Ing. Vanko Gabriel, PhD.

Kundrata, I., Barr, M.K.S., Tymek, S., Döhler, D., Hudec, B., Brüner, P., Vanko, G., Precner, M., Yokosawa, T., Spiecker, E., Plakhotnyuk, M., Fröhlich, K., and Bachmann, J.: Additive manufacturing in atomic layer processing mode, Small Methods (2022) 2101546.

1. Chen, M.: DALTON Trans. 52 (2023) 10254.
2. Chen, Y.X.: NPJ 2D Mater. Appl. 8 (2024) 17.

Rýger, I., Lobotka, P., Steiger, A., Chromik, Š., Lalinský, T., Raida, Z., Pítra, K., Zehetner, J., Španková, M., Gaži, Š., Sojková, M., and Vanko, G.: Uncooled antenna-coupled microbolometer for detection of terahertz radiation, J. Infrared, Millimet., Terahertz Waves 42 (2021) 462–478.

1. Yu, X.: Applied Surface Sci 570 (2021) 151221.
2. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
3. Vera-Reveles, G.: Electronics 11 (2022) 1665.
4. Aji, A.P.: Sensors 22 (2022) 5107.
5. Aji, A.P.: IEEE Access 11 (2023) 29323.
6. Nikiforova, P.: Photonics 11 (2024) 42.

Sojková, M., Šiffalovič, P., Babchenko, O., Vanko, G., Dobročka, E., Hagara, J., Mrkývková, N., Majková, E.,  Ižák, T., Kromka, A., and Hulman, M.: Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond, Sci Rep. 9 (2019) 2001.

1. Ou, N. C.: Organometall. 39 (2020) 956.
2. Mouloua, D.: Materials 14 (2021) 3283.
3. Goel, N.: Nanotechnol. 32 (2021) 375711.
4. Bhowmik, S.: I SCI 25 (2022) 103832.
5. Zhang, Z.: Crystals 13 (2023) 1034.
6. Raveena, J.: J. Mater. Sci-Mater. Electron. 34 (2023) 1164.
7. Hazdra, P.: Phys. Status Solidi A 220 (2023) Iss. 23.
8. Zeng, S.S.: Adv. Optic. Mater. 11 (2023) Iss. 15.
9. Zhang, C.L.: J. Computat. Methods Sci Engn. 23 (2023) 2595.

Zehetner, J., Kasemann, S., Vanko, G., and Babchenko, O.: Black titanium dioxide in situ generated on femtosecond laser induced periodic surface structures. In: ASDAM 2018. Eds. J. Breza et al. IEEE 2018. ISBN 978-1-5386-7488-8. P. 203-206.

1. Qiao, M.: Zhongguo Jiguang/Chinese J. Lasers 49 (2022) 2200002.

Osvald, J., Lalinský, T., and Vanko, G.: High temperature current transport in gate oxides based (GaN)/AlGaN/GaN Schottky diodes, Applied Surface Sci 461 (2018) 206.

1. Sun, S.: Mater. Sci Semicond. Process. 114 (2020) 105084.
2. Turut, A.: Turkish J. Phys.‏ 44 (2020)‏ 302.
3. Hou, C.: Applied Phys. Lett. 117 (2020) 203502.
4. Ozdemir, M.C.: Mater. Sci Semicond. Process. 125 (2021) 105629.
5. Turut, A.: Turkish J. Phys.‏ 45 (2021)‏ 268.
#     6. Sreejith, S.: Emerging Low-Power Semiconductor Devices. CRC Press 2022, pp. 127-152. ISBN 978-100-324-077-8.
7. Kumar, A.: Micro Nanostruct. 183 (2023) 207665.

Babchenko, O., Vanko, G., Gerboc, M., Ižák, T., Vojs, M., Lalinský, T., and Kromka, A.: Study on electronic properties of diamond/SiNx-coated AlGaN/GaN high electron mobility transistors operating up to 500 °C, Diamond Related Mater. 89 (2018) 266-272.

1. Siddique, A.: ACS Applied Electron. Mater. 1 (2019) 1387.
2. Zhu, T.: Semicond. Sci Technol.‏ 35 (2020) 055006.
3. Tijent, F.Z.: ECS J. Solid State Sci Technol. 10 (2021) 074003.
4. Sobaszek, M.: Materials 14 (2021) 6328.
5. Zheng, Y.T.: Ceram. Inter. 48 (2022) 36441.
6. Abdullah, M.F.: Microelectron. Engn. 273 (2023) 111958.
7. Wang, Y.N.: Crystals 13 (2023) 500.
8. Yang, C.: Inter. J. Heat Mass Transfer 214 (2023) 124433.

Zehetner, J., Vanko, G., Dzuba, J., and Lalinský, T.: Femtosecond laser processing of membranes for sensor devices on different bulk materials, Adv. Electr. Electron. Engn. 15 (2017) 561-568.

1. Ding, H.J.: Adv. Electr. Electron. Engn. 22 (2022) 6502169.

Osvald, J., Vanko, G., Chow, L., Chen, N.C., and Chang, L.B.: Transition voltage of AlGaN/GaN heterostructure MSM varactor with two-dimensional electron gas,  Microelectron. Reliab. 78 (2017) 243–248.

1. Hsieh, Y.L.: Microelectron. Reliab. 142 (2023) 114905.

Lalinský, T., Dzuba, J., Vanko, G., Kutiš, V., Paulech, J., Gálik, G., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0.33MnO3 microbolometer made on circular SOI membrane, Sensors Actuators A 265 (2017) 321–328.

1. Yan, F.: Thin Solid Films 698 (2020) 137872.

Dubecký, F., Kindl, D., Hubík, P., Mičušík, M., Dubecký, M., Boháček, P., Vanko, G., Gombia, E., Nečas, V., and Mudroň, J.: A comparative study of Mg and Pt contacts on semi-insulating GaAs: electrical and XPS characterization, Applied Surface Sci 395 (2017) 131-135.

1. Xiong, T.: Applied Surface Sci A427 (2018) 1107.
2. Zhou, Y.: Metals 9 (2019) 311.
3. Niu, Q.: Dalton Trans. 49 (2020) 11120.
4. Zhou, L.: J. Water Process Engn. 36 (2020) 101168.
5. Bendahmane, B.: Sensors 20 (2020) 2158.
6. Li, R.: Energy Storage Mater. 29 (2020) 223.
7. Aldawsari, A.M.: J. Alloys Comp. 857 (2021) 157551.
8. Yu, X.: Catalysts 11 (2021) 232.
9. Zhang, S.S.: ACS Omega 6 (2021) 25506.
10. Guo, S.: Vacuum 197 (2022) 110792.
11. Predoi, D.: Coatings 12 (2022) 702.
12. Hwang, Y.Y.: Energy Storage Mater. 51 (2022) 108.
13. Afzal, S.: Applied Surface Sci 600 (2022) 154026.
14. Ye, Y.S.: J. Mater. Chem. A 11 (2023) 9112.
15. Yang, Y.X.: IEEE Trans. Electron Dev. 70 (2023) 4604.

Babchenko, O., Dzuba, J., Lalinský, T., Vojs, M., Vincze, A., Ižák, T., and Vanko, G.Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment, Applied Surface Sci 395 (2017) 92-97.

1. Mishra, M.: Applied Surface Sci 407 (2017) 255.
2. Huang, H.: J. Phys. D 51(2018) 345102.
3. Lee, M.-L.: Physica E‏ 124 (2020) 114367.
4. Mimila-Arroyo, J.: Mater. Sci Engn. B 290 (2023) 116279.
5. Wang, Y.N.: Crystals 13 (2023) 500.

Zehetner, J., Kraus, S., Lucki, M., Vanko, G., Dzuba, J., and Lalinský, T.: Manufacturing of membranes by laser ablation in SiC, sapphire, glass and ceramic for GaN/ferroelectric thin film MEMS and pressure sensors, Microsyst. Technol. 22 (2016) 1883-1892.

1. Dowling, K.M.: J. Microelectromech. Systems 26 (2017) 135.
2. Chauhan, A.: Mater. Today Comm. 12 (2017) 146.
3. Li, J.: Ceramics Inter. 44 (2018) 3107.
4. Zhao, Y.: Sensors Actuators A 309 (2020) 112017.
5. Mastellone, M.: Materials 15 (2022) 1378.
6. Hou, Y.S.: Integrat. Ferroelectr. 229 (2022) 229.
7. Li, Z.: Adv. Mater. Sci Engn. 2022 (2022) 5997536.
#      8. Chen, R.: Guangxue Jingmi Gongcheng/Optics Precision Engn. 25 (2022) 702.

Lalinský, T., Vanko, G., Dzuba, J., Kutiš, V., Gálik, G., Paulech, J., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0,33MnO3 microbolometer made on circular SOI membrane, Procedia  Engn. 168 (2016) 733-736.

1. Kim, CH.: Trans. Electr. Electron. Mater. 23 (2022) 19.

Zehetner, J., Vanko, G., Dzuba, J., and Lalinský, T.: Nanostructuring of bulk Si and SiC substrates by femtosecond laser ablation for membrane fabrication and surgace functionalization. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 223-226.

1. Ding, H.J.: Adv. Mater. Sci Engn. 2022 (2022) 6502169.

Ižák, T., Jirásek, V., Vanko, G., Dzuba, J., and Kromka, A.: Temperature-dependent stress in diamond-coatewd AlGaN/GaN heterostructures, Mater. & Design 106 (2016) 305-312.

1. Sebastiani, M.: Mater. & Design 118 (2017) 204.
2. Li, M.: Mater. Design 180 (2019) UNSP 107985.
3. Wang, Y.N.: Crystals 13 (2023) 500.

Dzuba, J., Vanko, G., Babchenko, O., Lalinský, T., Horvát, F., Szarvas, M., Kováč, T., and Hučko, B.: Strain induced response of AlGaN/GaN high electron mobility transistor located on cantilever and membrane. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 227-230.

1. Qiu, W.: Applied Sci-Basel 8 (2018) 2333.
2. Wang, L.: EPL 141 (2023) 40002.

Dzuba, J., Vanko, G., Vojs, M., Rýger, I., Ižák, T., Jirásek, V., Kutiš, V., and Lalinský, T.:  Finite element analysis of AlGaN/GaN micro-diaphragms with diamond, Proc. SPIE 9517 (2015) 95171I.

1. Zhao, Y.: Sensors Actuators A 309 (2020) 112017.

Vanko, G., Dzuba, J., Rýger, I., Vallo, M., and Lalinský, T.: MEMS pressure sensor with an AlGaN/GaN based high electron mobility transistor. In: NSTI: Advanced Materials – TechConnect Briefs 2015. Eds. B. Romanowicz, M. Laudon. Taylor and Francis: 2015. ISBN: 978-149874730-1. P. 290-293.

1. Wang, R.R.: Micromachines 12 (2021) 1413.

Ižák, T., Babchenko, O., Jirásek, V., Vanko, G., Vojs, M., and Kromka, A.: Influence of diamond CVD growth conditions and interlayer material on diamond/GaN interface, Mater. Sci Forum 821-823 (2015) 982-985.

#        1. Francis, D.: Thermal Management of Gallium Nitride Electronics. Elsevier 2022, pp. 295-231. ISBN: 978-0-12-821084-0.
2. Wang, Y., Crystals 13 (2023) 500.

Zehetner, J., Vanko, G., Dzuba, J., Rýger, I., Lalinský, T., Benkler, M., and Lucki, M.: Laser ablation for membrane processing of AlGaN/GaN- and micro structured ferroelectric thin film MEMS and SiC pressure sensors for extreme conditions, Proc. SPIE 9517 (2015) 951721.

1. Zhao, Y.: Sensors Actuators A 309 (2020) 112017.
2. Wang, L.: Ceramics Inter.‏ 47 (2021)‏ 6397.

Dzuba, J., Vanko, G., Držík, M., Rýger, I., Vallo, M., Kutiš, V., Haško, D., Choleva, P., and Lalinský, T.: Stress investigation of the AlGaN/GaN micromachined circular diaphragms of a pressure sensor, J. Micromech. Microengn. 25 (2015) 015001.

1. Lee, S.: Nature Comm. 10 (2019) 2468.
2. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
3. Yang, R.: ACS Applied Mater. Interfac. 14 (2022) 47089.

Ižák, T., Vanko, G., Babchenko, O., Potocký, Š., Marton, M., Vojs, M., Choleva, P., and Kromka, A.: Diamond-coated three-dimensional GaN micromembranes: Effect of nucleation and deposition techniques, Phys. Status Solidi B 252 (2015) 2585–2590.

1. Raju, A.: Crystal Growth Design 19 (2019) 672.
2. Sznajder, M.: Materials 14 (2021) 6532.

Dzuba, J., Vanko, G., Držík, M., Rýger, I., Kutiš, V., Zehetner, J., and Lalinský, T.: AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism, Applied Phys. Lett. 107 (2015) 122102.

#    1. Zhu, Y.-X.: Faguang Xuebao/Chinese J. Lumin. 37 (2016) 1545.
2. Chromik, S.: Applied Surface Sci 395 (2017) 232.
3. Ghouila-Houri, C.: Applied Phys. Lett. 111 (2017) 113502.
4. Wang, D.F.: Applied Phys. Lett. 111 (2017) 083502.
5. Gajula, D.: Micromachines 9 (2018) 207.
6. Ma, Y.J.: Applied Phys. Lett. 112 (2018) 173505.
7. Wang, A.: AIP Adv. 8 (2018) 035318.
8. Tong, W.: Comput. Mater. Sci 143 (2018) 391.
9. Park, S.-J.: Adv. Mater. Technol. 3 (2018) 1700158.
10. Cheng, Q.: 14th IEEE Inter. Conf. Solid-State Integrated Circuit Technol. (ICSICT)   2018, pp. 416-418.
11. Tan, X.: AIP Adv. 8 (2018) 085202.
12. Hao, L.: Sensors Actuators B 283 (2019) 740.
13. Hsu, A.-J.: Applied Surface Sci 470 (2019) 19.
14. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
15. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
16. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
17. Pham, T.-A.: Adv. Sci 7 (2020) 2001294.
18. van Erp, R.: Nature 585 (2020) 211-+.
19. Kumar, A.: IEEE Trans. Semicond. Manufact.‏ 33 (2020) 606.
20. Sun, J.: Sensors Actuators A 314 (2020) 112217.
21. Wang, A.: ECS J. Solid State Sci Technol. 10 (2021) 037007.
22. Guo, X.G.: J. Micromech. Microengn. 31 (2021) 093002.
23. Wang, R.R.: Micromachines 12 (2021) 1413.
24. Nguyen, H.-Q.: ACS Applied Electron. Mater. 4 (2022) 2648.
#    25. Belwanshi, V.: IETE J. Res. 68 (2022) 667.
#    26. Jiang, J.: ICEPT 2022.
27. Jiang, J.: Materials 16 (2023) 1484.
28. Kumar, A.: Micro Nanostruct. 179 (2023) 207592.
29. Takeda, H.: Japan. J. Applied Phys. 62 (2023) SM1027.
30. Gujrati, R.: Applied Phys. Lett. 124 (2024) 104102.

Rýger, I., Vanko, G., Lalinský, T., Haščík, Š., Benčurová, A., Nemec, P., Andok, R., and Tomáška, M.: GaN/SiC based surface acoustic wave structures for hydrogen sensors with enhanced sensitivity, Sensors Actuators A 227 (2015) 55-62.

1. Drmosh, Q.A.: Ceramics Inter. 42 (2016) 12378.
2. Ayesh, A.I.: J. Alloys Compounds 689 (2016) 1.
3. Yun, D.-J.: IEEE Trans. Electron Devices 64 (2017) SI2350.
4. Wang, W.: IEEE Inter. Ultrasonics Symp. 2018.
5. Wang, W.: Sensors Actuators B 287 (2019) 157.
6. Mokhov, D.V.: Semiconductors 53 (2019) 1717.
7. Jaafar, M. M.: Applied Phys. A 125 (2019) 804.
8. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
9. Ghosh, S.: IEEE Trans. Electron Dev. 68 (2021) 4637.
10. Ghosh, S.: IEEE Trans.Nanotechnol. 20 (2021) 303.
11. Ghosh, S.: IEEE Trans. Nanotechnol. 21 (2022) 655.
12. Zhang, J.X.: Nanotechnol. 34 (2023) 155501.
13. Ghosh, S.: IEEE INDICON 2022.
14. Salimian, A.: Inter. J. Hydrogen Energy 50 (2024) 1157.
15. Liu, H.Y.: Nanomater. 14 (2024) 187.

Dzuba, J., Vanko, G., Rýger, I., Vallo, M., Kutiš, V., Lalinský, T., : Influence of temperature on the sensitivity of the AlGaN/GaN C HEMT based piezoelectric pressure sensor In: ASDAM 2014. Eds. J. Breza et al. IEEE 2014. ISBN 978-1-4799-5474-2. P. 5-8.

1. Yalamarthy, A.S.: Semicond. Sci Technol. 31 (2016) 035024.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263  (2021) 114849.

Rýger, I., Vanko, G., Lalinský, T., Dzuba, J., Vallo, M., Kunzo, P., and Vávra, I.: Enhanced sensitivity of Pt/NiO gate based AlGaN/GaN C-HEMT hydrogen sensor, Key Engn. Mater. 605 (2014) 491-494.

1. Ajayan, J.: Measurement 186 (2021) 110100.

Dzuba, J., Držík, M., Vanko, G., Rýger, I., Vallo, M., Kutiš, V., and Lalinský, T.: Modal analysis of Gallium Nitride membrane for pressure sensing device, Key Engn. Mater. 605 (2014) 404-407.

1. Zhang, M.: Shock Vibration (2018) 4396520.

Chromik, Š., Štrbik, V., Dobročka, E., Roch, T., Rosová, A., Španková, M., Lalinský, T., Vanko, G., Lobotka, P., Ralbovský, M., and Choleva, P.: LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers, Applied Surface Sci 312 (2014) 30-33.

1. Zhao, S.: Adv. Applied Ceram. 116 (2017) 180.
2. Jiang, J.: Ceramics Inter. 44 (2018) 3915.
3. Galik, G.: AIP Conf. Proc. 1996 (2018) 020011.
4. Ji, F.: Mater. Res. Express 6 (2019) 086326.
5. Dong, G.: Ceramics Inter. 45 (2019) 12162.
6. Shi, Q.: Adv. Electron. Mater. 5 (2019) 1900020.
7. Liu, S.: J. Micromech. Microengn. 29 (2019) 065008.
8. Yu, X.: J. Sol-Gel Sci. Technol. 90 (2019) 221.
9. Liu, Y.: Ceramics Inter. A 45 (2019) 24070.
10. Li, H.: J. Alloys Comp. 810 (2019) UNSP 151908.
11. Pu, X.: J. Material. Sci-Mater. Electr. 30 (2019) 19862.
12. Li, H.: J. Alloys Comp. 847 (2020) 156417.
13. Chu, K.: J. Material. Sci-Mater. Electr. 31 (2020) 12389.
14. Chu, K.: Ceramics Inter. 46 (2020) 7568.
15. Liu, Y.: Ceramics Inter. 47 (2021) 7674.
16. Guan, X.L.: Ceramics Inter. 47 (2021) 18931.
17. Guan, X.: J. Alloys Comp. 876 (2021) 160173.
18. Yang, S.: Ceramics Inter. 47 (2021) 29631.
19. Yu, Z.: Ceramics Inter. 47 (2021) 33202.
20. Yu, X.: Applied Surface Sci 570 (2021) 151221.
21. Guan, X.: J. Alloys Comp. 895 (2022) 162555.
22. Chaluvadi, S.K.: Applied Surface Sci 579 (2022) 152095.
23. Guan, X.: Applied Phys. A 128 (2022) 362.
24. Guan, X.L.: Ceramics Inter. 48 (2022) 11094.
25. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
26. Guan, X.L.: Applied Phys. Lett. 121 (2022) 202203.
27. Wu, K.K.: Ceramics Inter. 49 (2023) 1344.
28. Yan, Y.X.: Ceramics Inter. 49 (2023) 669.
29. Sarkar, N.: Electron. Mater. Lett. 19 (2023) 384.
30. Gu, X.: Ceramics Inter. 49 (2023) A22952.
31. Chatterjee, S.: J. Applied Phys. 134 (2023) 064301.

Rýger, I., Vanko, G., Lalinský, T., Kunzo, P., Vallo, M., Vávra, I., and Plecenik, T.: Pt/NiO ring gate based Schottky diode hydrogen sensors with enhanced sensitivity and thermal stability, Sensors Actuators B 202 (2014) 1-8.

1. Radzali, R.: Sensors Actuators B 213 (2015) 276.
2. Karaduman, I.: Physica Scripta 90 (2015) 055802.
3. Yuan, Z.: J. Electron. Mater. 44 (2015) 1187.
4. Xia, X.: Sensors Actuators B 234 (2016) 192.
5. Soni, S.: AIP Conf. Proc. 1731 (2016) UNSP 080079.
6. Cindemir, U.: Sensors Actuators B 242 (2017) 132.
7. Orak, I.: Pamukkale Univ. J. Engn. SCI 23 (2017) 536.
8. Rajan, L.: IEEE Sensors J. 19 (2019) 3232.
9. Lee, Nam H.: Sensors 19 (2019) 3050.
10. Taib, A.K.: IEEE Inter. Conf. Semicond. Electron. – ICSE 2022, p. 9.
11. Taib, A.K.: Plos One 18 (2023) 0282370.
12. Abdullah, H.: J. Electron. Mater. 52 (2023) 8191.

Ižák, T., Babchenko, O., Jirásek, V., Vanko, G., Vallo, M., Vojs, M., and Kromka, A.: Selective area deposition of diamond films on AlGaN/GaN heterostructures, Phys. Status Solidi B 251 (2014) 2574-2580.

1. Shahin, D.I.: Diamond Related Mater. 59 (2015) 116.
2. Raju, A.: Crystal Growth Design 19 (2019) 672.
3. Mandal, S.: RSC Adv. 11 (2021) 10159.
#      4. Piner, E.: Thermal Management of Gallium Nitride Electronics. Elsevier 2022, pp. 333-358. ISBN: 978-0-12-821084-0.
5. Wang, Y.N.: Crystals 13 (2023) 500.

Rýger, I., Vanko, G., Lalinský, T., Haščík, Š., Nemec, P., Benčurová, A., and Tomáška, M.: The GaN/SiC heterostructure-based hydrogen SAW sensor operating in GHz range, Procedia Engn. 87 (2014) 260-263.

*       1. Paszkiewicz, R.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 64.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
3. Feng, Y.: IET Circuits Dev. Systems 16 (2022) 483.
4. Kim, S.: Adv. Mater. Technol. 7 (2022) 2200180.

Vanko, G., Hudek, P., Dzuba, J., Choleva, P., Kutiš, V., Vallo, M., Rýger, I., Lalinský, T., : Bulk micromachining of SiC substrate for MEMS sensor applications. Microelectron. Engn. 110 (2013) 260-264.

1. Olhero, S. M.: Mater. Research Bull. 60 (2014) 830.
2. Preusch, F.: Micromachines 5 (2014) 1051.
3. Leclaire, P.: Semicond. Sci Technol. 29 (2014) 115018.
4. Frischmuth, T.: Procedia Engn. 87 (2014) 128.
5. Savriama, G.: J. Laser Appl. 27 (2015) 032009.
#    6. Asadi, E.: Proc. 15th Inter. Conf. European Soc Precision Engn. Nanotechnol. – EUSPEN 2015. P. 41.
7. Kubiak, A.: J. Phys. Conf. Ser. 709 (2016) 012005.
8. Mu, F.: ECS J. Solid State Sci Technol. 5 (2016) P451.
#    9. Denkena, B.: EUSPEN 2016.
10. Kaushal, A.: J. European Ceramic Soc 37 (2017) 3079.
11. Wang, C.: ECS J. Solid State Sci Technol. 6 (2017) P105.
*   12. Oliveira, E.S.: Master’s Thesis. Univ. de São Paulo 2017.
13. Shi, Y.: Sensors Actuators A 276 (2018) 196.
14. Li, J.: Ceram. Inter. 44 (2018) 3107.
15. Aono, Y.: Precision Engn.-J. Inter. Soc Precision Engn. Nanotechnol. 54 (2018) 198.
#    16. Mu, F.: In Inter. Conf. on Electron. Packaging and iMAPS All Asia Conf. – ICEP-IAAC 2018, pp. 558-561.
17. Wu, C.: Ceramics Inter.‏ 46 (2020)‏ 17896.
18. Kumar, A.: J. Nuclear Mater. 540 (2020)‏ 152351.
#    19. Zhao, R.: Proc. IEEE Inter. Conf. Artif. Intellig. Computer Appl. – ICAICA 2020, no. 9182392, pp. 814-818.
20. Wang, L.: Ceramics Inter.‏ 47 (2021)‏ 6397.
21. Chen, Z.J.: Inter. J.Mechan. Sci 195 (2021) 106239.
22. Zhan, S.D.: J. European Ceramic Soc 41 (2021) 5075.
#       23. Wang, H.: Bandaoti Guangdian/Semicond. Optoelectron. (2021) 458-463 and 478.
#       24. Hajare, R.: Mater. Today: Proc. 49 (2021) 720.
25. Zhan, S.D.: Precision Engn.-J. Inter. Soc Precision Engn. Nanotechnol. 74 (2022) 403.
26. Wang, L.K.: Ceramics Inter. 48 (2022) 12359.
*    27. Cao, Z.: J. Internet Things 3 (2021) 11.
#    28. Wang, H.J.: Proc. SPIE 12351 (2022) 123510Z.
29. Chen, J.J.: Mater. Sci Semicond. Process. 165 (2023) 107651.
30. Zhai, Y.X.: Mater. Sci Semicond. Process. 173 (2024) 108137.

Le Boulbar, E., Edwards, M., Vittoz, S., Vanko, G., Brinkfeldt, K., Rufer, L., Johander, P., Lalinský, T., Bowen, C., and Allsopp, D.: Effect of bias conditions on pressure sensors based on AlGaN/GaN high electron mobility transistor, Sensors Actuators A 194 (2013) 247-251.

1. Munusami, R.: Superlatt. Microstr. 64 (2013) 388.
2. Koeck, H.: Proc. SPIE 9113 (2014) 91130D.
3. Yakuphanoglu, F.: J. Alloys Compounds 650 (2015) 671.
4. Maurya, D.: Adv. Mater. for Clean Energy (2015) 143.
5. Yalamarthy, A.S .: Semicond. Sci Technol. 31 (2016) 035024.
#      6. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
7. Dowling, K.M.: Microelectron. Engn. 173 (2017) 54.
8. Andrews, J.B.: IEEE Sensors 2017. P. 25.
9. Chapin, C.A.: Sensors Actuators A 263 (2017) 216.
10. Gajula, D.: Micromachines 9 (2018) 207.
11. Wang, A.: AIP Adv. 8 (2018) 035318.
12. Wang, A.: Mater. Res. Express 5 (2018) 025903.
13. Luo, J.: J. Semicond.39 (2018) 124007.
14. Andrews, J.B.: IEEE Sensors J. 18 (2018) 7875.
15. Tan, X.: AIP Adv. 8 (2018) 085202.
16. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
#     17. Chapin, C.A.: Solid-State Sensors, Actuators and Microsystems Workshop 2018, pp. 238-239.
18. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
19. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
20. Oh, H.: Sensors 20 (2020) 3872.
21. Sun, J.: Sensors Actuators A 314 (2020) 112217.
22. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
23. Wang, A.: ECS J. Solid State Sci Technol. 10 (2021) 037007.
24. Nguyen, H.Q.: Applied Physics Lett. 118 (2021) 242104.
25. Moser, M.:IEEE Sensors J. 21 (2021) 20176.
26. Moser, M.:IEEE Sensors J. 21 (2021) 20165.
27. Wang, R.R.: Micromachines 12 (2021) 1413.
#         28. Moser, M.: Proc. MikroSystemTechnik Kongress 2021, pp. 250.
29. Parinov, I.A.: Symmetry-Basel 14 (2022) 765.
30. Al-Mamun, N.S.: Microelectron. Engn. 262 (2022) 111836.
31. Nallusamy, N.: IEEE Trans. Dev. Mater. Reliab. 22 (2022) 424.
32. Blanton, E.W.: Applied Phys. Lett. 122 (2023) 173502.
33. Neumann, P.L.: Micro Nano Engn. 19 (2023) 100198.

Vallo, M., Lalinský, T., Dobročka, E., Vanko, G., Vincze, A., and Rýger, I.: Impact of Ir gate interfacial oxide layers on performance of AlGaN/GaN HEMT,. Applied Surface Sci 267 (2013) 159-163.

1. Lin, R.-M.: Japan. J. Applied Phys. 52 (2013) 111002.
2. Huang, H.: Solid-State Electr. 114 (2015) 148.

Lalinský, T., Vallo, M., Vanko, G., Dobročka, E., Vincze, A., Osvald, J., Rýger, I., Dzuba, J., : Iridium oxides based gate interface of AlGaN/GaN high electron mobility transistors formed by high temperature oxidation. Applied Surface Sci 283 (2013) 160-167.

1. Jung, S.M.: Semicond. Sci Technol.  30 (2015) 075012.
2. Eisner, S.R.: IEEE Aerospace Conf. Proc. – AEROCONF 2021.
3. Eisner, S.R.: Applied Phys. Lett. 123 (2023) 152101.

Vanko, G., Zehenter, J., Choleva, P., Lalinský, T., and Hudek, P.: Laser ablation: A supporting technique to bulk micromachining of SiC. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 259-262.

#       1. Zhang, H..: Zhongguo Jiguang/Chinese J. Lasers 44 (2017) 0102017.
2. Martychowiec, A.: Przeglad Elektrotechn. 95 (2019) 154.
#       3. Wang, H.: Bandaoti Guangdian/Semicond. Optoelectron. (2021) 458-463 and 478.

Dubecký, F., Gombia, E., Ferrari, C., Zaťko, B., Vanko, G., Baldini, M., Kováč, J., Baček, D., Kováč, P., Hrkút, P., and Nečas, V.: Characterization of epitaxial 4H-SiC for photon detectors. J. Instrument. 7 (2012) P09005.

1. Liu, L.-Y.: Sensors (2017) 2334.
2. Ou, H.Y.: Materials 16 (2023) 1014.

Rýger, I., Vanko, G., Kunzo, P., Lalinský, T., Vallo, M., Plecenik, A., Satrapinskyy, L., Plecenik, T., :AlGaN/GaN HEMT based hydrogen sensors with gate absorption layers formed by high temperature oxidation. Procedia Engn. 47 (2012) 518-521.

1. Halfaya, Y.: Sensors 16 (2016) Iss. 3.
2. Sharma, N.: J. Nanoelectron. Optoelectron. 11  (2016) 694.
3. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
#    4. Zhu, Y.-X.: Faguang Xuebao/Chinese J. Lumin. 37 (2016) 1545.
5. Sharma, N.: IEEE Trans. Electron Dev. 67 (2020) 289.
#      6. Chen, J.: Zhenkong Kexue yu Jishu Xuebao/J. Vacuum Sci Technol. 40 (2020) 12.
7. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
8. Pal, P.: IEEE Sensors J. 21 (2021) 12998.
9. Ajayan, J.: Measurement 186 (2021) 110100.
#      10. Sharma, N.: Lecture Notes in Networks and Syst. 204 (2021) 13.
#       11. Gupta, Y.: VLSI and Hardware Implementations using Modern Machine Learning Methods. CRC 2022, pp. 163-179. ISBN 978-100-320-103-8
12. Bhat, A.M.: Micro Nanostruct. 176 (2023) 207528.
13. Nguyen, V.C.: Sensors 23 (2023) 3465.
14. Jiang, Y.: J. Mater. Chem. C 11 (2023) 10121.

Lalinský, T., Vanko, G., Vallo, M., Dobročka, E., Rýger, I., Vincze, A., : AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation. Applied Phys. Lett. 100 (2012) 092105.

1. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
2. Kawakami, R.: Japan. J. Applied Phys. 52 (2013) SIUNSP05EC05.
3. Binh, T.T.: Electronic Mater. Lett. 9 (2013) 705.
4. Harmatha, L.: Applied Surface Sci 312 (2014) 102.
5. Osvald, J.: Phys. Status Solidi B 252 (2015) SI996.
6. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
7. Lee, C.S.: Inter. Conf. on Power Electron. Drive Systems 2015. P. 194.
8. Reddy, V. R.: RSC Adv. 6  (2016) 105761.
9. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2017) Q284.
10. Suria, A.J.: Applied Phys. Lett. 110 (2017) 253505.
11. Huang, S.-J.: Applied Surface Sci 401 (2017) 373.
12. Lee, C.-S.: Semicond. Sci Technol. 33 (2018) 065004.
13. Gao, S.: IEEE Electron Device Lett. 40 (2019) 1921.
14. Li, G.: J. Mater. Chem. C 8 (2020) 1125.

Vanko, G., Vallo, M., Bruncko, J., Lalinský, T., : Laser ablated ZnO layers for ALGaN/GaN HEMT passivation. Vacuum 86 (2012) 672-674.

1. Eller, B.S.: J. Vacuum Sci Technol. A 31 (2013) 050807.
2. Soylu, M.: Mater. Chem. Phys. 143 (2014) 495.
3. Bao, Q.: Vacuum 101 (2014) SI184.

Lalinský, T., Hudek, P., Vanko, G., Dzuba, J., Kutiš, V., Srnánek, R., Choleva, P., Vallo, M., Držík, M., Matay, L., and Kostič, I.: Micromachined membrane structures for pressure sensors based on AlGaN/GaN circular HEMT sensing device, Microelectron. Engn. 98 (2012) 578–581.

1. Ko, S.C.: J. Micromech. Microengn. 23 (2013) 035011.
2. Wang, C.: Microelectr. Engn. 109 (2013) 24.
3. Linganiso, E.C.: Mater. Chem. Phys. 143 (2013) 367.
4. Haehnlein, B.: Phys. Status Solidi C 11 (2014) 239.
5. Al-Shibaany, Z.Y.A.: IOP Conf. Ser. 65 (2014) 012030.
#    6. Tiginyanu, I.: Turkish J. Phys. 38 (2014) 328.
#     7. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci 2016, ISBN: 978-981-3146-73-0, pp. 395-433.
8. Dowling, K.M.: Microelectr. Engn. 173 (2017) 54.
9. Chapin, Caitlin A.: TRANSDUCERS 2017. P. 786.
10. Zhang, S.: Adv. Mater. Technol. 3 (2018) 1700285.
11. Gajula, D.: Micromachines 9 (2018) 207.
12. Tadjer, M.J.: IEEE J. Electron Dev. Soc 6 (2018) 922.
13. Tan, X.: AIP Adv. 8 (2018) 085202.
14. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
15. Sun, J.: Sensors Actuators A 314 (2020) 112217.
*   16. Middelburg, L.M.: In Sensor Systems Simul. ISBN 978-3-030-16577-2, 2020, pp. 1-15.
17. Cuenca, J.A.: Carbon 174 (2021) 647.
18. Nguyen, H.Q.: Applied Physics Lett. 118 (2021) 242104.
19. Moser, M.:IEEE Sensors J. 21 (2021)  20176.
20. Al-Mamun, N.S.: Microelectr. Engn. 262 (2022) 111836.
21. Nguyen, H.Q.: ACS Applied Electron. Mater. 4 (2022) 2648.
22. Nallusamy, N.: Physica Status Solidi A 220 (2023) no. 7.
*       23. Moser, M.: Power Electron. Dev. Comp. 4 (2023) 1.

Edwards, M., Le Boulbar, E., Vittoz, S., Vanko, G., Brinkfeldt, K., Rufer, L., Johander, P., Lalinský, T., Bowen, C., Allsopp, D., : Pressure and temperature dependence of GaN/AlGaN HEMT based sensors on a sapphire membrane,. Phys. Status Solidi c 9 (2012) 960-963.

1. Fang, J.Y.: J. Applied Phys. 114 (2013) 204503.
2. Fang, J.-Y.: ECS Trans. 58 (2014) 3.
#        3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
4. Dowling, K.M.: Microelectron. Engn. 173 (2017) 54.
5. Huang, Y.-S.: Optical Mater. Express 7 (2017) 320.
6. Chapin, C.A.: TRANSDUCERS 2017. P. 786.
7. Chapin, C.A.: Sensors Actuators A 263 (2017) 216.
8. Shin, S.: Sensors Actuators A 303 (2020) UNSP 111783.
9. Oh, H.: Sensors 20 (2020) 3872.
10. Moser, M.:IEEE Sensors J. 21 (2021) 20176.
11. Moser, M.:IEEE Sensors J. 21 (2021) 20165.
12. Al-Mamun, N.S.: Microelectron. Engn. 262 (2022) 111836.

Rýger, I., Vanko, G., Lalinský, T., Vallo, M., Tomáška, M., Ritomský, A., : AlGaN/GaN based SAW-HEMT devices for chemical gas sensors operating in GHz range. Procedia Engn. 25 (2011) 1101-1104.

1. Wang, X.: J. Alloys Compounds 667 (2016) 346.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
3. Horta, I.M.: Surfaces Interfaces 40 (2023) 103023.

Vanko, G., Držík, M., Vallo, M., Lalinský, T., Kutiš, V., Stančík, S., Rýger, I., Benčurová, A., : AlGaN/GaN C-HEMT structures for dynamic stress detection. Sensors Actuators A 172 (2011) 98-102.

1. Wang, A.: IEEE Trans. Electron Dev. 60 (2013) SI3149.
2. Wang, A.: AIP Adv. 8 (2018) 035318.
3. Wang, A.: Mater. Res. Express 5 (2018) 025903.
4. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
5. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
6. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
7. Upadhyay, K.T.: Mater. Sci Engn. B 263  (2021) 114849.
8. Qing-Bin, L.: Acta Physica Sinica 72 (2023) 098104.

Lalinský, T., Vanko, G., Vincze, A., Haščík, Š., Osvald, J., Donoval, D., Tomáška, M., Kostič, I., : Effect of fluorine interface redistribution on performance of AlGaN/GaN HEMTs. Microelectr. Engn. 88 (2011) 166-169.

1. Ketteniss, N.: IEEE Electron Device Lett. 33 (2012) 519.
2. Bisi, D.: Europ. Solid-State Device Research Conf. 2013, p. 61.
3. Loghmany, A.: Solid-State Electron. 103 (2015) 162.
4. He, Y.: IEEE SSL China – IFWS 2016. P. 116.
*     5. Fornasiero, Q.: WOCSDICE EXMATEC 2021, p. 50.
6. Mauduit, C.: Microelectron. Engn. 277 (2023) 112020.

Lalinský, T., Vanko, G., Vallo, M., Držík, M., Bruncko, J., Jakovenko, J., Kutiš, V., Rýger, I., Haščík, Š., Husák, M., : Impact of ZnO gate interfacial layer on piezoelectric response of AlGaN/GaN C-HEMT based ring gate capacitor. Sensors Actuators A 172 (2011) 386-391.

      1. Wang C.: Chinese Phys. Lett. 31 (2014) 128501.

Lalinský, T., Hudek, P., Vanko, G., Choleva, P., Vallo, M., Matay, L., Kostič, I., Držík, M., : Micromachined pressure sensors based on AlGaN/GaN circular HEMT sensing devices In: 37th Inter. Conf. Micro Nano Engn. – MNE 2011. Berlin 2011.

      1. Ko, S.C.: J. Micromech. Microengn. 23 (2013) 035011.

Lalinský, T., Držík, M., Vanko, G., Vallo, M., Kutiš, V., Bruncko, J., Haščík, Š., Jakovenko, J., and Husák, M.:Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectr. Engn. 88 (2011) 2424-2426.

1. Wang, C.: Microelectr. Engn. 109 (2013) 24.
2. Chapin, C.A.: Structural Health Monitoring 2013. P. 1621.
#        3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
4. Tomita, S.: J. Applied Phys. 121 (2017) 235102.
5. Wang, A.: AIP Adv. 8 (2018) 035318.
6. Khan, A.B.: J. Nanoelectron. Optoel. 13 (2018) 20.
7. Luo, J.: J. Semicond.39 (2018) 124007.
8. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
9. Sun, J.: Sensors Actuators A 314 (2020) 112217.
10. Kumari, V.: IETE Techn. Rev. 38 (2021) 294.

Osvald, J., Lalinský, T., Vanko, G., Haščík, Š., and Vincze, A.: CV characterization of SF6 plasma treated AlGaN/GaN heterostructures, Microelectr. Engn. 87 (2010) 2208-2210.

1. Wang, R.: J. Phys. D 51 (2018) 065108.
2. Wang, R.: Phys. Rev. Applied 11 (2019) 054021.
3. Fornasiero, Q.: J. Vacuum Sci Technol. B 41 (2023) 012202.

Lalinský, T., Rýger, I., Vanko, G., Tomáška, M., Kostič, I., Haščík, Š., Vallo, M., : AlGaN/GaN based SAW-HEMT structures for chemical gas sensors, Procedia Engn. 5 (2010) 152-155.

1. Guo, Y.: RSC Adv. 5 (2015) 98724.
#      2. Caliendo, C.: In Anti-Abrasive Nanocoatings: Current and Future Applications Woodhead Publ. in Mater. 2015. ISBN: 978-0-85709-211-3. P. 430.
3. Amoudache, S.: J. Applied Phys. 119 (2016) 114502.
4. Sharma, N.: J. Nanoelectr. Optoelectr. 11  (2016) 694.
5. Pennec, Y.: Advances in Applied Mechanics 52 (2019) 105.
*      6. Bhattacharjee, K.: US Patent No. 10211806 B2 (2019).
*       7. Bhattacharjee, K.: US Patent No. 10326426 B2 (2019).
*       8. Bhattacharjee, K.:  US Patent No. 10305442 B2 (2019).
*        9. Bhattacharjee, K.: US Patent No. 10305443 B2 (2019).
10. Sharma, N.: IEEE Trans. Electron Dev. 67 (2020) 289.
11. Kumar, N.: IEEE Trans. Nanotechnol. 19 (2020) 527.
12. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
13. Eisner, S.R.: IEEE Aerospace Conf. Proc. 2021.
14. Pal, P.:IEEE Sensors J. 21 (2021)  12998.
#      15. Sharma, N.: Lecture Notes in Networks and Syst. 204 (2021) 13.
*      16. Bhattacharjee, K.: Solidly mounted layer thin film device with grounding layer. US Patent No. 10938367 B2 (2021).
*      17. Yogendra, G.: In VLSI and hardware implementations using modern machine learning methods. CRC Press. ISBN 978-1-032-06171-9, 2021, pp. 163-178.
18. Sharma, N.: J. Mater. Chem. C 10 (2022) 12157.
#       19. Gupta, Y.: VLSI and Hardware Implementations using Modern Machine Learning Methods. CRC 2022, pp. 163-179. ISBN 978-100-320-103-8

Liday, J., Vogrinčič, P., Hotový, I., Bonanni, A., Sitter, H., Lalinský, T., Vanko, G., Řeháček, V., Breza, J., Ecke, G., : Ohmic contacts to p-GaN using Au/Ni-Mg-O metallization. J. Electr. Engn. 61 (2010) 378-381.

      1. Magdenko, L.: J. Vacuum Sci Technol. B 30 (2012) 022205.

Jakovenko, J., Lalinský, T., Držík, M., Ivanova, M., Vanko, G., and Husák, M.: GaN, GaAs and silicon based micromechanical free standing hot plates for gas sensing, Procedia Chemistry 1 (2009) 804-807.

1. Vittoz, S.: Procedia Engn. 5 (2010) 91.
2. Griessler, C.: Microelectr. Engn. 88 (2011) 1779.
3. Vittoz, S.: Sensors Actuators A 172 (2011) SI27.
#   4. Vittoz, S.: Proc. 4th IEEE Inter.Workshop on Adv. Sensors Interfaces – IWASI 2011, art. no. 6004678, p. 17.
#    5. Brunet, E.: In Oxide Ultrathin Films. Weinheim: Wiley-VCH  2011 ISBN: 978-352733016-4  P. 239.
6. Huang, C.-Y.: Sustainability 10 (2018) 3451.
7. Guo, X.Y.: Mater. Sci Semicond. Process. 153 (2023) 107173.

Vanko, G., Lalinský, T., Haščík, Š., Rýger, I., Mozolová, Ž., Škriniarová, J., Tomáška, M., Kostič, I., and Vincze, A.: Impact of SF6 plasma treatment on performance of AlGaN/GaN HEMT. Vacuum 84 (2009) 235-237.

1. Wang, Y.Z.: Applied Phys. Lett. 98 (2011) 043506.
2. Hirose, M.: Phys. Status Solidi C 9 (2012) 361.
3. Wang, Y.Z.: Applied Phys. Lett. 101 (2012) 063505.
4. Zhang, H.Y.: J. Phys. D 46 (2013) 435102.
5. Bisi, D.: Europ. Solid-State Dev. Research Conf. 2013, Art. no. 6818819, P. 61.
6. Lee, N.-H.: Japan. J. Applied Phys. 53 (2014) SI04EF10.
7. Du, Y.-D.: Chinese Phys. Lett. 31 (2014) 048501.
8. Tzou, A.-J.: Semicond. Sci Technol. 31 (2016) 055003.
9. Mao, L.-F.: ECS J. Solid State Sci Technol. 8 (2019) P472.
#  10. Han, J.: Faguang Xuebao/Chinese J. Lumin. 40 (2019) 915.
11. Chen, D.Y.: Semicond. Sci Technol. 37 (2022) 035011.
12. Cho, H.K.: IEEE Photon. Technol. Lett. 35 (2023) 915.

Lalinský, T., Rýger, I., Rufer, L., Vanko, G., Haščík, Š., Mozolová, Ž., Škriniarová, J., Tomáška, M., Kostič, I., Vincze, A., : Surface acoustic wave excitation on SF6 plasma-treated AlGaN/GaN heterostructure. Vacuum 84 (2009) 231-234.

    1. Zhang, D.: Materials Research Bull. 46 (2011) 1582.

Lalinský, T., Rufer, L., Vanko, G., Mir, S., Haščík, Š., Mozolová, Ž., Vincze, A., and Uherek, F.: AlGaN/GaN heterostructure-based surface acoustic wave-structures for chemical sensors. Applied Surface Sci 255 (2008) 712-714.

1. Cho, E.: J. Vacuum Sci Technol. B 27 (2009) 2079.
2. Lee, C.M.: IEEE Sensors (2010) 2008.
3. Chen, T.Y.: IEEE Trans. Electron Dev. 58 (2011) 1541.
4. Zhang, D.: Materials Research Bull. 46 (2011) 1582.
5. Lu, X.: IEEE Sensors J. 13 (2013) 1245.
6. Yang, H.: Europ. Phys. J.-Applied Phys. 72 (2015) 20301.
7. Wang, H.: Applied Surface Sci 369 (2016) 414.
8. Chang, C.-H.: IEEE Trans. Electron Dev. 67 (2020) 296.
9. Horta, I.M.: Surfaces Interfaces 40 (2023) 103023.

Lalinský, T., Držík, M., Jakovenko, J., Vanko, G., Mozolová, Ž., Haščík, Š., Chlpík, J., Hotový, I., Řeháček, V., Kostič, I., Matay, L., and Husák, M.: GaAs based micromachined thermal converter for gas sensors, Sensors Actuators A 142 (2008) 147-152.

1. Zhang, B.Z.: Advanced Materials Res. 97-101 (2010) 4221.
#      2. Jia, X.: Chinese J. Sensors Actuators 23 (2010) 188.
#      3. Zhou, Z.: Yi Qi Yi Biao Xue Bao/Chinese J. Sci Instrum. 34 (2013) 2757.
#      4. Zhao, W.: Yi Qi Yi Biao Xue Bao/Chinese J. Sci Instrum. 37 (2016) 579.
5. Huang, C.-Y.:Sustainability 10 (2018) 3451.
6. Zhao, W.-J.: Sensors 19 (2019) Iss. 17.

Tomáška, M., Lalinský, T., Vanko, G., and Mišun, M.: High frequency characterization and properties of AlGaN/GaN HEMT structures. In: ASDAM 2008. The 7th Inter. Conf. Advanced Semicond. Devices Microsyst. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 331-334.

1. Jiang, C.: Nanotechnol. 28 (2017) 455203.

Hotový, I., Řeháček, V., Mika, F., Lalinský, T., Haščík, Š., Vanko, G., and Držík, M.: Gallium arsenide suspended microheater for MEMS sensor arrays, Microsyst. Technol. 14 (2008) 629-635.

1. Lee, J.: J. Microelectromech. Systems 17 (2008) 1513.
2. Biro, F.: IEEE THERMINIC. Berlin 2013. P. 116.
3. Biro, F.: Microelectron. J. 45 (2014) 1822.
4. Samaeifar, F.: Sensor Rev. 35 (2015) 116.
5. Samaeifar, F.: Experimen. Techniq. 40  (2016) 755.
6. Spruit, Ronald G.: J. Microelectromech. Systems 26 (2017) 1165.
7. van Omme, J.T.: Ultramicroscop. 192 (2018) 14.
8. Wang, C.-P.: Microelectron. Engn. 228 (2020) 111334.
9. Kalinin, I.A.: Sensors Actuators A 317 (2021) 112457.
10. Biro, F.: Microsystem Technol.-Micro-And Nanosystems-Inf. Storage Process. Systems 28 (2022) 2511.
11. Han, J.: J. Micromech. Microengn. 33 (2023) 075007.
12. Pleshakov, G.A.: Micromach. 14 (2023) 2023.
13. Zhang, T.: Micromach. 15 (2024) 130.

Vanko, G., Lalinský, T., Tomáška, M., Haščík, Š., Mozolová, Ž., Škriniarová, J., Kostič, I., Vincze, A., Uherek, F., : Impact of SF6 plasma on DC and microwave performance of AlGaN/GaN HEMT structures. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 335-338.

      1. Egorkin, V.: Proc. 2017 IEEE ELCONRUS. P. 1131.

Vanko, G., Lalinský, T., Mozolová, Ž., Liday, J., Vogrinčič, P., Vincze, A., Uherek, F., Haščík, Š., and Kostič, I.:Nb-Ti/Al/Ni/Au based ohmic contacts to AlGaN/GaN. Vacuum 82 (2008) 193-196.

1. Škriniarová, J.: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 319.
2. Tellez, H.: Anal. Bioanal. Chem. 397 (2010) 2865.
3. Wu, T.-T.: J. Lightwave Technol. 29 (2011) 3757.
4. Lin, Y.-S.: Semicond. Sci Technol. 28 (2013) SI074018.
5. Redondo-Cubero, A.: J. Phys. D 47 (2014) 185302.
6. Wang, N.-F.: Innovation, Comm. Engn. (2014) 301.
#   7. Stuchlíková, L.: ASDAM 2014. Art. no. 6998675, p. 181.
8. Jung, S.M.: Semicond. Sci Technol.  30 (2015) 075012.
9. Greco, G.: Applied Surface Sci 383 (2016) 324.
*  10. Ilgiewicz, G.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 60.
*   11. Macherzynski, W.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 251.
12. Douglas, E. A.: Phys. Status Solidi A 214 (2017) 1600842.
13. Klein, B.A.: ECS J. Solid State Sci Technol. 6 (2017) S3067.
14. Klein, B.A.: J. Electron. Mater. 48 (2019) 5581.
#    15. Razzak, T.: Inter. J. High Speed Electron. Systems 28 (2019) 1940009.
16. Dang, P.: Sci Adv.‏ 7 (2021) eabf1388.
17. Greco, G.: Applied Phys. Lett. 124 (2024) 012103.

Haščík, Š., Hotový, I., Lalinský, T., Vanko, G., Řeháček, V., Mozolová, Ž., : Preparation of thin GaAs suspended membranes for gas microsensors using plasma etching. Vacuum 82 (2008) 236-239.

1. Park, Y.H.: Microelectr. Engn. 87 (2010) 548.
# 2. Rezaur Raihan, M.: Progress Electromagn. Research C 21 (2011) 191.
#    3. Zhang, Z.: J. Southeast Univ. 28 (2012) 315.
4. Guo, S.: Vacuum 197 (2022) 110792.
5. Leon-Gonzalez, J.C.: Nanomater. 13 (2023) 1461.

Jakovenko, J., Husák, M., Lalinský, T., Držík, M., and Vanko, G.:  Design and modeling of GaAs based hot plate for Gas sensors. In: DTIP 2007. Proc. Symp. on Design, Test, Integration and Packing of MEMS/MOEMS. Ed. Chakrabarty, K. et al. EDA Publ. 2007. ISBN 978-2-35500-000-3. P. 147-150.

1. Kamati, K.S.C.: IEEE Region 10 Symp. 2019, p.‏  231.

Rufer, L., Lalinský, T., Grobelny, D., Mir, S., Vanko, G., Öszi, Z., Mozolová, Ž., : GaAs and GaN based SAW chemical sensors: acoustic part design and technology. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 165-168.

#      1. Zivković, Z.: Informacije MIDEM 39 (2009) 111.
2. Bose, S.: Environ. Quality Management 31 (2022) 29.
3. Ahmed, I.: IEEE Trans. Ultrason. Ferroelectr. Frequency Control 70 (2023) 291.

Lalinský, T., Vanko, G., Grujbár, M., Mozolová, Ž., Haščík, Š., and Kostič, I.: Nb-Ti/Al/Ni/Au ohmic metallic system to AlGaN/GaN. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 151-154.

1. Macherzynski, W.: Adv. Electr. Electron. Engn. 14 (2016) 83.
2. Rosprim, J.P.: Proc. SPIE 10122 (2017) UNSP 1012205.