B.: Applied Phys. Express 12 (2019) 064001.
26. Matsuura, H.: Applied Sci-Basel 9 (2019) 1746.
27. Xie, R.: IEEE Trans. Power Electron. 34 (2019) 3711.
28. He, J.: IEEE Trans. Electron Dev. 66 (2019) 3453.
29. Masin, F.: Applied Phys. Lett. 115 (2019) 052103.
30. Zhong, Y.: IEEE Electron Device Lett. 40 (2019) 1495.
#     31. Meneghesso, G.: EDTM 2019, pp. 68-70.
#     32. Franke, J.: PCIM Europe Conf. Proc. 2019, pp. 473-478.
33. Wang, F.: J. Phys. D 53 (2020) 305106.
34. He, J.: Applied Phys. Lett. 116 (2020) Iss.‏ 22.
35. Kato, D.: Japan. J. Applied Phys. 59 (2020) SGGD13.
36. Kim, K.: Japan. J. Applied Phys. 59 (2020) 030908.
37. Xu, H.: IEEE Trans. Power Electron. 36 (2021) 5904.
38. Zhong, Y.Z.: IEEE J. Emerg. Selec. Topics in Power Electron. 9 (2021) 3715.
39. Zhang, L.: Applied Phys. Lett. 119 (2021) 053503.
40. Sun, R.Z.: Applied Phys. Lett. 119 (2021) 133503.
41. Sarkar, A.: Solid-State Electr. 196 (2022) 108420.
42. Meneghini, M.: J. Applied Phys. 130 (2021) 181101.
43. Wang, P.: Applied Phys. Lett. 121 (2022) 143501.
44. Wang, X.H.: Applied Phys. Lett. 122 (2023) 093504.

Gucmann, F., Gregušová, D., Válik, L., Ťapajna, M., Haščík, Š., Hušeková, K., Fröhlich, K., Pohorelec, O., and Kuzmík, J.: DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric prepared by various techniques. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 9-12.

1. Hasan, Md. R.: J. Vacuum Sci Technol. B 35 (2017) 052202.

Blaho, M., Gregušová, D., Haščík, Š., Jurkovič, M., Ťapajna, M., Fröhlich, K., Dérer, J., Carlin, J., Grandjean, N., Kuzmík, J., : Self-aligned normally-off metal-oxide-semiconductor n+++GaN/InAlN/GaN high-electron mobility transistors. Phys. Status Solidi A 112 (2015) 1086-1090.

1. Yeh, P.-C.: Applied Phys. Express 8 (2015) 084101.
2. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
3. Freedsman, J.: IEEE Electron Device Lett. 38 (2017) 497.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
6. Meneghini, M.: Mater. Sci Semicond. Process. 78 (2018) 118.
7. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
8. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
9. Zhang, W.H.: Results in Phys. 24 (2021) 104209.
10. Lee, D.: ACS Applied Nano Mater. 5 (2022) 18462.

Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., and Kuzmík, J.: Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506.

1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
7. Zhang, K.: IEEE SSLChina – IFWS 2016. P. 64.
8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.
9. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
10. Zhou, X. J.: Superlatt. Microstr. 112 (2017) 1.
#    12. Zhang, K.: Inter. Forum on Wide Bandgap Semiconductors China, IFWS 2016. Conf. Proc. (2017) 7803758, pp. 64-67.
#     13. Singh, P.: Comm. Computer Inf. Sci 892 (2019) 380.
14. Supardan, S. N.: J. Phys. D 53(2020) 075303.
15. Liu, Y.: Sci Rep. 11 (2021) 22431.
16. Liu, S.Y.: IEEE Electron Device Lett. 43 (2022) 1621.

Kuzmík, J., Jurkovič, M., Gregušová, D., Ťapajna, M., Brunner, F., Cho, E., Meneghesso, G., and Würfl, H.:Degradation of AlGaN/GaN high-electron mobility transistors in the current-controlled off-state breakdown, J. Applied Phys. 115 (2014) 164504.

#        1. Jang, S.Y.: New Phys. 65 (2015) 1-13.
#        2. Ren, F.: Advances in Photonics Engn., Nanophoton. Biophotonics. Nova Sci Publ., Inc. 2016 ISBN: 978-163484530-4. P. 57-117.

Ťapajna, M., Killat, N., Palankovski, V., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Kuball, M., and Kuzmík, J.: Hot-electron-related degradation in InAlN/GaN high-electron-mobility transistors,. IEEE Trans. Electron Dev. 61 (2014) 2793-2801.

1. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
2. Petitdidier, S.: Microelectron. Reliab. 55 (2015) 1719.
3. Bisi, D.: IEEE Electron Device Lett. 36 (2015) 1011.
4. Dyson, A.: IEEE Trans. Electron Dev. 62 (2015) 3613.
5. Downey, B.P.: IEEE Trans. Device Mater. Reliab. 15 (2015) 474.
6. Berthet, F.: IEEE RADECS 2015.
7. Chiu, H.-C.: Japan. J. Applied Phys. 55 (2016) 056502.
8. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
9. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
10. Guo, L.: Sci Reports 6 (2016) 37415.
11. Lang, A.C.: Applied Phys. Lett. 109 (2016) 133509.
12. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
13. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
14. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
15. Berthet, F.: Solid-State Electr. 127 (2017) 13.
16. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.
17. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
#      18. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
#      19. Mu, W.: Res. Progress Solid State Electron. 37 (2017) 168+181.
20. Hilton, A.M.: IEEE Trans. Electron Dev. 65 (2018) 59.
21. Duffy, S.J.: IEEE Access 6 (2018) 42721.
22. Cha, S.: IEEE Trans. Electron Dev. 66 (2019) 3740.
23. Ray, A.: J. Electronic Mater.‏ 49 (2020)‏ 2018.
24. Wang, Y.: IEEE J. Electron Dev. Soc 8 (2020)‏ 850.
25. Chen, Y.-C.: IEEE Trans. Nanotechnol. 19 (2020)‏ 415.
26. Modolo, N.: IEEE Electron Device Lett. 42 (2021) 673.
27. Niu, X.R.: IEEE Trans. Electron Dev. 68 (2021) 4283.
28. Khade, R.P.: J. Applied Phys. 130 (2021) 205707.
29. Ciou, F.M.: Proc. IPFA 2021.
30. Bordoloi, S.: IEEE Trans. Device Mater. Reliab. 22 (2022) 73.
31. Lin, J.H.: IEEE Electron Device Lett. 43 (2022) 1420.
32. Strenaer, R.: IEEE Trans. Electron Dev. 69 (2022) 6010.
33. Sun, L.C.: IEEE Electron Device Lett. 44 (2023) 586.
#      34. Bordoloi, S.: J. Phys.: Conf. Ser. 2236 (2022) 012005.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., Hashizume, T., and Kuzmík, J.: Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations. J. Applied Phys. 116 (2014) 104501.

1. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
2. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
3. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Liu, X.: J. Applied Phys. 119 (2016) 015303.
6. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
7. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
8. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
9. Son, P.L.: J. Applied Phys. 119 (2016) 204503.
10. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
11. Colon, A.: J. Vacuum Sci Technol. A 34 (2016) 06K901.
12. Colon, A.: J. Vacuum Sci Technol. A 35 (2017) 01B132.
13. Panda, D.K.: AEU-Inter. J. Electron. Comm. 82 (2017) 467.
14. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902 .
15. Kim, T.-S.: J. Phys. D 50 (2017) 39LT03.
16. Le, S.P.: J. Applied Phys. 123(2018) 034504.
17. Upadhyay, B.B.: Solid-State Electr. 141 (2018) 1.
18. Kim, Tae-S.: J. Korean Phys. Soc. 72 (2018)1332.
19. Verma, S.: Superlatt. Microstr. 119 (2018) 181.
20. Anvari, R.: Applied Surface Sci 452 (2018) 75.
21. Anvari, R.: Sensors Actuators B 269 (2018) 62.
22. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
23. Zhu, J.: IEEE Inter. Reliab. Phys. Symp. Proc. 2018. PWB.11-PWB.14.
24. Acurio, E.: IEEE Trans. Electron Dev. 66 (2019) 883.
25. Miyamoto, H.: Japan. J. Applied Phys. 59 (2020) 044002.
26. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
27. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
28. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
29. Song, Y.L.: Micromachines 12 (2021) 751.
30. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
31. Jin, E.N.: Materials 9 (2021) 111101.
32. Raja, P.V.: Electronics 10 (2021) 3096.
33. Sun, N.: IEEE Trans. Electron Dev. 69 (2022) 82.
34. Calzolaro, A.: Materials 15 (2022) 791.‏

Ťapajna, M., Válik, L., Kotara, P., Zhytnytska, R., Brunner, F., Hilt, O., Bahat-Triedel, E., Würfl, H., and Kuzmík, J.: Impact of the buffer structure on trapping characteristics of normally-off p-GaN/AlGaN/GaN HEMTs for power switching applications In: ASDAM 2014. Eds. J. Breza et al. IEEE 2014. ISBN 978-1-4799-5474-2. P. 121-124.

      1. Rossetto, I.: Microelectron. Reliab. 64 (2016) SI547.
#    2. Bisi, D.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 367-430.

Kuzmík, J., Ťapajna, M., Válik, L., Molnár, M., Donoval, D., Fleury, C., Pogany, D., Strasser, G., Hilt, O., Brunner, F., and Würfl, H.: Self-heating in GaN transistors designed for high-power operation, IEEE Trans. Electron Dev. 61 (2014) 3429-3434.

1. Rodriguez, R.: Phys. Status Solidi A 212 (2015) SI1130.
2. Nazari, M.: IEEE Trans. Electron Dev. 62 (2015) 1467.
3. Zhao, X.: IEEE ICCP 2015. P. 261.
4. Nagahisa, T.: Japan. J. Applied Phys. 55 (2016) SI04EG01.
5. Nazari, M.: Applied Phys. Lett. 108 (2016) 031901.
6. Guo, H.: Diamond Related Mater. 73 (2017) 260.
7. Ahmeda, K.: IEEE ACCESS 5 (2017) 20946.
8. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
9. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
10. Piotrowicz, S.: Inter. J. Microwave Wireless Technol. 10 (2018) SI39.
11. Feghhi, R.: Inter. J. RF Microwave Comp.-Aided Engn. 28 (2018) e21513.
#    12. Kumar, P.: In Proc. 8th Inter. Conf. Confluence 2018 on Cloud Computing, Data Sci Engn. – Confluence 2018, pp. 880-883.
13. Jarndal, A.: IEEE Access 7 (2019) 94205.
14. Rehman, S.-U.: IEEE Access 7 (2019) 49702.
15. Jarndal, A.: Inter. J. RF Microwave Comput.-Aided Engn. 29 (2019) e21764.
16. Khan, M.N.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields (2019) e2648.
17. Guo, H.: Electron. Comp.Technol. Conf. 2019, p. 1842.
18. Jarndal, A.: ICECTA 2019, pp. 8959622.
19. Zhang, H.: IEEE Trans. Electron Dev. 67 (2020) 47.
20. Wang, L.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 33 (2020) SIe2599.
21. Yan, X.: IEEE Trans. Instrum. Measurem.‏ 69 (2020)‏ 995.
22. Gonzalez, B.: IEEE Trans. Electron Dev. 67 (2020) 5408.
23. Jarndal, A.: Inter. J. Rf Microwave Comp.-Aided Engn. 31 (2021) SIe22542.
24. Jarndal, A.: IET Microwav. Antennas Propagat. 15 (2021) 937.
25. Chernykh, M.Y.: Applied Mater. Today 26 (2022) 101338.
26. Husain, S.: IEEE J. Electron Dev. Soc 10 (2022) 1015.
27. Tran, D.Q.: Phys. Rev. Mater. 6 (2022) 104602.
28. Strenaer, R.: IEEE Trans. Electron Dev. 69 (2022) 6010.
29. Sermuksnis, E.: Applied Sci 12 (2022) 11079.
30. Husain, S.: 5th Inter. Conf. Multimedia, Signal Process. Comm. Technol. – IMPACT 2022, pp. 1-5.
31. Abdullah, M.F.: Microelectron. Engn. 273 (2023) 111958.
32. Gao, Y.: Results In Phys. 47 (2023) 106368.
33. Tran, D.Q.: Applied Phys. Lett. 122 (2023) 182107.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., and Kuzmík, J.: Bulk and interface trapping in the gate dielectric of GaN based metal–oxide–semiconductor high-electron mobility transistors, Applied Phys. Lett. 102 (2013) 243509.

1. Hori, Y.: J. Applied Phys.114 (2013) 244503.
2. Liao, W. C.: Applied Phys. Lett. 104 (2014) 033503.
3. Zhang, K.: Semicond. Sci Technol. 29 (2014) 075019.
4. Ye, D.: J. Phys. D 47 (2014) 255101.
5. Meneghesso, G.: IEEE Inter. Reliab. Phys. Symp. 2014.
6. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
7. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
8. Wu, T.-L.: Solid-State Electron. 103 (2015) 127.
9. Wang, Y.-H.: Applied Phys. Lett. 108 (2016) 233507.
10. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
11. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
12. Colon, A.: J. Vacuum Sci Technol. B 34 (2016) 06K901.
13. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
14. Curatola, G.: Power Electron. Power Systems (2017) 165.
15. Zhou, W.: ASME, Proc. 25th Inter. Conf. Nuclear Engn. 2017, Vol. 9, Art. No.
009T15A036-1.
16. Panda, D. K.: AEU-Inter. J. Electron.Comm. 82 (2017) 467.
17. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
18. Hua, M.: IEEE Electron Device Lett. 39 (2018) 413.
19. Le, S.P.: J. Applied Phys. 123(2018) 034504.
20. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI 04FG05.
21. Hua, M.: Physica Status Solidi A 215 (2018) SI 1700641.
22. Hwang, Il-H.: Physica Status Solidi A 215 (2018) 1700650.
23. He, J.: IEEE Trans. Electron Dev. 65 (2018) 3185.
#   24. He, J.: CS MANTECH 2018.
25. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
26. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
27. Khadar, R.A.: IEEE Electron Dev. Lett. 40 (2019) 443.
28. Huang, S.: J. Applied Phys. 126 (2019) 164505.
29. Hua, M.: Proc. Inter. Conf. ASIC 2019, pp.8983535.
#    30. Bao, S.: Chinese Physics B 28 (2019) 067304.
31. Liu, W.: Applied Phys. Lett. 116 (2020) 022104.
32. Elangovan, S.: Energies 13 (2020) 2628.
33. Krukovskyi, R.: Functional Mater.‏ 27 (2020) 482.
34. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
35. Khadar, R.A.: Applied Phys. Express 14 (2021) 046503.
36. Ma, Q.: Electron. Lett. 57 (2021) 591.
37. Gupta, S.D.: J. Applied Phys. 130 (2021) 015701.
38. Lin, Y.S.: Semicond. Sci Technol. 37 (2022) 025017.
39. Meneghini, M.: J. Applied Phys. 130 (2021) 181101.
40. Calzolaro, A.: Materials 15 (2022) 791.
41. Yin, X.B.: Semicond. Sci Technol. 37 (2022) 065008.
42. Pan, S.J.: IEEE Trans. Electron Dev. 69 (2022) 4877.
#    43. Khan, A.B.: In Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions. ISBN 978-111975510-4. Wiley 2021, p. 83.
44. Liu, X.Y.: IEEE Electron Dev. Lett. 43 (2022) 1408.
45. Chen, Y.L.: Sci China-Inf. Sci 66 (2023) 122401.
46. Zhang, H.: Micro Nanostruct. 178 (2023) 207579.

Ťapajna, M. and Kuzmík, J.: Control of threshold voltage in GaN based metal–oxide–semiconductor high-electron mobility transistors towards the normally-off operation, Japan. J. Applied Phys. 52 (2013) 08JN08.

 1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-
2. Swain, R.: Superlatt. Microstr. 84 (2015) 54.
3. Osvald, J.: Physica Status Solidi B 252 (2015) SI996.
4. Kim, J.-J.: Japan. J. Applied Phys. 54 (2015) 038003.
5. Swain, R.: J. Comput. Electron. 14 (2015) 754.
6. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
7. Nagy, L.: IEEE 18th Inter. Symp. Design Diagnostics of Electron. Circuits and Systems – DDECS 2015. Art. no. 7195673, p. 83.
8. Jena, K.: Inter. J. Numerical Modell. 29 (2016) 83.
9. Du, J.: Japan. J. Applied Phys. 55 (2016) 054301.
10. Nagy, L.: ICETA 2015. IEEE 2016. Art. No. 7558501.
11. Jena, K.: IET Circuits, Devices and Systems 10 (2016) 423.
12. Swain, R.: Pramana-J. Phys.88 (2017) 3.
13. Lee, J.-M.: J. Korean Phys. Soc. 71 (2017)365.
14. Du, J.: Superlatt. Microstr. 111 (2017) 656.
15. Huang, H.: J. Phys. D 51(2018) 345102.
16. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
17. Bordoloi, S.: IEEE Access 9 (2021) 99828.
18. Khan, AN.: Silicon 14 (2022) 8599.
19. Nautiyal, P.: Microelectron. Reliab. 139 (2022) 114800.
20. Khan, A.N.: J. Computat. Electron. 22 (2023) 827.

Ťapajna, M. and Kuzmík, J.: A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors, Applied Phys. Lett. 100 (2012) 113509.

1. Osvald, J.: ASDAM 2012. (2012) art. no. 6418555, pp. 59.
#      2.  Stafmiak, A.: ASDAM 2012. (2012) art. no. 6418226, pp. 271.
#      3. Sagatova, A.: ASDAM 2012. (2012) art. no. 6418581, pp. 147.
4. Chou, B.-Y.: Semicond. Sci Technol. 28 (2013) SI3UNSP074005.
5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
6. Osvald, J.: Phys. Status Solidi A 210  (2013) 1340.
7. Zhang, Y.: Applied Phys. Lett. 103 (2013) 033524.
8. Osvald, J.: Japan. J. Applied Phys. 52 (2013) 08JN09.
9. Gregusová, D.: Japan. J. Applied Phys. 52 (2013) 08JN07.
10. Akazawa, M.: Japan. J. Applied Phys. 52 (2013) 08JN23.
11. Johnson, D.W.: IEEE Trans. Electron Dev. 60 (2013) 3197.
12. Van Hove, M.: IEEE Trans. Electron Dev. 60 (2013) 3071.
13. Wang, Y.-H.: Semicond. Sci Technol. 28 (2013) 125010.
14. Wang, Y.-H.: IEEE ECCE Asia Downunder 2013, Art. no. 6579124.
15. Stoklas, R.: Semicond. Sci Technol.  29 (2014) 045003.
16. Capriotti, M.: Applied Phys. Lett. 104 (2014) 113502.
17. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
18. Tang, C.: Semicond. Sci Technol. 29 (2014) 125004.
19. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
20. Chou, B.-Y.: Semicond. Sci Technol.  30 (2015) 015009.
21. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
22. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
23. Capriotti, M.: J. Applied Phys. 117 (2015) 024506.
24. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
25. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
26. Yatabe, Z.: Physica Status Solidi A 212 (2015) 1075.
27. Downey, B. P.: Solid-State Electr. 106 (2015) 12.
28. Raj, B.: In Fakhfakh, M. et al.: Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design.  IGI Global 2015.  ISBN-13: 978-1466666276. P. 399-418.
29. Winzer, A.: J. Applied Phys. 118 (2015) 124106.
30. Swain, R.: TENCON IEEE Region 10 Conf. Proc. (2015).
31. Swain, R.: J. Comput. Electron. 14 (2015) 754.
32. Capriotti, M.: European Solid-State Device Research Conf. 2015. Art. no. 7324713, p. 60.
33. Swain, R.: IEEE EDSSC 2015. P. 399.
34. Swain, R.: IEEE EDSSC 2015. P. 567.
35. Du, J .: Japan. J. Applied Phys. 55 (2016) 054301.
36. Zhu, J.-J .: Japan. J. Applied Phys. 55 (2016) SI05FH01.
37. Zervos, Ch .: Applied Phys. Lett. 108 (2016) 142102.
38. Jena, K .: J. Electron. Mater. 45 (2016) 2172.
39. Swain, R.: Semiconductors 50 (2016) 384.
40. Hahn, H .: IEEE Trans. Electron Dev. 63 (2016) 606.
41. Swain, R .: IEEE Trans. Electron Dev. 63 (2016) 2346.
42. Li, L .: Chinese Phys. B 25 (2016) 038503.
43. Swain, R.: Mater. Sci in Semicond. Process. 53 (2016) 66.
44. Sun, R.: IEEE J. Emerging Selec Topics in Power Electron. 4 (2016) SI720.
45. Matys, M.: J. Applied Phys. 120 (2016) 225305.
46. Capriotti, M.: Solid-State Electron. 125 (2016) 118.
47. Reddy, M.S.P.: J. Electron. Mater. 45 (2016) 5655.
#      48. Swain, R.: IEEE TENCON 2016. Art. No. 7373087.
49. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2017) Q284.
50. Florovic, M.: Semicond. Sci Technol. 32 (2017) 025017.
51. Stoklas, R.: Semicond. Sci Technol. 32 (2017) 045018.
52. Matys, M.: Applied Phys. Lett. 110 (2017) 243505.
53. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
54. Wang, H.: Chinese Phys. B 26 (2017) 047305.
55. Lee, C.-S.: Mater. Sci in Semicond. Process. 66 (2017) 39.
56. Chapin, C.A.: TRANSDUCERS 2017. P. 786.
57. Wang, H.: Chinese Phys. B 26 (2017) 047305.
58. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.
59. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
60. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
61. Hadamek, T.: Applied Phys. Lett. 111 (2017) 142901.
62. Wang, H.: Solid-State Electr. 137 (2017) 52.
63. Du, J.: Superlatt. Microstr. 111 (2017) 656.
64. Amarnath, G.: Inter. J. Electron. Telecomm. 63 (2017) 363.
65. Amarnath, G.: Inter. J. Numer. Model. 31 (2018) e2268.
66. Tang, F.: J. Applied Phys. 123 (2018) 024902.
67. Le, S.P.: J. Applied Phys. 123 (2018) 034504.
68. Hou, B.: IEEE Electron Dev. Lett. 39 (2018) 397.
69. Ostermaier, C.: Microelectron. Reliab. 82 (2018) 62.
70. Zaidi, Z.H.: J. Applied Phys. 123 (2018) 184503.
71. Chang, S.-J.: ECS J. Solid State Sci Technol. 7 (2018) N86.
72. Zaki, F.: J. Computat. Electron. 17 (2018) 1220.
73. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
74. Huang, T.: Applied Phys. Lett. 113 (2018) 232102.
#     75. Wang, H.: Mater. Sci Forum 913 (2018) 870.
76. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
77. Nakazawa, S.: Japan. J. Applied Phys. 58 (2019) 030902.
78. Shin, D.: Phys. Rev. Mater. 3 (2019) 044607.
79. Hou, B.: WIPDA Asia 2018, p. 212-+.
80. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
#        81. Raj Kumar, J.S.: ICSPC 2019 – Proc. 8976802, pp. 380.
82. Sandeep, V.: IEEE Trans. Electron Dev. 67 (2020) 3558.
83. Zhao, Y.-P.: Chinese Phys. B 29 (2020) 087304.
84. Zhu, J.: Semicond. Sci Technol. 35 (2020) 065017.
85. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) 693.
86. Miyamoto, H.: Japan. J. Applied Phys. 59 (2020) 044002.
87. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
88. Zhao, Y.: Phys. Status Solidi A 217 (2020) 1900981.
89. Zhao, Y.: Solid-State Electr. 163 (2020) 107649.
90. Yoon, Y.J.: Electronics 9 (2020) 1402.
#       91. Sandeep, V.: Proc. 4th Inter. Conf. Electron., Comm. Aerospace Technol. – ICECA 2020, 9297448, pp. 471-478.
92. Pinchbeck, J.: J. Phys. D 54 (2021) 105104.
93. Mazumder, S.: Crystals 11 (2021) 136.
94. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
95. Rao, M.: IEEE Trans. Electr. Electron. Mater. 22 (2021) 691.
96. He, J.Q.: Adv. Electron. Mater. 7 (2021) 2001045.
97. Gupta, S.D.: J. Applied Phys. 130 (2021) 015701.
98. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
99. Sandeep, V.: Superlatt. Microstr. 156 (2021) 106954.
100. Shiomi, H.: Applied Phys. Express 14 (2021) 095502.
#        101. Chang, S.-J.: ECS Trans. 98 (2020) 519.
102. Rrustemi, B.: J. Applied Phys. 130 (2021) 105704.
103. Jin, E.N.: APL Mater. 9 ( 2021) 111101.
104. Gong, J.R.: Japan. J. Applied Phys. 61 (2022) 011003.
105. Zhao, Y.P.: Phys. Status Solidi A 219 (2022) 2100601.
106. Escoffier, R.: Energies 15 (2022) 677.
107. Chen, D.Z.: Sci China-Mater. 65 (2022) 795.
108. Cheng, W.C.: J. Vacuum Sci Technol. B 40 (2022) 022212.
109. Maumder, S.: ECS J. Solid State Sci Technol. 11 (2022) 065002.
110. Mollah, S.: Applied Phys. Express 15 (2022) 104001.
111. Baratov, A.: Applied Phys. Express 15 (2022) 104002.
112. Zhang, B.: Japan. J. Applied Phys. 62 (2023) 010902.
113. Benjelloun, M.: IEEE Access 11 (2023) 40249.
114. Yun, B.X.: Mater. Lett. 347 (2023) 134581.
115. Qiang, L.: Modern Phys. Lett. B 37 (2023) 2350092.

Válik, L., Ťapajna, M., Gucmann, F., Fedor, J., Šiffalovič, P., Fröhlich, K., : Distribution of fixed charge in MOS structures with ALD grown Al2O3 studied by capacitance measurements. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 227-230.

1. Freedsman, J.J.: IEEE Trans. Electron Dev. 60 (2013) 6579632.
2. Samanta, P.: Semicond. Sci Technol. 34 (2019) 115008.
3. Zhao, S.: J. Mater. Sci 56 (2021) 17478.
4. Arroyo, J.M.: J. Mater. Chem. C 11 (2023) 1824.
5. Gao, D.W.: Adv. Mater. 35 (2023) Iss. 15.

Ťapajna, M., Gregušová, D., Čičo, K., Fedor, J., Carlin, J., Grandjean, N., Killat, N., Kuball, M., Kuzmík, J., : Early stage degradation of InAlN/GaN HEMTs during electrical stress. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 7-10.

1. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
2. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.

Moereke, J., Ťapajna, M., Uren, M., Pei, Y., Mishra, U., and Kuball, M.: Effects of gate shaping and consequent process changes on AlGaN/GaN HEMT reliability, Phys. Status Solidi A 209 (2012) 2646-2652.

1. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
2. Chini, A.: Microelectr. Reliab. 53 (2013)1461.
3. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
4. Hahn, H.: J. Applied Phys. 117 (2015) 104508.
#     5. Bordoloi, S.: In VLSI and Post-CMOS Electronics. Vol. 2: Devices, circuits and interconnects. IET Digital Library 2019, p. 63.
6. Bordoloi, S.: IEEE Access 9 (2021) 99828.
7. Wu, N.T.: Semicond. Sci Technol. 38 (2023) 063002.

Ťapajna, M., Killat, N., Moereke, J., Paskova, T., Evans, K., Leach, J., Li, X., Ozgur, U., Morkoc, H., Chabak, K., Crespo, A., Gillespie, J., Fitch, R., Kossler, M., Walker, D., Trejo, M., Via, G., Blevins, J., and Kuball, M.: Non-arrhenius degradation of AlGaN/GaN HEMTs grown on bulk GaN substrates, IEEE Electron Device Lett. 33 (2012) 1126-1128.

1. Zanoni, E.: IEEE Trans. Electron Dev. 60 (2013) 6564457.
2. Stocco, A.: Microelectron. Reliab. 54 (2014) SI2237.
#      3. Janke, W.: Przeglad Elektrotechn. 91 (2015) 65.
4. Meneghini, M.: Devices Circuits Systems 47 (2016) 327.
5. Meneghini, M.: IEEE Trans. Electron Dev. 64 (2017) 1032.
6. Meneghesso, G.: Microelectr. Reliab. 80 (2018) 257.
7. Zhang, D.: IEEE Trans. Electron Dev. 65 (2018) 3379.
8. Voronenkov, V.V.: IEEE NW Russia Young Res. in Electr. Electron. Engn. Conf. 2019, p. 833.
9. Hamza, H.K.: Proc. ICDCS‘ 20 2020, pp.‏ 290-293.
10. Tanaka, A.: Sci Rep. 12 (2022) 7363.

Ťapajna, M., Jimenez, J., and Kuball, M.: On the discrimination between bulk and surface traps in AlGaN/GaN HEMTs from trapping characteristics, Phys. Status Solidi A 209 (2012) 386-389.

1. Li, B.: Applied Phys. Lett. 106 (2015) 093505.
2. Meneghini, M.: IEEE Trans. Electron Dev. 62 (2015) 782.
3. Shi, Y.: Nanoscale Res. Lett. 12 (2017) 342.
4. del Alamo, J.A.: IEEE Trans. Electron Dev. 66 (2019) 4578.

Ťapajna, M., Killat, N., Chowdhury, U., Jimenez, J., and Kuball, M.: The role of surface barrier oxidation on AlGaN/GaN HEMTs reliability, Microelectr. Reliab. 52 (2012) 29-32.(not IEE SAS).

1. Gao, F.: Applied Phys. Lett. 99 (2011) 223506.
2. Wohlmuth, W.:  IEEE COMCAS 2013.
3. Eller, B.S.: J. Vacuum Sci Technol. A 31 (2013) 050807.
4. Bisi, D.: IEEE Trans. Electron Dev. 60 (2013) 6605590.
#    5. Wang, W.-C.: CS MANTECH 2013. P. 143.
6. Meneghini, M.: IEEE Trans. Power Electr. 29 (2014) 6558779.
7. Lee, N.-H.: Japan. J. Applied Phys. 53 (2014) SI04EF10.
8. Weng, M.-H.: Microelectr. Reliab. 54 (2014) 2697.
9. Kim, J. J.: J. Korean Phys. Soc 65 (2014) 421.
#   10. Lee, N.-H.: CS MANTECH 2014. P. 245.
#   11. Wang, W.-C.: CS MANTECH 2014. P. 65.
12. Tang, C.: Microelectr. Reliab. 55 (2015) 347.
13. Baeumler, M.: Proc. SPIE 9555 (2015) 95550Y.
14. Sun, S.: Applied Phys. Lett. 108 (2016) 013507.
15. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
16. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
17. Moultif, N.: Engn. Failure Anal. 81 (2017) 69.
18. Ren, K.: Applied Phys. Lett. 115 (2019) 262101.
19. Chang, K.-P.: Mater. Sci Semicond. Process. 119 (2020)
05228.
20. Greco, G.: Semicond. Sci Technol. 35 (2020) 105004.
21. Moultif, N.: IEEE Trans.Power Electron. 36 (2021) 7442.
22. Moultif, N.: Microelectr. Reliab. 126 (2021) 114295.
23. Ito, Y.: Japan. J. Applied Phys. 62 (2023) SC1048.

Fröhlich, K., Hudec, B., Ťapajna, M., Hušeková, K., Rosová, A., Eliáš, P., Aarik, J., Rammula, R., Kasikov, A., Arroval, T., Aarik, L., Murakami, K., Rommel, M., and Bauer, A.: TiO2-based metal-insulator-metal structures for future DRAM storage capacitors ECS Transactions 50 (2012) 79-87.

#     1. Schroeder, U.: In Thin Films on Silicon: Electronic and Photonic Appl. 8 (2016) 369.
#     2. Pešić, M.: J. Applied Phys. 119 (2016)  064101.
3. Austin, D.Z.: Chem. Mater.29 (2017)  1107.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kozodaev, M.G.: J. Chem. Phys. 151 (2019) 204701.
6. Khalili, S.: Applied Phys. A 125 (2019) 661.
7. Maier, F.J.: J. Phys. Conf. Ser. 1837 (2021) 012009.
8. Hayes, M.: J. Vacuum Sci Technol. A 39 (2020) 052402.
9. Schneider, J.R.: Small 18 (2022) 2105513.

Kuball, M., Ťapajna, M., Simms, R., Faqir, M., and Mishra, U.: AlGaN/GaN HEMT device reliability and degradation evolution: Importance of diffusion processes, Microelectr. Reliab. 51 (2011) 195.(not IEE SAS).

1. Gao, F.: Applied Phys. Lett. 99 (2011) 223506.
2. Dammann, M.: IEEE Inter. Integrated Reliability Workshop Final Report (2011) 42.
3. Guetle, F.: Semicond. Sci Technol. 27 (2012) 125003.
4. Whiting, P. G.: Microelectr. Reliab. 52 (2012) 2542.
5. Guetle, F.: Mater. Sci Forum 725 (2012) 79.
#     6.  Wang, X.: Proc. MMWCST 2012 (2012) art. no. 6238124, pp. 370.
7. Holzworth, M.R.: Applied Phys. Lett. 103 (2013) 023503.
8. Choi, S.: J. Korean Phys. Soc 62 (2013) 954.
9. Zanoni, E.: IEEE Trans. Electron Dev. 60 (2013) 6564457.
10. Brunel, L.: Microelectr. Reliab. 53 (2013) 1450.
11. Choi, S.: J. Applied Phys. 114 (2013) 164501.
12. Ando, Y.: IEEE Trans. Electron Dev. 60 (2013) 6656913.
13. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
14. Meneghini, M.: IEEE Inter. Reliab. Phys. Symp. 2014.
15. Liao, W.-C.: J. Electrochemical Soc 162 (2015) H522.
16. Baeumler, M.: Proc. SPIE 9555 (2015) 95550Y.
17. Dammann, M.: Microelectr. Reliab. 55 (2015) 1667.
18. Hilton, A.M.: J. Electron. Mater. 44 (2015) 3259.
19. Tang, C.: Microelectr. Reliab. 55 (2015) 347.
20. Kajen, R.S.: J. Electron. Mater. 45 (2016) 493.
21. Meneghini, M.: Devices Circuits and Systems 47 (2016) 327.
22. Rosenberger, M.R.: IEEE Trans. Electron Dev. 63 (2016) 2742.
23. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
24. Guo, C.: AER-Adv. in Engn. Research 73 (2016)  995.
25. Jayawardena, A.: Microelectr. Reliab. 66 (2016) 22.
26. Joglekar, S.: IEEE Trans. Semicond. Manufact. 29 (2016) 349.
#    27. Knetzger, M.: Solid State Phenomena 242 (2016) 417.
#    28. Joglekar, S.: CS MANTECH 2016. P. 237.
#    29. Ando, Y.: IEEJ Trans. Electron. Inf. Systems 136 (2016) 449.
30. Brunel, L.: IEEE Trans. Electron Dev. 64 (2017) 1548.
31. Whiting, P.G.: Microelectron. Reliab. 70 (2017) 32.
32. Whiting, P.G.: Microelectron. Reliab. 70 (2017) 41.
33. Lee, J.-M.: Current Applied Phys. 17 (2017) 157.
34. Shankar, B.: IRPS 2017.
35. Chen, Y.Q.: Semicond. Sci Technol. 33 (2018) 015019.
36. Chandrasekar, H.: Sci Rep. 7 (2017) 15749.
37. Moultif, N.: Engn. Failure Anal. 81 (2017) 69.
38. Chen, Y.Q.: Semicond. Sci Technol. 33 (2018) 015019.
39. Blanton, E.W.: Applied Phys. Lett. 113 (2018) 263503.
40. Wojtasiak, W.: Micromachines 9 (2018) 546.
41. Islam, Z.: Applied Phys. Lett. 113 (2018) 183102.
42. Kemmer, T.: IEEE Inter. Integr. Reliab. Workshop Final Report 2018, p. 25.
43. Shankar, B.: Inter. Reliab. Phys. Symp. 2018.
44. Shankar, B.: IEEE Trans. Dev. Mater. Reliab. 19 (2019) 437.
45. Kapoor, R.M.: In Drug Delivery Systems. Academic Press 2020, ISBN 9780128144879, pp. 1-45.
46. Sangwan, V.: IEEE Trans. Industr. Electron.‏ 67 (2020) 5708.
47. Shankar, B.: IEEE Trans. Electron Dev. 67 (2020) 2044.
48. Shankar, B.: IEEE Trans. Electron Dev. 67 (2020) 1567.
49. Kemmer, T.: IEEE Inter. Reliab. Phys. Symp. ‏2020.
50. Shankar, B.: IEEE Trans. Dev. Mater. Reliab. 20 (2020) 767.
51. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
52. Scarpulla, J.: IEEE Inter. Reliab. Phys. Symp. 2021.
53. Warzoha, R.J.: J.Electron. Packag. 143 (2021) 020804.
54. Moultif, N.: Microelectr. Reliab. 126 (2021) 114295.
55. Mukherjee, J.: Phys. Status Solidi A 219 (2022) 2200211.
56. Casamento, J.: Applied Phys. Lett. 121 (2022) 192101.
57. Gao, Z.: Inter. Reliab. Phys. Symp. 2023.
58. Yao, Z.W.: Semicond. Sci Technol. 38(2023) 055008.

Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vacuum Sci Technol. B 29 (2011) 01A808.

1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
4. Bera, M.K.: ECS Trans. 53 (2013) 65.
5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
10. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
#   15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280.
#   16. Schäfer, A.:  J. Alloys Comp. 651 (2015) 514.
17. Tromm, T. C. U.: ECS Trans. 72 (2016) 307.
18. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
19. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 1-20.
20. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.
21. Terkhi, S.: Indian J. Phys. 92 (2018) 847.
22. Adak, S.: Nano 14 (2019) 1950060.
23. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
24. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
25. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020)‏ 613.
26. Cui, X.: Nano Energy 68 (2020) 104361.
27. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Killat, N., Ťapajna, M., Faqir, M., Palacios, T., and Kuball, M.: Evidence for impact ionisation in AlGaN/GaN HEMTs with InGaN back-barrier, (MANTECH 2011), Electronics Lett. 47 (2011) 405-U75. (not IEE SAS).

1. Meneghini, M.: Applied Phys. Lett. 100 (2012) 233508.
2. Guetle, F.: Semicond. Sci Technol. 27 (2012) 125003.
3. Wong, M.H.: IEEE Trans. Electron Dev. 59 (2012) 2988.
4. Meneghini, M.: IEEE Inter. Reliability Phys. Symp. (IRPS) (2012).
5. Jin, D.: IEEE Trans. Electron Dev. 60 (2013) 6574269.
6. Baeumler, M.: Proc. SPIE 9555 (2015) 95550Y.
7. Albahrani, S.A.: Solid-State Electron. 126 (2016) 143.
8. Swain, S.K.: Superlattices Microstr. 97 (2016) 258.
9. Albahrani, S.A.: IEEE Trans. Electron Dev. 63 (2016) 3693.
10. Albahrani, S.A.: IEEE Trans. Electron Dev. 64 (2017) 102.
11. Berthet, F.: Solid-State Electron. 127 (2017) 13.
12. Moultif, N.: Engn. Failure Anal. 81 (2017) 69.
13. Ohi, S.: Applied Phys. Express 11 (2018) 024101.
14. Bisi, D.: IEEE Electron Device Lett. 39 (2018) 1007.
15. Bisi, D.: IEEE Electron Device Lett. 41 (2020) 345.
16. Moultif, N.: IEEE Trans. Power Electron. 36 (2021) 7442.
17. Yeh, Y.H.: J. Phys. D 54 (2021) 285104.
18. Moultif, N.: Microelectr. Reliab. 126 (2021) 114295.
19. Li, S.J.: Applied Phys. Lett. 121 (2022) 062101.
20. Lin, J.H.: IEEE Electron Device Lett. 43 (2022) 1420.
21. Sarkar, S.: IEEE J. Electron Dev. Soc 11 (2023) 78.

Ťapajna, M., Kaun, S., Wong, M., Gao, F., Palacios, T., Mishra, U., Speck, J., and Kuball, M.: Influence of threading dislocation density on early degradation in AlGaN/GaN high electron mobility transistors, Applied Phys. Lett. 99 (2011) 223501.(not IEE SAS).

1. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
2. Johnson, M.R.: J. Vacuum Sci Technol. B 30 (2012) 062204.
3. D’Evelyn, M. P.: ECS Trans. 58 (2013) 287.
4. Cheney, D.J.: Semicond. Sci Technol. 28 (2013) 074019.
5. Ghassemi, H.: J. Applied Phys. 114 (2013) 064507.
6. Eller, B.S.: J. Vacuum Sci Technol. A 31 (2013) 050807.
7. Wan, X.: J. Semicond. 34 (2013) 104002.
8. Faramehr, S.: Semicond. Sci Technol. 29 (2014) 025007.
9. Katsuno, T.: Applied Phys. Lett. 104 (2014) 252112.
10. Loganathan, R.: J. Alloys Comp. 616 (2014) 363.
11. Sangghaleh, A.: Applied Phys. Lett. 105 (2014) 102102.
#   12. Igić, P.: Proc. Inter. Conf. Microelectr. – ICM 2014. 6842089, p. 77.
13. Lee, I.H.: J. Korean Phys. Soc 66 (2015) 61.
14. Polyakov, A.Y.: Mater. Sci Engn. R 94 (2015) 1.
15. Cheng, J.: Applied Phys. Lett. 106 (2015) 142106.
16. Yakimov, E. B.: Applied Phys. Lett. 106 (2015) 132101.
17. Puzyrev, Y.S.: Applied Phys. Lett. 106 (2015) 053505.
18. Kubo, T.: Japan. J. Applied Phys. 54 (2015) 020301.
19. Zeng, C.: J. Applied Phys. 118 (2015) 124511.
20. Sasangka, W.A.: IEEE Inter. Reliab. Phys. Symp. Proc. 2015. Art. no. 7112768, p. 6C31.
21. Zadeh, D.H.: Japan. J. Applied Phys. 55 (2016) SI05FH06.
22. Atmaca, G.: Solid-State Electron. 118 (2016) 12.
23. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
24. Chen, C.: J. Applied Phys. 119 (2016) 064302.
25. Narita, T.: Japan. J. Applied Phys. 55 (2016) SI05FB01.
26. Tanabe, S.: Japan. J. Applied Phys. 55 (2016) SI05FK01.
27. Yakimov, E.B.: Japan. J. Applied Phys. 55 (2016) SI05FM03.
28. Podlipskas, Z.: Current Applied Phys. 16 (2016) 633.
29. Sasangka, W. A.: AIP Adv. 6 (2016) 095102.
30. Ji, Q.: ACS Applied Mater. & Interfaces 8 (2016) 21480.
31. Gong, J.-M.: Chinese Phys. Lett. 33  (2016) 117303.
#    32. Ren, F.: In Advances in Photonics Engn., Nanophotonics and Biophoton. Nova Sci Publ. 2016. ISBN 978-163484530-4. P. 57-117.
33. Chang, S-J.: RFIT 2017. P. 87.
34. Yamaoka, Y.: Phys. Status Solidi A 214 (2017) 1600843.
35. Youtsey, C.: Phys. Status Solidi B 254 (2017) 1600774.
36. He, C.: ACS Applied Mater. Interf. 9 (2017) 43386.
37. Katsuno, T.: Applied Phys. Lett. 113 (2018) 012106.
38. Song, Y.: J. Electron. Mater. 47 (2018) 3474.
39. Chen, Y.P.: J. Alloys Compounds 775 (2019) 1213.
40. Lee, J.-H.: IEEE Trans. Electron Dev. 66 (2019) 324.
41. Wang, K.: CRYSTENGCOMM 21 (2019) 4792.
#     42. Dhaneshwar M.: In Adv. in Interdisciplin. Engn. Lecture Notes in Mechanical Engn. Springer, Singapore 2019. ISBN 978-981-13-6576-8, pp. 749-757.
43. Zubialevich, V.: J. Applied Phys. 127 (2020) 025306.
44. Yi, W.: Applied Phys. Lett. 116 (2020) Iss.‏ 24.
45. Takakura, K.: Semicond. Sci Technol. 36 (2020) 024003.
46. Besendoerfer, S.: Sci Rep. 10 (2020) 17252.
47. Hajek, F.: Semicond. Sci Technol. 36 (2021) 075016.
48. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
49. Remesh, N.: J. Applied Phys. 130 (2021) 075702.
50. Tallarico, AN.: IEEE Trans. Electron Dev. 69 (2022) 507.
51. Zhang, K.: J. Alloys Comp. 901 (2022) 163609.
52. Narin, P.: Surface Interface Anal. 54 (2022) 576.
53. Ma, C.: Applied Phys. Express 15 (2022) 031003.
54. Morita, M.: Japan. J. Applied Phys. 61 (2022) SC1071.
55. Zhao, Y.: Mater. Sci Semicond. Process. 143 (2022) 106535.
56. Matsunaga, K.: J. Ceram. Soc Japan 130 (2022) 648.
57. Wu, Y.P.: Progress in Quantum Electr. 85 (2022) 100401.
58. Cai, Z.D.: ACS Applied Electr. Mater. 4 (2022) 4113.
59. Yamaguchi, Y.: Nano Lett. 22 (2022) 6930.
60. Bommalingaiah, B.: Chem. Phys. Impact 7 (2023) 100251.
61. Chung, J.-Y.: ACS Applied Electr. Mater. 6 (2023) 14019.
62. Mohanty, S.: Progress Quantum Electron. 87 (2023) 100450.
63. Mimila-Arroyo, J.: Mater. Sci Engn. B 290 (2023) 116279.
64. Mei, W.: IEEE Inter. Instrument. Measurement Technol. Conf. – I2MTC 2023.
65. Mei, W.: IEEE Trans. Instrument. Measurement 72 (2023) 3522211.

Paskaleva, A., Ťapajna, M., Dobročka, E., Hušeková, K., Atanassova, E., and Fröhlich, K.: Structural and dielectric properties of Ru-based gate/Hf-doped Ta2O5 stacks,  Applied Surface Sci 257 (2011) 7876-7880.

1. Liu, S.-S.: J. Theoret. Comput. Chem. 11 (2012) 895.
2. Lorenzi, P.: Microelectr. Reliab. 53 (2013) 1203.
3. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
4. Carretero, E.: Applied Surface Sci 359 (2015) 669.
5. Mahata, C.: J. Mater. Chem. C 3 (2015) 10293.
6. Peralta, J.: Thin Solid Films 693 (2020) 137676.
7. Lim, W.F.: Applied Surface Sci 526 (2020) 146722.
8. Cai, C.X.: Applied Surface Sci 560 (2021) 149960.
9. Lim, W.F.: Inter. J. Energy Res. 46 (2022) 4699.

Gong, Y., Ťapajna, M., Bakalova, S., Zhang, Y., Edgar, J., Dudley, M., Hopkins, M., and Kuball, M.:Demonstration of boron arsenide heterojunctions: A radiation hard wide band gap semiconductor device, Applied Phys. Lett. 96 (2010) 223506.(not IEE SAS).

1. Ektarawong, A.: Phys. Rev. B 95 (2017) 064206.
2. Ektarawong, A.: Phys. Rev. B 96 (2017) 024202.
3. Hong, C.W.: ACS Applied Mater. Interf. 9 (2017) 36733.
4. Ektarawong, A.: Phys. Rev. B 97 (2018) 174103.
5. Muz, I.: Inorg. Chim. Acta 474 (2018) 66.
6. Cherednichenko, K.A.: High Pressure Res. 38 (2018) 224.
7. Liu, Z.X.: J. Environ. Chem. Engn. 11 (2023) 109913.

Ťapajna, M., Paskaleva, A., Atanassova, E., Dobročka, E., Hušeková, K., and Fröhlich, K.: Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures, Semicond. Sci Technol. 25 (2010) 075007.

1. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
2. Vijayakumar, V.: Mater. Res. Express 2 (2015) 046302.
3. Lei, Z.C.: J. Mater Sci-Mater. Electron. 29 (2018) 12888.
#    4. Lei, Z.C.: Selected Topics in Germanium. Nova Sci Publ. 2022, pp. 47-92. ISBN: 979-8-88697-200-9
5. Sharma, U.: Physica Scripta 98 (2023) 055517.

Ťapajna, M., Simms, R., Faqir, M., Kuball, M., Pei, Y., Mishra, U., : Identification of electronic traps in AlGaN/GaN HEMTs using UV light-assisted trapping analysis. In: Inter. Reliability Phys. Symp. (2010) P. 152- 155. (Not IEE SAS).

  1. Wong, H.Y.: IEEE Inter. Conf. on Simulation of Semicond. Processes Devices (SISPAD). IEEE 2014. ISBN: 978-1-4799-5288-5. P. 97-100.
2. Hu, J.: Japan. J. Applied Phys. 54 (2015) SI 04DF07.
3. Kang, T.S.: J. Vacuum Sci Technol. B 34 (2016) 011203.
4. Ubochi, B.: Microelectron. Reliab. 71 (2017) 35.
5. Brunel, L.: IEEE Trans. Electron Dev. 64 (2017) 1548.
6. Nagarajan, V.: IEEE Trans. Device. Mater. Reliab. 20(2020) 436.
7. Nagarajan, V.: IEEE Trans. Nanotechnol.‏ 19 (2020) 405.
8. Mao, L.F.: Results in Phys. 30 (2021) 104894.
9. Mao, L.F.: Applied Phys. A 128 (2022) 149.
10. Mao, L.F.: Pramana-J. Phys. 96 (2022) 129.
11. Mao, L.F.: Inter. J. Modern Phys. B 36 (2022) 2250147.

Ťapajna, M., Mishra, U., and Kuball, M.: Importance of impurity diffusion for early stage degradation in AlGaN/GaN high electron mobility transistors upon electrical stress, Applied Phys. Lett. 97 (2010) 023503. (not IEE SAS).

1. Lo, C.-F.: Electrochem. Solid State Lett. 14 (2011) H264.
2. Zhu, C.: IEEE Electron Device Lett. 32 (2011) 1513.
3. Fang, Z.Q.: J. Electronic Mater. 40 (2011) 2337.
4. Lo, C. F.: ECS Trans. 41 (2011) 63.
5. Zhu, C.: Proc. SPIE 8262 (2012) 826225.
6. Marko, P.: Applied Phys. Lett. 100 (2012) 143507.
7. Xu, W.: Applied Phys. Lett. 100 (2012) 223504.
8. Marko, P.: Microelectr. Reliability 52 (2012) 2194.
9. Joh, J.: Microelectr. Reliab. 52 (2012) 33.
#   10.  Wang, X.: Proc. MMWCST 2012 (2012) art. no. 6238124, pp. 370.
11. Horton, D.: IEEE Inter. Reliability Phys. Symp. (IRPS) (2012).
12. Ancona, M. G.: J. Applied Phys. 111 (2012) 074504.
13. Cullen, D.A.: IEEE Trans. Device. Mater. Reliab. 13 (2013) 126.
14. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1456.
15. Fleury, C.: Microelectr. Reliab. 53 (2013) 1444.
16. Zhu, C.Y.: Applied Phys. Lett. 103 (2013) 163504.
17. Yan, D.: J. Applied Phys. 114 (2013) 144511.
18. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
19. Law, M.: ECS Trans. 61 (2014) 21.
20. Zhang, K.: Sci Reports 4 (2014) 6322.
21. Katsuno, T.: Microelectr. Reliab. 54 (2014) SI2227.
22. Ando, Y.: IEEE Trans. Electron Dev. 62 (2015) 1440.
23. Puzyrev, Y.S.: Applied Phys. Lett. 106 (2015) 053505.
24. Zeng, C.: J. Applied Phys. 118 (2015) 124511.
25. Gao, Z.: IEEE Trans. Electron Dev. 63 (2016) 2729.
26. Wang, C.: Chinese Phys. B 25 (2016) 108504.
27. Chen, Y.Q.: Semicond. Sci Technol. 33 (2018) 015019.
28. Zhang, L.: Handbook of Solid-State Lighting and LEDS 2017. P. 571-615.
29. Brillson, L.J.: J. Electron. Mater. 47 (2018) 4980.
30. Michalowski, P.P.: Chem. Comm. 55 (2019) 11539.
31. Duguay, S.: IEEE Trans. Nanotechnol. 18 (2019) 995.
32. Zheng, X.-F.: AIP Adv.‏ 10 (2020) Iss.‏ 6.
33. Hajjiah, A.: Results in Phys. 19 (2020) 103656.
34. Shiomi, H.: Applied Phys. Express 14 (2021) 095502.
35. Greco, G.: Applied Phys. Lett. 121 (2022) 233506.
36. Ito, Y.: Japan. J. Applied Phys. 62 (2023) SC1048.

Ťapajna, M., Simms, R., Pei, Y., Mishra, U., and Kuball, M.: Integrated optical and electrical analysis: identifying location and properties of traps in AlGaN/GaN HEMTs during electrical stress, IEEE Electron Device Lett. 31 (2010) 662. (not IEE SAS).

1. Fu, L.: Applied Phys. Lett. 98 (2011) 173508.
2. Zhu, C.: IEEE Electron Device Lett. 32 (2011) 1513.
3. Joh, J.: IEEE Trans. Electron Dev. 58 (2011)132.
4. Zhu, C.: Proc. SPIE 8262 (2012) 826225.
5. Caesar, M.: IEEE Inter. Reliability Phys. Symp. (IRPS) (2012).
6. Hu, C.-Y.: J. Applied Phys. 111 (2012) 084504.
7. DasGupta, S.: IEEE Trans. Electron Dev. 59 (2012) 2115.
8. Chini, A.: Microelectr. Reliability 52 (2012) SI2153.
9. Zhu, C. Y.: Applied Phys. Lett. 101 (2012) 103502.
10.  Faramehr, S.: ASDAM 2012.  (2012) art. no. 6418566,  pp. 11.
11. Cullen, D.A.: IEEE Trans. Device. Mater. Reliab. 13 (2013) 126.
12. Katsuno, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF08.
13. Zhu, C.: Proc. SPIE 8625 (2013) 86252H.
14. Dasgupta, S.: IEEE Inter. Reliab. Phys. Symp. Proc. (2013) 6531986.
15. Soci, F.: IEEE Inter. Reliab. Phys. Symp. Proc. (2013) 6531988.
16. Brunel, L.: Microelectr. Reliab. 53 (2013) 1450.
17. Chini, A.: Microelectr. Reliab. 53 (2013) 1461.
18. Chini, A.: IEEE Trans. Electron Dev. 60 (2013) 6589142.
19. Wan, X.: J. Semicond. 34 (2013) 104002.
20. Bisi, D.: IEEE Trans. Electron Dev. 60 (2013) 6605590.
21. Wakejima, A.: IEEE Trans. Electron Dev. 60 (2013) 6571198.
22. Marinella, M. J.: ECS Trans. 58 (2013) 365.
#   23. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electr. 33 (2013) 305.
24. Ferrer-Perez, J.A.: J. Electr. Mater. 43 (2014) 341.
25. DasGupta, S.: Solid-State Electr. 91 (2014) 59.
26. Faramehr, S.: Semicond. Sci Technol. 29 (2014) 025007.
27. Meneghini, M.: IEEE Trans. Power Electr. 29 (2014) 6558779.
28. Goswami, A.: IEEE Trans. Electron Dev. 61 (2014) 1014.
29. Keum, D.-M.: J. Semicond. Technol. Sci 14 (2014) SI682.
30. Chini, A.: Microelectr. Reliab. 54 (2014) SI2222.
31. Ghosh, S.: Applied Phys. Lett. 105 (2014) 073502.
32. Kaplar, R. J.: IEEE 26th Inter. Symp. Power Semicond. Dev. 2014. P. 209.
33. Meneghini, M.: IEEE Inter. Reliab. Phys. Symp. 2014.
#   34. Šatka, A.: ASDAM 2014. 6998666, p. 339.
#   35. Stuchlíková, L.: ASDAM 2014. 6998675, p. 181.
36. Igić, P.: Proc. Inter. Conf. Microelectr. – ICM 2014. 6842089, p. 77.
37. Polyakov, A.Y.: Mater. Sci Engn. R 94 (2015) 1.
38. Gustafsson, S.: IEEE Trans. Electron Dev. 62 (2015) 2162.
39. Lee, Y-C.: Semicond. Sci Technol. 30 (2015) 045010.
40. Martin-Horcajo, S.: Semicond. Sci Technol. 30 (2015) 035015.
41. Hu, J.: Applied Phys. Lett. 106 (2015) 083502.
42. Puzyrev, Y.S.: Applied Phys. Lett. 106 (2015) 053505.
43. Divay, A.: Microelectron. Reliab. 55 (2015) 1703.
44. Woo, H.: Current Applied Phys. 15 (2015) 1027.
45. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 1124.
46. Benvegnu, A.: IEEE MTT-S Inter Microwave Symp. 2015.
47. Baba, T.:  WiPDA (2015) 125.
48. Benvegnu, A.: IEEE Trans. Microwave Theory Techniq. 64 (2016) 767.
49. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
50. Meneghini, M.: Devices Circuits Systems 47 (2016) 327.
51. Divay, A.: J. Semicond. 37 (2016) 014001.
52. Florovic, M.: Electronics 5 (2016) 20.
53. Podlipskas, Z.: Current Applied Phys. 16 (2016) 633.
54. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
55. Xu, X.: AIP Adv. 6 (2016) 115016.
56. Divay, A.: IEEE MIKON 2016.
57. Liang, Y.: Applied Phys. Lett. 109 (2016) 182103.
58. Chini, A.: IEEE Trans. Electron Dev. 63 (2016) 3473.
59. Zheng, X.: Microelectr. Reliab. 63 (2016) 46.
60. Benvegnu, A.: Inter. J. Microwave Wireless Technol. 8 (2016) SI663.
61. Benvegnu, A.: IEEE Trans. Electron Dev. 64 (2017) SI2135.
62. Zheng, X.: IEEE Trans. Electron Dev. 64 (2017) 1498.
63. Gudkov, A.G.: Russian J. Phys. Chem. B 11 (2017) 112.
64. Ghaffari, M.: J. Korean Phys. Soc 71 (2017) 1027.
65. Chini, A.: IEEE J. Electron Dev. Soc 5 (2017) 491.
66. Ferrandis, P.: Microelectron. Engn.178 (2017) SI.158.
67. Glavin, N.: Adv. Mater. 29 (2017) 1701838.
68. Zhong, Y.-N.: Physica Status Solidi A 215 (2018) 1700628.
69. Khachatrian, A.: IEEE Trans. Nuclear Sci 65 (2018) 369.
70. Zaki, F.: J. Comput. Electron. 17 (2018) 1220.
71. Zheng, X.: Solid-State Electr. 147 (2018) 35.
72. Zhu, H.: Solid-State Electr. 145 (2018) 40.
73. Elharizi, M.: Microelectron. Reliab. 88-90 (2018) SI671.
#    74. Zheng, X.: IEEE Inter. Conf. Electron Dev. Solid State Circuits – EDSSC 2018, 8487099.
75. Zheng, X.: Microelectron. Reliab. 93 (2019) 57.
76. Biswas, D.: Semicond. Sci Technol. 34 (2019) 055014.
77. Zheng, X.: Applied Phys. Lett. 115 (2019) 213505.
78. Zheng, X.: IEEE Trans. Device Mater. Reliab. 19 (2019) 509.
79. Wang, C.: IEEE Trans. Electron Dev. 67 (2020) 449.
80. Besendoerfer, S.: J. Applied Phys. 127 (2020) 015701.
81. Tomita, R.: IEEE Trans. Electron Dev. 68 (2021) 1550.
82. Li, F.Y.: J. Phys. D 54 (2021) 265106.
83. Arivazhagan, L.:  Silicon 13 (2021) 3039.
84. Pan, S.J.: IEEE Trans. Electron Dev. 68 (2021) 5541.
85. Pan, S.J.: IEEE Trans. Dev. Mater. Reliab.‏ 21 (2021) 494.
86. Mukherjee, J.:  Mater. Sci Semicond. Process. 137 (2022) 106222.
87. Zhu, H.: Semicond. Sci Technol. 37 (2021) 015004.
88. Bordignon, T.: Proc. IEEE WiPDA 2021, pp. 273.
89. Meneghini, M.: J. Applied Phys. 130 (2021) 181101.
90. Mukherjee, J.: Physica Status Solidi A 219 (2022) 2200211.
91. Raja, P.V.: IEEE Trans. Electron Dev. 69 (2022) 4864.
92. Modolo, N.: Sci Rep. 12 (2022) 1755.
93. Zhu, H.: Semicond. Sci Technol. 37 (2022) 015004.
94. Ito, Y.: Japan. J. Applied Phys. 62 (2023) SC1048.
95. Khade, R.P.: IEEE J. Electron Dev. Soc 11 (2023) 294.
96. Yao, Z.W.: Semicond. Sci Technol. 38 (2023) 055008.
97. Jiang, S.: IEEE Trans. Power Electron. 38 (2023) 6555.
98. Pan, SJ.: IEEE Trans. Electron Dev. 70 (2023) 3475.

Ťapajna, M., Simms, R., Pei, Y., Mishra, U., and Kuball, M.: On the identification of trap location in AlGaN/GaN HEMTs during electrical stress. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 119-122. (Not IEE SAS).

        1. Kang, T.-S.: J.Vacuum Sci Technol. B 33 (2015) 061202.

Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A., Dobročka, E., and Hušeková, K.: Epitaxial growth of high-κ TiO2 rutile films on RuO2 electrodes, J. Vacuum Sci Technol. B 27 (2009) 266-270.

 1. Kim, S.K.: Adv. Functional Mater. 20 (2010) 2989.
2. Lee, S.W.: Chem. Mater. 23 (2011) 976.
3. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
4. Kim, S.K.: J. Mater. Res. 28 (2013) 313.
5. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
6. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
7. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
8. Clima, S.: IEEE Electron Device Lett. 34 (2013) 6425405.
#      9. Jithin, M.A.: Mater. Research Soc Symp. Proc. 1561 (2013) 13.
10. Popovici, M.: Applied Phys. Lett. 104 (2014) 082908.
11. Wang, C.: ACS Nano 8 (2014) 2658.
12. Jeon, W.: J. Mater. Chemistry C 2 (2014) 9993.
13. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
14. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
15. Xie, Y.: J. Alloys Compounds 683 (2016) 439.
16. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
17. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
18. Agashe, K.: Nuclear Instrum. Methods in Phys. Res. B 403 (2017) 38.
19. Cho, C.J.: J. Mater. Chem. C 5 (2017) 9405.
20. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
21. Kim, S.K.: MRS Bull. 43 (2018) 334.
22. Lee, W.: J. Mater. Chem. C 6 (2018) 13250.
23. Pessoa, R.S.: IEEE 33rd Symp. Microelectron. Technol. Devices 2017 (SBMICRO) 2018.
*      24. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
25. Khan, M.S.: SMALL 16 (2020) 2003485.
26. Kim, H.: Nanoscale Res. Lett. 17 (2022) 28.
27. Maier, FJ.: J. Applied Phys. 131 (2022) 095301.
28. Kim, Y.W.: J. Mater. Chem. C 10 (2022) 12957.

Ťapajna, M., Kuzmík, J., Čičo, K., Pogany, D., Pozzovivo, G., Strasser, G., Abermann, S., Bertagnolli, E., Carlin, J., Grandjean, N., and Fröhlich, K.: Interface states and trapping effects in Al2O3- and ZrO2/InAlN/AlN/GaN metal-oxide-semiconductor heterostructures. Japan. J. Applied Phys. 48 (2009) 090201.

1. Simoen, E.: J. Phys. D 44 (2011) 475104.
2. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
3. Wang, C.: Semicond. Sci Technol. 32 (2017) 105002.
4. Kumar, S.: Solid-State Electr. 137 (2017) 117.
#    5. Akram, M.: Applied Phys. A 124 (2018) 180.
6. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
7. Chen, F.: J. Electron. Mater. 48 (2019) Iss.SI 11.
8. Huang, S.: J. Applied Phys. 126 (2019) 164505.
9. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
10. Qiu, S.Y.: AIP Adv. 13 (2023) 055110.

Ťapajna, M., Čičo, K., Kuzmík, J., Pogany, D., Pozzovivo, G., Strasser, G., Carlin, J., Grandjean, N., and Fröhlich, K.: Thermally induced voltage shift in capacitance–voltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al2O3/InAlN/GaN heterostructures, Semicond. Sci Technol. 24 (2009) 035008.

1. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
2. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
3. Pandey, S.: J. Applied Phys. 112 (2012) 123721.
4. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
5. Hahn, H.: Phys. Status Solidi C 10 (2013) 840.
6. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
7. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
8. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
9. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
10. Charfeddine, M.: J. Optoelectron. Adv. Mater. 16 (2014) 820.
11. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
12. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
13. Jena, K.: J. Electron. Mater. 45 (2016) 2172.
14. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
15. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
16. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
17. Panda, J.: J. Semicond. 37 (2016) 044003.
18. Mleczko, M.: Sci Adv. 3 (2017) e1700481.
19. Kumar, S.: IEEE Trans. Electron Dev. 64 (2017) 4868.
20. Kumar, S.: Solid-State Electr. 137 (2017) 117.
21. Dutta, G.: IEEE Trans. Electron Dev. 64 (2017) 3602.
22. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
#   23. Chen, K.J.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 347-366.
24. Kim, H.: J. Mater Sci-Mater. Electron. 29 (2018) 17508.
25. Kim, H.: Nanoscale Res. Lett. 13 (2018) 232.
26. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
27. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
28. Kumar, S.: ACS Applied Electron. Mater. 1 (2019) 340.
29. Kanaga, S.: IEEE Trans. Dev. Mater. Reliab.‏ 20 (2020) 613.
30. Chang, K.C.: Applied Phys. Lett. 120 (2022) 172107.
31. Ren, Z.J.: Applied Phys. Lett. 123 (2023) 043505.

Paskaleva, A., Ťapajna, M., Atanassova, E., Fröhlich, K., Vincze, A., and Dobročka, E.: Effect of Ti doping on Ta2O5 stacks with Ru and Al gates, Applied Surface Sci 254 (2008) 5879-5885.

1. Thangadurai, P.: Thin Solid Films 518 (2010) 4467.
2. Huang, J.H.: Chem. Mater. 22 (2010) 2582.
3. Mahata, C.: Electrochem. Solid State Lett. 14 (2011) H80.
4. Lu, L.: Applied Phys. A 112 (2013) 425.
5. Sekhar, M.C.: Materials Sci Semicond. Process. 76 (2018) 80.
6. Cai, C.X.: Applied Surface Sci 560 (2021) 149960.

Ťapajna, M., Dobročka, E., Paskaleva, A., Hušeková, K., Atanassova, E., and Fröhlich, K.: Electrical characterization of Ru- and RuO2/Ta2O5 gate stacks for nanoscale DRAM technology. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 267-270.

       1. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 189.

Fröhlich, K., Ťapajna, M., Rosová, A., Dobročka, E., Hušeková, K., Aarik, J., and Aidla, A.: Growth of high-dielectric-constant TiO2 films in capacitors with RuO2 electrodes, Electrochem. Solid-State Lett. 11 (2008) G19-G21.

1. Niinisto, J.: Advanced Engn. Mater. 11 (2009) 223.
2. Han, J.H.: ECS Trans. 19 (2009) 717.
3. Kim, K.M.: Electrochem. Solid State Lett. 13 (2010) G1.
4. Wang, H.T.: Electrocem. Solid-State Lett. 13 (2010) G75.
5. Lee, W.J.: J. Phys. Chem. C 114 (2010) 6917.
6. Han, J.H.: Chem. Mater. 22 (2010) 5700.
7. Popovici, M.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 19.
8. Han, J.H.: Applied Phys. Lett. 99 (2011) 022901.
9. Leskela, M.: MRS Bull. 36 (2011) 877.
10. Kim, S.K.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 262.
11. Popovici, M.: Microelectr. Engn. 88 (2011) 1517.
#   12. Kim, M.-S.: IMW 2011. IEEE 2011, art. no. 5873203. ISBN 978-145770-2259.
13. Over, H.: Chem. Rev. 112 (2012) 3356.
14. Han, J. H.: Chem. Mater. 24 (2012) 1407.
15. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
16. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
17. Zhu, L.: Solar Energy Mater. Solar Cells  111 (2013) 141.
18. Wang, X.: Crystal Growth & Design  13 (2013) 1316.
19. Popovici, M.: ECS J. Solid State Sci Technol. 2 (2013) N23.
20. Ko, C.-T.: J. Phys. Chem. C 117 (2013) 26204.
21. Van Den Berg, J.A.: Applied Surface Sci 281 (2013) 8.
22. Pu, H.: ECS Solid State Lett. 2 (2013) N35.
#   23. Hwang, C.S.: In Atomic Layer Deposition for Semiconductors. Springer 2013. ISBN: 978-1-4614-8053-22013. P. 73.
24. Yang, Z.: IEEE Electron Device Lett. 35 (2014) 557.
25. Park, J.-Y.: J. Alloys Comp.610 (2014) 529.
26. Hernandez-Torres, E.M.: Chem. Pap. 68 (2014) 1257.
27. Ko, C.-T.: ACS Applied Mater. Interfac. 6 (2014) 4179.
28. Jeon, W.: ACS Applied Mater. Interf. 6 (2014) 21632.
29. Peng, J.: J. Sol-Gel Sci Technol. 71 (2014) 458.
30. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
31. Cho, K.: J. Semicond. Technol. Sci 16 (2016) 346.
32. Mondal, J.: Corrosion Sci 105 (2016) 161.
33. Head, A.R.: J. Phys. Chem. C 120 (2016) 243.
34. Wang, M.: RSC Adv. 6 (2016) 4867.
35. Saric, I.: Thin Solid Films  628 (2017) 142.
36. Nabatame, T.: ECS Trans. 80 (2017) 365.
37. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
38. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
39. Moehl, T.: ACS Applied Mater. Interf. 9 (2017) 43614.
40. Ben Elbahri, M.: J. Phys. D 51 (2018) 065101.
41. Wang, W.: Mater. Chem. Phys. 211 (2018) 172.
42. Song. H.: J. Wuhan Univ. Technol.-Mater. Sci Ed. 33 (2018) 1070.
43. Lau, W.S.: China Semicond. Technol. Inter. Conf. 2018 – CSTIC 2018, pp. 1-3.
*      44. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
45. Kim, A.: ACS Applied Nano Mater. 2 (2019) 3220.
46. Choi, W.-H.: J. Vacuum Sci Technol. A 37 (2019) 020924.
47. Son, K.-H.: Coatings 10 (2020) 752.
48. Gants, O.Y.: Izv. Vyss. Ucheb. Zav. Khimiya Khim. Tekhnol. 63 (2020)‏ 26.
49. Kim, B.: Nanotechnol. 33 (2022) 045705.
50. Kim, B.: Nanotechnol. 33 (2022) 115701.
51. Kim, B.: Vacuum 199 (2022) 110957.
52. Jeong, J.: J. Alloys Compounds 927 (2022) 166961.

Hudec, B., Ťapajna, M., Hušeková, K., Aarik, J., Aidla, A., and Fröhlich, K.: Low equivalent oxide thickness metal/insulator/metal structures for DRAM applications. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 123-126.

1. Paskaleva, A.: J. Applied Phys. 106 (2009) 054107.
2. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 155.

Ťapajna, M., Rosová, A., Dobročka, E., Štrbik, V., Gaži, Š., Fröhlich, K., Benko, P., Harmatha, L., Manke, C., and Baumann, P.: Work function thermal stability of RuO2-rich Ru–Si–O p-channel metal-oxide-semiconductor field-effect transistor gate electrodes, J. Applied Phys. 103 (2008) 073702.

1. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
2. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
3. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.
4. Kaczmarski, J.: J. Display Technol. 11 (2015) 528.
5. Popovici, M.: Chem. Mater. 29 (2017) 4654.
#    6. Jung, W.: New Phys.: Sae Mulli 67 (2017) 696.
7. Chen, L.: Chinese J. Anal. Chem. 50 (2022) 100143.
8. Chernikova, A.G.: Applied Phys. Lett. 122 (2023) 021601.

Ťapajna, M., Rosová, A., Hušeková, K., Roozeboom, F., Dobročka, E., and Fröhlich, K.: Evidence of hafnia oxygen vacancy defects in MOCVD grown HfxSi1-xOy ultrathin gate dielectrics gated with Ru electrode, Microelectr. Engn. 84 (2007) 2366-2369.

1. Das, N.C.: J. Applied Phys. 110 (2011) 063527.
2. Zhang, H.Y.: Applied Surface Sci 311 (2014) 117.

Pozzovivo, G., Kuzmík, J., Golka, K., Schrenk, W., Strasser, G., Pogany, D., Čičo, K., Ťapajna, M., Fröhlich, K., Carlin, J., Gonschorek, M., Feltin, E., and Grandjean, N.: Gate insulation and drain current saturation mechanism in InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors, Applied Phys. Lett. 91 (2007) 043509.

1. Iliopoulos, E.: Applied Phys. Lett. 92 (2008) 191907.
2. Huang, L.H.: J. Electronic Materi. 38 (2009) 529.
3. Shiozaki, N.: J. Applied Phys. 105 (2009) 064912.
4. Arslan, E.: Applied Phys. Lett. 94 (2009) 142106.
5. Selvaraj, J.: Japan. J. Applied Phys. 48 (2009) 04C102.
6. Rigutti, L.: Semicond. Sci Technol. 24 (2009) 055015.
7. Chen, Z.T.: Applied Phys. Lett. 94 (2009) 213504.
8. Liberis, J.: Physica Status Solidi A 206 (2009) 1385.
*      9. Chabak, K.: Proc. CS Mantech Conf. 2009. Tampa, Florida.
10. Matulionis, A.: Proc. SPIE 7216 (2009) 721608.
11. Wu, M.: J. Vacuum Sci Technol. B 94 (2010) 908.
12. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
13. Lee, C.S.: J. Electrochem. Soc 158 (2011) H452.
14. Arslan, E.: Microelectr. Reliab. 51 (2011) 370.
15. Chiou, Y.L.: J. Electrochem. Soc 158 (2011) H477.
16. Corrion, A. L.: IEEE Electron Devices Lett. 32  (2011) 1062.
17. Son, J.: Applied Phys. Lett. 101 (2012) 102905.
18. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
#    19. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
#    20. Pardeshi, H.: Proc. CODIS 2012 (2012) art. no. 6422233, pp. 441.
#     21. Ahmed, I.:  2012 IEEE Inter. Conf. Electronic Dev., Systems, and Appl. 6507820, pp. 75.
22. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
23. Akazawa, M.: Applied Phys. Lett. 102 (2013) 231605.
24. Hiroki, M.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF02.
25. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI10MA05.
26. Pardeshi, H.: Superlatt. Microstr. 60 (2013) 47.
27. Bera, M. K.: ECS Trans. 53 (2013) 65.
28. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs (2013) 207.
29. Nakano, T.: Japan. J. Applied Phys. 53 (2014) SI04EF06.
30. Akazawa, M.: Japan. J. Applied Phys. 53 (2014) 028003.
31. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
32. Karaoglan-Bebek, G.: J. Vacuum Sci Technol. B 32 (2014) 011213.
33. Kim, Y.-S.: Proc. Inter. Symp. Power Semicond. Devices & ICs 2013. P.
07.
34. Chiba, M.: Physica Status Solidi C 11 (2014) 902.
#     35. Akazawa, M.: e-J. Surface Sci Nanotechnol. 12 (2014) 83.
36. Son, J.: J. Vacuum Sci Technol. A 33 (2015) 020602.
37. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
38. Freedsman, J.J.: IEEE DRC 2015. P. 55.
39. Neufeld, O.: J. Chem. Theory Comput. 12 (2016) 1572.
40. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
41. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
#     42. Hao, Y.: In Nitride Wide Bandgap Semicond. Material and Electronic Devices. CRC Press 2016, ISBN: 978-149874513-0, pp. 1-368.
43. Jena, K.: Inter. J. Numerical Modell.-Electron. Networks Dev. Fields 30 (2017) e2117.
44. Adak, S.: NANO 12 (2017) 1750009.
45. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.|
46. Ozaki, S.: Applied Phys. Express 10 (2017) 061001.
47. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
48. Kanaga, S.: IEEE Inter. Conf. Electron. Comp. Comm. Technol. 2018.
49. Mohanty, S.S.: J. Nanoelectr. Optoelectr. 14 (2019) 923.
50. Adak, S.: Nano 14 (2019) 1950060.
51. Chavan, N.: J. Active Passive Electron. Dev. 14 (2019) 201.
52. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
53. Mohanty, S.S.: J. Micromech. Microengn. 29 (2019) 084001.
54. Partida-Manzanera, T.: J. Applied Phys. 126 (2019) 034102.
55. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
#     56. Kushwah, B.: ICEE 2018, pp.8937856.
57. Kanaga, S.: IEEE Trans.Dev. Mater. Reliab.‏ 20 (2020) 613.
58. Ozaki, S.: Semicond. Sci Technol. 35 (2020) 035027.
59. Chatterjee, U.: IEEE Calcutta Conf. – CALCON 2020, p.‏ 426.
60. Oda, O.: Phys. Status Solidi A‏ 218 (2021) ‏ SI2000462.
61. Ozaki, S.: Phys. Status Solidi A 219 (2022) 2100638.
62. Ozaki, S.: Applied Phys. Express 15 (2022) 041001.
63. Ozaki, S.: Japan. J. Applied Phys. 62 (2023) SC1033.
64. Khan, A.N.: J. Comput. Electron. 22 (2023) 827.

Machajdík, D., Kobzev, A., Hušeková, K., Ťapajna, M., Fröhlich, K., and Schram, T.: Thermal stability of advanced gate stacks consisting of a Ru electrode and Hf-based gate dielectrics for CMOS technology, Vacuum 81 (2007) 1379-1384.

1. Kwon, J.: Applied Phys. Lett. 96 (2010) 151907.
2. Kwon, J.: J. Applied Phys. 107 (2010) 123505.

Ťapajna, M., Hušeková, K., Machajdík, D., Kobzev, A., Schram, T., Lupták, R., Harmatha, L., and Fröhlich, K.:Electrical properties and thermal stability of MOCVD grown Ru gate electrodes for advanced CMOS technology, Microelectr. Engn. 83 (2006) 2412.

1. Ozben, E.D.: Applied Phys. Lett. 93 (2008) 052902.
2. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.
3. Lakshminarayana, G.: J. Mater. Sci: Mater. Electron. 27 (2016) 10791.
4. Wasielewski, R.: Acta Phys. Polonica A 132 (2017) 354.

Manke, C., Boissiere, O., Weber, U., Barbar, G., Baumann, P., Lindner, J., Ťapajna, M., and Fröhlich, K.: Growth of Ru/RuO2 layers with atomic vapor deposition on plain wafers and into trench structures, Microelectr. Engn. 83 (2006) 2277.

1. Li, Z.: J. Applied Phys. 101 (2007) Art. No. 034503.
2. Vasilyev, V.: Solid State Technol. 50 (2007) 53.
3. Lukosius, M.: Chemical Vapor Depos. 14 (2008) 123.
4. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
5. Choi, C.: Applied Phys. Lett. 98 (2011) 083506.
6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
7. Salauen, A.: Chemical Vapor Depos. 17 (2011) 114.
8. Hong, T.E.: ECS J. Solid State Sci Technol. 2 (2013) P47.
9. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.

Ťapajna, M., Harmatha, L., and Hušeková, K.: Measurement of generation parameters on Ru/HfO2/Si MOS capacitor, Solid-State Electr. 50 (2006) 177-180.

1. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
2. Mukhopadhyay, A.B.: J. Phys. Chem. C 111 (2007) 9203.
3. Mukhopadhyay, A.B.: J. Mater. Sci 45 (2010) 4924.
4. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.
5. Toprasertpong, K.: Applied Phys. Lett. 116 (2020) Iss.‏ 24.
6. Mukherjee, S.: IEEE Electron Dev. Lett. 44 (2023) 1092.

Harmatha, L., Ballo, P., Breza, J., Písečný, P., and Ťapajna, M.: Properties of Si-SiO2 Interfaces in MOS structures with nitrogen-doped silicon, Adv. Electrical Electron. Engn. 5 (2006) 334-336.

1. Cibira, G.: Adv. Electr. Electron. Engn. 19 (2021) 179.

Franta, M., Rosová, A., Ťapajna, M., Dobročka, E., and Fröhlich, K.: Microstructure of HfO2 and HfxSi1-xOy dielectric films prepared on Si for advanced CMOS application. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 47-50.

1. Chang, Y.-H.: Microelectr. Engn. 96 (2012) 61.
2. Correa-Mena, A. G.: ICCDCS 2017. P. 77.

Ťapajna, M., Hušeková, K., Espinos, J., Harmatha, L., and Fröhlich, K.: Precise determination of metal effective work function and fixed oxide charge in MOS capacitors with high-κ dielectric, Materials Sci Semicond Process. 9 (2006) 969-974.

1. Rhee, S.W.: J. Materials Chem. 18 (2008) 5437.
2. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
3. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
4. Chandra, S.V.J.: J. Electrochem. Soc. 157 (2010) H546.
5. Chandra, S.V.J.: Microelectr. Engn. 89 (2012) 76.
6. Jelenkovic, E.V.: ECS Solid State Lett. 2 (2013) P42.
7. Ahmad, S.: J. Polymer Engn. 34 (2014) 279.
8. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
9. Kaczmarski, J.: Semicond. Sci Technol. 33 (2018) 015010.
10. Yuan, G.: ECS J. Solid State Sci Technol. 9(2020) 024010.
11. Sharma, N.: Current Applied Phys. 21 (2021) 58.
12. Kawano, H.: Progress Surface Sci 97 (2022) 100583.
13. Han, J.W.: Nano Lett. 22 (2022) 4589.
14. Chakrabarti, H.: Silicon 14 (2022) 9763.
15. Chernikova, A.G.: Applied Phys. Lett. 122 (2023) 021601.
16. Han, J.W.: J. Mater. Chem. C 11 (2023) 3743.

Fröhlich, K., Lupták, R., Hušeková, K., Čičo, K., Ťapajna, M., Weber, U., Baumann, P., Lindner, J., and Espinos, J.: Properties of Ru/HfxSi1-xOy/Si metal oxide semiconductor gate stack structures grown by atomic vapor deposition, J. Electrochem. Soc. 153 (2006) F176-F179.

1. Son, J.Y.: Thin Solid Films 517 (2009) 3892.
2. Kawano, K.: Electrochem. Solid State Lett. 12 (2009) D80.
3. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.

Lupták, R., Fröhlich, K., Rosová, A., Hušeková, K., Ťapajna, M., Machajdík, D., Jergel, M., Espinos, J., and Mansilla, C.: Growth of gadolinium oxide films for advanced MOS structure. Microelectr. Engn. 80 (2005) 154-157.

1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
2. Barreca1, D.: Surf. Sci. Spectra 14 (2007) 60.
3. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
4. Kao, C.H.: J. Electrochem. Soc 157 (2010) H915.
5. Laha, A.: Applied Phys. Lett. 99 (2011) 152902.
6. Yang, S.: Mater. Res. Bull. 48 (2013) 37.
7. Tien, C.-Y.: J. Electr. Engn. Technol. 10 (2015) 1720.
8. Mishra, M.: Surface Coat. Technol. 262 (2015) 56.
9. Goh, K.H.:Mater. Sci Semicond. Process. 68 (2017) 302.
10. Pattabi, M.: AIP Conf. Proc. 1832 (2017) 080020.
11. Stadler, D.: J. Nanostr.Chem. 8 (2018) 33.
12. Prasad, C.V.: Applied Surface Sci 427 (2018) 670.
13. Kahraman, A.: J. Mater. Sci-Mater. Electr. 29 (2018) 17473.
14. Accardo, G.: Inter. J. Hydrogen Energy 44 (2019) 12138.
15. Thilipan, G.A.K.: AIP Conf. Proc. 2265 (2020) 030334.
16. Thilipan, G.A.K.:Mater. Sci Semicond. Process. 121 (2021) 105408.
17. Rawat, A.: Thin Solid Films 742 (2022) 139047.
18. Devaray, P.: J. Mater. Sci-Mater. Electr. 33 (2022) 7313.
19. Sawka, A.: Ceram. Inter. 49 (2023) 23835.

Ťapajna, M., Harmatha, L., Hušeková, K., and Fröhlich, K.: Measurement of generation parameters on Ru/HfO2/Si MOS capacitor, Measurement Sci Rev. 5 (2005) 42.

1. Hur’yeva, T.: Chemical Vapour Deposition 12 (2006) 429.
2. Mukhopadhyay, A.B.: J. Phys. Chemistry C 111 (2007) 9203.

Ťapajna, M., Písečný, P., Lupták, R., Hušeková, K., Fröhlich, K., Harmatha, L., Hooker, J., Roozeboom, F., and Jergel, M.: Application of Ru-based gate materials for CMOS technology, Materials Sci Semicond. Process. 7 (2004) 271-276.

1. Manke, C.: Microelectr. Engn. 82 (2005) 242.
#   2. Manke C.: Electrochemical Society Proc. 5 (2005) 207.
#   3. Weber U.: Electrochemical Society Proc. 5 (2005) 293.
4. Lu, Y.K.: Microelectr. Engn. 83 (2006) 371.
5. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
6. Yim, S.-S.: Applied Phys. Lett. 89 (2006) Art. No. 093115.
7. Zhang, M.: J. Vacuum Sci Technol. A 25 (2007) 775.
8. Li, H.: J. Electrochem. Soc. 154 (2007) D642.
9. Park, S.J.: Microelectr. Engn. 85 (2008) 39.
10. Park, S.J.: Thin Solid Films 513 (2008) 7345.
11. Yim, S.S.: J. Applied Phys. 103 (2008) 113509.
12. Lee, D.J.: Electrochem. Solid State Lett. 11 (2008) K61.
13. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
14. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
15. Lee, W.K.: Applied Phys. A 100 (2010) 561.
*  16. Kumar, B.R.: Inter. J. Pure Appl. Sci Technol. 4 (2011) 105.
17. Park, T.: J. Vacuum Sci Technol. A 30 (2012) 01A139.
18. Noh, Y.: Korean J. Metals Mater. 50 (2012) 243.
19. Park, T.: Phys. Status Solidi A 209 (2012) 302.
20. Park, J.: Korean J. Metals Mater. 50 (2012) 557.
21. Scheuermann, A.G.: Energy & Environmen. Sci 6 (2013) 2487.
22. Park, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 05FB05.
23. Noh, Y.: Korean J. Metals Mater. 51 (2013) 239.
24. Kim, J.W.: Nanotechnol. 25 (2014) 435404.
25. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.
26. Nomura, K.: ECS Solid State Lett. 4 (2015) N1.
27. Zhang, H.-X.: China Semicond. Technol. Inter. Conf. – CSTIC 2015. Art. no. 7153392.
28. Hwang, S.M.: Thin Solid Films 615 (2016) 311.
29. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
30. Han, J.W.: Nano Lett. 22 (2022) 4589.
31. Han, J.W.: J. Mater. Chem. C 11 (2023) 3743.

Ťapajna, M. and Harmatha, L.: Determining the generation lifetime in a MOS capacitor using linear sweep techniques, Solid-State Electr. 48 (2004) 2339-2342. (Not IEE SAS).

1. Stuchlikova, L.: Proc. Distance Learning, Simulation Comm. (2009) 173.
#   2. Malik, O.: 7th Inter. Conf. Electr. Engn., Comp. Sci Automatic Control, CCE 2010 (2010)  art. no. 5608591, pp. 531.
#     3. Malik, O.: Inter. J. Smart Sens. Intelligent Systems 4 (2011) 686.
#     4. Malik, O.: Proc. Inter. Conf. Sensing Technol. ICST (2011) art. no. 6136993, pp. 325.
5. Malik, O.: J. Applied Res. Technol. 11 (2013) 18.

Ťapajna, M., Pjenčák, J., Vrbický, A., Harmatha, L., and Kúdela, P.: Determining the generation lifetime in a MOS capacitor using linear sweep techniques, J. Electr. Engn. 55 (2004) 239-244. (Not IEE SAS).

1. Khatir Z: Microelectr. Reliab. 50 (2010) 1506.
2. Dalapati, P.: Optical Quantum Electron. 47 (2015) 1227.
3. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
4. Winzer, A.: Physica Status Solidi A 213 (2016) 1246.
5. Lacouture, S.: Rev. Sci Instrum. 88 (2017) 095105.
6. Gupta, G.K.: J. Applied Phys. 123 (2018) 013101.

Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., and Hooker, J.: Growth and properties of ruthenium based metal gates for pMOS devices. In: ASDAM 2004. Eds. J.Osvald and Š.Haščík. Piscataway: IEEE 2004. ISBN 0-7803-8535-7. P. 163-166.

1. Zhang, H.-X.: China Semicond. Technol. Inter. Conf.  2015.
2. Hayes, M.: J. Vacuum Sci Technol. A 39 (2021) 052402.

Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., Roozeboom, F., Kobzev, A., Wiemer, C., Ferrari, C., Fanciulli, M., Rossel, C., and Cabral, C.: Preparation of SrRuO3 films for advanced CMOS metal gates, Materials Sci Semicond. Process. 7 (2004) 265-269.

1. Ito, A.: J. European Ceramic Soc. 30 (2010) 435.
2. Imangholi, B.: IEEE Trans. Electron Dev. 57 (2010) 877.
3. van Zalk, M.: Phys. Rev. B 82 (2010) 134513.
#     4. Khan, M.K.R.: Frontiers Mater. Sci China 4 (2010) 387.
5. Choi, C.: Applied Physics Lett. 98 (2011) 083506.
6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
7. Choi, C.: Japan. J. Applied Phys. 51 (2012) 02BA05.
8. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
9. Kumar, V. S.: J. Phys. D 49 (2016) 255302.
10. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
11. Chen, C.H.: J. Phys. Chem. Solids 152 (2021) 109986.

Písečný, P., Ťapajna, M., Harmatha, L., and Vrbicky, A.: Determination of interface trap density in unipolar structures using quasistatic C–V method, J. Electr.  Engn. 55 (2004) 95–99. (Not IEE SAS)

1. Anders, J.: Semicond. Sci Technol. 36 (2021) 075005.