RNDr. Cambel Vladimír, DrSc.

Zelent, M., Vetrova, Iu.V., Li, X., Zhou, Y., Šoltýs, J., Gubanov, V.A., Sadovnikov, A.V., Ščepka, T., Dérer, J., Stoklas, R., Cambel, V., and Mruczkiewicz, M.: Skyrmion formation in nanodisks using magnetic force microscopy tip, Nanomater. 11 (2021) 2627.

1. Chaves-O’Flynn, G.D.: Physica D 445 (2023) 133617.

Vetrova, Iu.V., Zelent, M., Šoltýs, J., Gubanov, V.A., Sadovnikov, A.V., Ščepka, T., Dérer, J., Stoklas, R., Cambel, V., and Mruczkiewicz, M.: Investigation of self-nucleated skyrmion states in the ferromagnetic/nonmagnetic multilayer dot, Applied Phys. Lett. 118 (2021) 212409.

1. Heyderman, L.: Applied Phys. Lett. 119 (2021) 080401.
2. Saavedra, E.: Sci Rep. 11 (2021) 23010.
3. Lepadatu, S.: J. Applied Phys. 130 (2021) 163902.
4. Orlov, V.A.: Techn. Phys. 67 (2022) 289.

Marcin, M., Pribulová, Z., Kačmarčík, J., Medvecká, Z., Klein, T., Verchenko, V.Yu., Cambel, V., Šoltýs, J., and Samuely, P.: One or two gaps in Mo8Ga41 superconductor? Local Hall-probe magnetometry study, Supercond. Sci Technol. 34 (2021) 035017.

1. Ryzynska, Z.: J. Phys. Chem. C 125 (2021) 11294.

Marcin, M., Pribulová, Z., Kačmarčík, J., Verchenko, V.Yu., Shevelkov, A.V., Cambel, V., Šoltýs, J., and Samuely, P.: Local magnetometry of superconducting Mo8Ga41 and Mo7VGa41: vortex pinning study, Acta Phys. Polonica A 137 (2020) 794-796.

1. Ryzynska, Z.: J. Phys. Chem. C 125 (2021) 11294.

Neilinger, P., Ščepka, T., Mruczkiewicz, M., Dérer, J., Manca, D., Dobročka, E., Samardak, A.S., Grajcar, M., and Cambel, V.: Ferromagnetic resonance study of sputtered Pt/Co/Pt multilayers, Applied Surface Sci 461 (2018) 202-205.

1. Stebliy, M. E.: Phys. Rev. Applied 11 (2019) 054047.
2. Tavares, M. A. B.: AIP Adv. 9 (2019) Iss. 12.
3. Fattouhi, M.: Phys. Rev. Applied (2021) 014040.
4. Mao, M.H.: Materials 16 (2023) 3395.
5. Li, M.H.: J. Mater. Res. Technol.-JMR&T 26 (2023) 1375.
6. Matinaga, F.M.: IEEE Trans. Magnet. 59 (2023) 2501105.

Tóbik, J., Martoňák, R., and Cambel, V.: Free-energy landscapes in magnetic systems from metadynamics, Phys. Rev. B  96 (2017) 140413(R).

1. Ozerov, G.K.: Phys. Chem. Chem. Phys. 21 (2019) 16549.
2. Nagyfalusi, B.: Phys. Rev. B 100 (2019) 174429.
3. Pramanik, K.: Phys. Chem. Chem. Phys. 22 (2020) 22796.
4. Bause, M.: J. Chem. Phys. 154 (2021) 134105.
5. Mruczkiewicz, M.: Solid State Phys. 72 (2021) 1.

Sečianska, K., Šoltýs, J. and Cambel, V.: Study of magnetic micro-ellipses by cantilever sensor, Acta Phys. Polonica A 131 (2017) 833-836.

1. Nilsen, M.: J. Micromech. Microengn. 29 (2019) 025014.

Neilinger, K., Šoltýs, J., Mruczkiewicz, M., Dérer, J., and Cambel, V.: Dual-cantilever magnetometer for study of magnetic interactions between patterned permalloy microstructures, J. Magnetism Magnetic Mater. 444 (2017) 354-360.

1. Yu, Y.: Japan. J. Applied Phys. 57 (2018) 090312.
2. Li, X.: Nanoscale 15 (2023) 19448.

Pribulová, Z., Medvecká, Z., Kačmarčík, J., Komanický, V., Klein, T., Rodière, P., Levy-Bertrand, F., Michon, B., Marcenat, C., Husaníková, P., Cambel, V., Šoltýs, J., Karapetrov, G., Borisenko, S., Evtushinsky, D., Berger, H., and Samuely, P.: Magnetic and thermodynamic properties of CuxTiSe2 single crystals, Phys. Rev. B 95 (2017) 174512.

1. Ekino, T.: J. Phys.-Cond. Matt. 29 (2017) 505602.
2. Banerjee, A.: Phys. Rev. B 98 (2018) 104206.
3. Mikitik, G. P.: Phys. Rev. B 104 (2021) 094526.
4. Naik, S.: J. Solid State Chem. 318 (2023) 123782.

Medvecká, Z., Klein, T., Cambel, V., Šoltýs, J., Karapetrov, G., Levy-Bertrand, F., Michon, B., Marcenat, C., Pribulová, Z., and Samuely, P.: Observation of a transverse Meissner effect in CuxTiSe2 single crystals, Phys. Rev. B 93 (2016) 100501(R).

1. Lian, C.: Phys. Rev. B 100 (2019) 205423.
2. Lian, C.: Nature Comm. 11 (2020) 43.
3. Krajenbrink, A.: Phys. Rev. E 103 (2021) 042120.

Kačmarčík, J., Pribulová, Z., Samuely, T., Szabó, P., Cambel, V., Šoltýs, J., Herrera, E., Suderow, H., Correa-Orellana, A., Prabhakaran, D., and Samuely, P.: Single-gap superconductivity in ẞ-Bi2Pd. Phys. Rev. B 93 (2016) 144502.

1. Biswas, P.K.: Phys. Rev. B 93 (2016) 220504.
2. Che, L.: Phys. Rev. B 94 (2016) 024519.
3. Xu, C. Q.: Phys. Rev. B 94 (2016) 165119.
4. Guan, S.-Y.: Sci Adv.2 (2016) e1600894.
5. Zheng, J.-J.: Phys. Rev. B 95 (2017) 014512.
6. Saib, S.: Intermetall.84 (2017) 136.
7. Mitra, S.: Phys. Rev. B 95 (2017) 134519.
8. Lv, Y.-F.: Sci Bull.62 (2017) 852.
9. Iwaya, K.: Nature Comm. 8 (2017) 976.
10. Choi, H.: Phys. Rev. Mater. 1 (2017) 034201.
11. Wang, B.T.: J. Phys.-Cond. Matt. 29 (2017) 325501.
#   12. Xu, C.Q.: Phys. Rev. B 96 (2017) 064528.
13. Zhou, Y.: Phys. Rev. B 99 (2019) 054501.
14. Xu, T.: Phys. Rev. B 100 (2019) 161109.
15. Li, Y.: Science 366 (2019) Iss. 6462, p. 238-+.
16. Kolapo, A.: Sci Rep. 9 (2019) 12504.
17. Chen, J.: Phys. Rev. B 101 (2020) 054514.
18. Liu, P.-F.: Phys. Rev. B 102 (2020) 155406.
19. Yan, D.Y.: Supercond. Sci Technol. 34 (2021) 035025.
20. Soda, M.: J. Phys. Soc Japan 90 (2021) 104710.
21. Li, H.: Nanomater. 11 (2021) 2826.
22. Das, D.: Phys. Rev. Lett. 127 (2021) 217002.
23. Tu, X.: Mater. Today Phys. 24 (2022) 100674.
24. Kataria, A.: Mater. Adv. 3 (2022) 5375.
25. Correa, V.F.: Physica B 641 (2022) 414102.
26. Xu, X.Y.: Nature Comm. 13 (2022) 5321.
27. Soda, M.: J. Phys. Soc Japan 91 (2022) 034706.
28. Juraszek, J.: Physica Status Solidi RRL 17 (2023) Iss. 3.
29. Zhu, A.K.: Sci China-Phys. Mechan. Astronomy 66 (2023) 276813.

Tóbik, J., Cambel, V. and Karapetrov, G.: Asymmetry in time evolution of magnetization in magnetic nanostructures. Sci Reports 5 (2015) 12301.

1. Li, J.: J. Magnetism. Magnetic Mater. 435 (2017) 167.
2. Li, J.: J. Magnetism. Magnetic Mater. 451 (2018) 379.
3. Zhou, K.: J. Applied Phys. 125 (2019) 223904.
4. Mary, A.: Physica Scripta 98 (2023) 045808.
5. Makartsou, U.: Nanoscale 15 (2023) 13094.

Ščepka, T., Polakovič, J., Šoltýs, J., Tóbik, J., Kulich, M., Kúdela, R., Dérer, J., and Cambel, V.: Individual vortex nucleation/annihilation in ferromagnetic nanodots with broken symmetry observed by micro/Hall magnetometry, AIP Adv. 5 (2015) 117205.

1. Ehrmann, A.: J. Magnetism Magnetic Mater. 475 (2019) 727.

Precner, M., Fedor, J., Šoltýs, J., and Cambel, V.Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples. Nanotechnol. 26 (2015) 055304.

1. Wang, L.: Nanoscale Res. Lett. 11 (2016) 342.
2. Liu, J.: Micron 102 (2017) 15.
#          3. Passeri, D.: In Magnetic characterization techniques for nanomater. Springer 2017. ISBN 978-3-662-52779-5, p. 209.
4. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
5. Zhang, Y.: J. Controlled Release 322 (2020)‏ 401.
6. Winkler, R.: Nanomater. 13 (2023) 2585.

Precner, M., Fedor, J., Tóbik, J., Šoltýs, J., and Cambel, V.: High resolution tips for switching magnetization MFM, Acta Phys. Polonica A 126 (2014) 386-387.

1. Schoenherr, P.: Materials 10 (2017) 1051.
2. Puttock, R.: IEEE Trans.Magnet. 53 (2017) 6500805.
3. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.

Cambel, V., Precner, M., Fedor, J., Šoltýs, J., Tóbik, J., Ščepka, T., Karapetrov, G., : High resolution switching magnetization magnetic force microscopy. Applied Phys. Lett. 102 (2013) 062405.

1. Li, Z.: Sci Reports 4 (2014) 5594.
2. Li, Z.: NANOSCALE 6 (2014) 11163.
3. Liu, D.: Applied Phys. Lett. 107 (2014) 103110.
4. Li, Z.: Phys. Chem. Chem. Phys. 18 (2016) 28254.
5. Li, Z.: Mater. Sci-Poland 34 (2016) 924.
6. Kinoshita, Y.: Nanotechnol. 28(2017) 485709.
7. Cao, Y.: Nanotechnol. 29(2018) 305502.
8. Kumar, P.: J. Applied Phys. 123 (2018)214503.
9. Chou, W.Y.: ACS Applied Mater. Interfac. 13 (2021) 34962.
10. Kumar, R.R.: IEEE Sensors J. 23 (2023) 16107.
11. Josten, N.: Phys. Rev. Mater. 7 (2023) 124411.

Šoltýs, J., Gaži, Š., Fedor, J., Tóbik, J., Precner, M., Cambel, V., : Magnetic nanostructures for non-volatile memories. Microelectr. Engn. 110 (2013) 474-478.

        1. Hluchy, L.: Comput. Informat. 35 (2016) 1386.

Barančeková Husaníková, P., Fedor, J., Dérer, J., Šoltýs, J., Cambel, V., Iavarone, M., May, S., and Karapetrov, G.: Magnetization properties and vortex phase diagram of CuxTiSe2 single crystals. Phys. Rev. B 88 (2013) 174501.

1. Kaul, A.B.: J. Mater. Research 29 (2014) 348.
2. Hui, Z.: J. Applied Phys. 115 (2014) 033905.
3. Abdel-Hafiez, M.: Sci Rep. 6 (2016) 31824.
4. Song, Y.J.: Physica Status Solidi B 253 (2016) 1517.
5. Pervin, R.: Mater. Res. Express 5 (2018) 076001.
6. Lian, C.: Phys. Rev. B 100 (2019) 205423.
7. Lian, C.: Nature Comm. 11 (2020) 43.
8. Shokri, A.: Physica B 612 (2021) 412977.
9. Niu, R.: J. American Chem. Soc 146 (2024) 1244.

Cambel, V., Tóbik, J., Šoltýs, J., Fedor, J., Precner, M., Gaži, Š., Karapetrov, G., : The influence of shape anisotropy on vortex nucleation in Pacman-like nanomagnets,. J. Magnetism Magnetic Mater. 336 (2013) 29-36.

 1. Galvao, S.B.: Mater. Lett. 115 (2014) 38.
2. Hluchy, L.: Comput. Informat. 35 (2016) 1386.
3. Zheng, Y.: Rep. Progress in Phys. 80 (2017) 086501.
4. Ziegelwanger, H.: J. Comput. Phys. 346 (2017) 152.

Samuely, T., Szabó, P., Pribulová, Z., Sung, N., Cho, B., Klein, T., Cambel, V., Rodrigo, J., Samuely, P., : Type II superconductivity in SrPd2Ge2. Supercond. Sci Technol. 26 (2013) 015010.

           1. Herrera, E.: Phys. Rev. B 92 (2015) 054507.

Tóbik, J., Cambel, V., and Karapetrov, G.: Dynamics of vortex nucleation in nanomagnets with broken symmetry. Phys. Rev. B 86 (2012) 134433.

1. Zhang, L.-F.: Phys. Rev. B 88 (2013) 144501.
2. Bortolotti, P.: Phys. Rev. B 88 (2013) 174417.
3. Sato, T.: Applied Phys. Express 7 (2014) 033003.
4. Mitin, D.: J. Applied Phys. 115 (2014) 063906.
5. Rueckriem, R.: Applied Phys. Lett. 104 (2014) 052414.
6. Moon, K.-W.: Sci Rep. 4 (2014) 6170.
7. Sato, T.: Applied Phys. Express 7 (2014) 073003.
8. Bi, M.: IEEE Trans. Magn. 51 (2015) 2301704.
9. Li, J.: J. Magnetism. Magnetic Mater. 435 (2017) 167.
10. Li, J.: J. Magnetism. Magnetic Mater. 451 (2018) 379.
11. Yang, Z.-L.: Physica C 544 (2018) 6.
12. Luo, Y.M.: J. Magnetism Magnetic Mater. 474 (2019) 544.
13. Zhou, K.: J. Applied Phys. 125 (2019) 223904.
14. Yu, D.: NPG Asia Mater. 12 (2020) 36.
15. Luo, Y.M.: Nanotechnol.‏ 31 (2020) 205302.
16. Aldulaimi, W.A.S.: Annalen der Physik (2021) 2100167.
17. Ma, X.P.: Chinese Phys. Lett. 38 (2021) 127501.
18. Nelson, G.T.: Solar Energy Mater. Solar Cells 242 (2022) 111757.
19. Xu, M.: J. Phys. D 56 (2023) 055301.

Cambel, V. and Karapetrov, G.: Micromagnetic simulations of pac-man-like nanomagnets for memory applications. J. Nanosci Nanotechnol. 12 (2012) 7422-7425.

1. Du, J.: J. Nanosci Nanotechnol. 13 (2013) 5844.
2. Pathak, P.: IEEE Trans. Electron Dev. 68 (2021) 4418.

Cambel, V. and Karapetrov, G.: Control of vortex chirality and polarity in magnetic nanodots with broken rotational symmetry. Phys. Rev. B 84 (2011) 014424.

1. Stebliy, M.E.: IEEE Trans. Magnet. 48 (2012) 4406.
2. Yakata, S.: Sci Reports 3 (2013) 3567.
3. Agramunt-Puig, S.: Applied Phys. Lett. 104 (2014) 012407.
4. Sato, T.: Applied Phys. Express 7 (2014) 033003.
5. Sato, T.: Applied Phys. Express 7 (2014) 073003.
6. Brandao, J.: J. Applied Phys. 116 (2014) 193902.
7. Raanaei, H.: Inter. J. Modern Phys. B 28 (2014) 1450226.
8. Wen, Y.: J. Magnetism. Magnetic Mater. 370 (2014) 68.
9. Stebliy, M.E.: J. Applied Phys. 117 (2015) 17A317.
10. Stebliy, M.E.: Beilstein J. Nanotechnol. 6 (2015) 697.
11. Pramanik, T.: IEEE Trans. Nanotechnol. 14 (2015) 883.
12. Xu, Z.: IEEE Trans. Magnet. 51 (2015) 7101004.
13. Li, J.: J. Magnetism. Magnetic Mater. 435 (2017) 167.
14. Zheng, Y.: Rep. Progress in Phys. 80 (2017) 086501.
15. Li, J.: J. Magnetism. Magnetic Mater. 451 (2018) 379.
16. Dong, D.-N.: Acta Phys. Sinica 67 (2018) 228502.
17. Manzin, A.: Applied Phys. Lett. 115 (2019) 042402.
18. Dong, D.: J. Phys. D 52 (2019) 295001.
19. Luo, Y. M.: J. Magnetism. Magnetic Mater. 474 (2019) 544.
20. Tian, G.: Nat. Sci Rev. 6 (2019) 684.
21. Ju, W.-M.: Nanotechnol. 31 (2020) 115205.
22. Li, J.: IEEE Trans. Magnet. 56 (2020) 4300306.
23. Luo, Y. M.: Nanotechnol. 31 (2020) 205302.
24. Lewis, G.R.: Nano Lett. 20 (2020) 7405.
25. Ma X.-P.: Acta Phys. Sinica 70 (2021) 107502.
26. Li, J.: J. Magnetism. Magnetic Mater. 529 (2021) 167841.
27. Navau, C.: APL Mater. 9 (2021) 070903.
28. Bran, C.: Nanoscale 13 (2021) 12587.
29. Bachar, F.-Z.: J. Magnetism. Magnetic Mater. 537 (2021) 168205.
30. Li, C.F.: J. Magnetism. Magnetic Mater. 551 (2022) 169092.
31. Zhang, H.H.: Current Applied Phys. 43 (2022) 72.
32. Xu, M.: J. Phys. D 56 (2023) 055301.
33. Mary, A.: Physica Scripta 98 (2023) 045808.
34. Tóbik, J.:  Phys. Status Solidi RRL 17 (2023) 2200459.
35. Diaz, J.: Phys. Rev. Applied 20 (2023) 014008.

Husaníková, P., Kačmarčík, J., Cambel, V., and Karapetrov, G.: Superconducting and normal state parameters of single crystal Cu0.10TiSe2, Solid State Comm. 151 (2011) 227-228.

1. Spera, M.: Phys. Rev. B 99 (2019) 155133.
2. Shkvarin, A.S.: J. Alloys Comp. 924 (2022) 166580.
3. Naik, S.: J. Solid State Chem. 318 (2023) 123782.

Cambel, V., Gregušová, D., Eliáš, P., Fedor, J., Kostič, I., Maňka, J., Ballo, P., : Switching magnetization magnetic force microscopy – an alternative to conventional lift-mode MFM, J. Electr. Engn. 62 (2011) 37-43.

 1. Sandu, S.G.: Mater. Sci Engn. B 181 (2014) 24.
2. Angeloni, L.: Sci Rep. 6 (2016) 26293.
3. Angeloni, L.: Nanoscale 9 (2017) 18000.
#     4. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
5. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.
6. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
7. Stanciu, A.E.: J. Magnetism Magnet. Mater. 498 (2020) 166173.
8. Moldovan, A.: Applied Surface Sci 597 (2022) 53747.
9. Josten, N.: Phys. Rev. Mater. 7 (2023) 124411.

Martaus, J., Cambel, V., Gregušová, D., Kúdela, R., Fedor, J., : 50-nm local anodic oxidation technology of semiconductor heterostructures. J. Nanosci Nanotechnol. 10 (2010) 4448-4453.

      1. Chu, H.: J. Nanosci Nanotechnol. 13 (2013) 8055.

Cambel, V., Eliáš, P., Gregušová, D., Martaus, J., Fedor, J., Karapetrov, G., and Novosad, V.: Magnetic elements for switching magnetization magnetic force microscopy tips, J. Magnetism Magn. Mater. 322 (2010) 2715-2721.

1. Ishihara, S.: EPJ 40 (2012) UNSP 08003.
2. Kaidatzis, A.: Nanotechnol. 24 (2013) 165704.
3. Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology. Elsevier Sci 2013. ISBN 978-1455730582. P. 207-219.
4. Angeloni, L.: Sci Rep. 6 (2016) 26293.
5. Chen, S.-H.: Microscopy Research Techniq. 79 (2016) 917.
6. Wren, T.: Ultramicroscopy 179 (2017) 41.
7. Datar, A.A.: J. Phys. D 50 (2017) 485004.
8. Liu, J.: J. Magnetism Magn. Mater. 443 (2017) 184.
9. Liu, J.: Micron 102 (2017) 15.|
#   10. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
11.  Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology.  2nd ed. Elsevier 2018. ISBN: 978-012813348-4. P. 245-263.

Cambel, V., Eliáš, P., Gregušová, D., Fedor, J., Martaus, J., Karapetrov, G., Novosad, V., and Kostič, I.: Novel magnetic tips developed for the switching magnetization magnetic force microscopy. J. Nanosci Nanotechnol. 10 (2010) 4477-4481.

1. Choi, E.: J. Nanosci Nanotechnol. 14 (2014) 924.
2. Liu, J.: Micron 102 (2017) 15.

Gregušová, D., Martaus, J., Fedor, J., Kúdela, R., Kostič, I., and Cambel, V.On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography. Ultramicroscopy 109 (2009) 1080-1084.

1. Wang, L.: Nanoscale Res. Lett. 11 (2016) 342.
2. Liu, Z.-G.: IEEE Access 7 (2019) 79103.
3. Collomb, D.: J. Phys.-Cond. Matt. 33 (2021) 243002.

Kováč, P., Hušek, I., Melišek, T., Fedor, J., Cambel, V., Morawski, A., and Kario, A.: Properties of hot pressed MgB2/Ti tapes, Physica C 469 (2009) 713-716.

1. Sinha, B.B.: J. Alloys Compounds 486 (2009) 666.
2. Kim, J.H.: Physica C 470 (2010) 1207.
3. Cui, Y.J.: Phys. Status Solidi A 207 (2010) 2532.
4. Wang, D.: Supercond. Sci Technol. 25 (2012) 065013.
5. Sinha, B.B.: J. Supercond. Novel Magnetism 25 (2012) 413.
6. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
7. Cetner, T.: High Pressure Res. 32 (2012) 419.
8. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
9. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
10. Wang, D.: Physica C 508 (2015) 49.
11. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
12. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
13. Wang, D .: Supercond. Sci Technol. 29 (2016) 065003.
14. Wang, D.: Supercond. Sci Technol. 30 (2017) Iss. 6.
15. Mikhailov, B.P.: Phys. Atomic Nuclei 81 (2018) 1573.
16. Wang, D.: IEEE Trans. Applied Supercond. 29 (2019) 6200405.
17. Alimenti, A.: J. Phys.: Conf. Ser. 1559 (2020) 012039.
18. Ozge, E.: Cryogenics 112 (2020) 103205.

Cambel, V., Martaus, J., Šoltýs, J., Kúdela, R., Gregušová, D., : Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices. Ultramicroscopy 108 (2008) 1021-1024.

1. Voves, J.: Microelectr. Engn. 86 (2009) 561.
2. Simeone, F.C.: J. Phys. Chem. C 113 (2009) 18987.
#    3. Abdullah, A.M.: Inter. J. Nanosci 9 (2010) 251.
#    4. Hu, K.: Inter. J. Nanomanufact. 9 (2013) 19.

Martaus, J., Gregušová, D., Cambel, V., Kúdela, R., Šoltýs, J., : New approach to local anodic oxidation of semiconductor heterostructures. Ultramicroscopy 108 (2008) 1086-1089.

1. Pust, S.E.: Nanotechnology 20 (2009) 075302.
2. Simeone, F.C.: J. Phys. Chem. C 113 (2009) 18987.
3. Janousek, M.: Microelectr. Engn. 87 (2010) 1066.
#     4. Hu, X.-D.: Nami Jishu yu Jingmi Gongcheng/Nanotechnol. Precision Engn. 8 (2010) 352.
#     5. Abdullah, A.M.: Inter. J. Nanosci 9 (2010) 251.
#    6. Tian, L.: Scientia Sinica Chimica 49 (2019) 455.

Cambel, V., Martaus, J., Šoltýs, J., Kúdela, R., and Gregušová, D.: AFM nanooxidation process – technology perspective for mesoscopic structures. Surface Sci. 601 (2007) 2717-2723.

1. Parisse, P.: Mater. Sci Engn. B 165 (2009) 227.
2. Jo, Y.D.: Applied Phys. Lett. 96 (2010) 082105.
3. Bukauskas, V.: Surface Interface Anal. 42 (2010) 991.
4. Lin, C.W.: Applied Surface Sci 264 (2013) 280.
5. Han, C.: Bull. Korean Chem. Soc 36 (2015) 1024.
6. Batkova, M.: Europ. Phys. J.-Applied Phys. 73 (2016) 30301.
7. Mollick, S.A.: Nanotechnol. 27 (2016) 435302.
8. Kozhukhov, A.S.: AIP Adv. 8 (2018) 025113.

Bartolome, E., Navau, C., Sanchez, A., Chen, D.-X., Puig, T., Obradors, X.,  and Cambel, V.: Imaging current percolation and ac losses in artificially granular YBCO thin films, IEEE Trans. Applied Supercond. 17 (2007) 3223-3226.

1. Gomory, F.: Supercond. Sci Technol. 30 (2017) 114001.

Bartolome, E., Pavau, A., Guitierrez, J., Granados, X., Pomar, A., Puig, T., Obradors, X., Cambel, V., Šoltýs, J., Gregušová, D., Chen, D., Sanchez, A., : Artificial magnetic granularity effects on patterned epitaxial YBa2Cu3O7-x thin films. Phys. Rev. B 76 (2007) 094508.

1. Vestgarden, J. I.: Phys. Rev. B 85 (2012) 014516.
2. Janu, Z.: Physica C 501 (2014) 55.
3. Pessoa, A.: IEEE Trans. Applied Supercond. 31 (2021) 7200105.
4. Wang, Y.: Physica C 614 (2023) 1354357.

Cambel, V., Karapetrov, G., Novosad, V., Bartolome, E., Gregušová, D., Fedor, J., Kúdela, R., Šoltýs, J., :Novel Hall sensors developed for magnetic field imaging systems. J. Magnetism Magn. Mater. 316 (2007) 232-235. (APVV 51-045705).

1. Cheng, Y.H.: Physical Rev. B 80 (2009) 174412.
2. Tian, W.: Rev. Sci Instrum. 84 (2013) 035004.

Šoltýs, J., Cambel, V., Kúdela, R., Eliáš, P., : Study into the shape of oxide lines formed by LAO – influence an oxidized material. Surface Sci 601 (2007) 2876-2880.

   1. Kim, T.Y.: Surface Sci 601 (2007) 4910.

Cambel, V. and Šoltýs, J.: The influence of sample conductivity on local anodic oxidation by the tip of atomic force microscope. J. Applied Phys. 102 (2007) 074315.

1. Parisse, P.: Mater. Sci Engn. B 165 (2009) 227.
2. Jo, Y.D.: Applied Phys. Lett. 96 (2010) 082105.
3. Moriya, R.: Japan. J. Applied Phys. 52 (2013) UNSP 055201.
4. Kumar, A.: World Sci Ser. in Nanosci Nanotechnol. 7 (2013) 253.
5. Han, C.: Bull. Korean Chem. Soc 36 (2015) 1024.
6. Faucett, A.C.: Carbon 95 (2015) 1069.
7. Kumar A.: In Electro-Chemo-Mechanics of Solids. Eds. S. Bishop et al. Springer, Cham 2017. ISBN: 978-3-319-51405-5. P. 137-160.
8. Ryu, Y.K.: Nanosci Technol. ‏2019 pp. 143-172.
9. Tsurumaki-Fukuchi, A.: ACS Applied Mater. Interfaces 15 (2023) 16842.

Gregušová, D., Eliáš, P., Öszi, Z., Kúdela, R., Šoltýs, J., Fedor, J., Cambel, V., Kostič, I., : Technology and properties of a vector hall sensor. Microelectronics J. 37 (2006) 1543-1546.

#     1.Rybak, M.: Przeglad Wlokienniczy 61 (2007) 39.
2. Dai, C.-L.: Microelectronics J. 39 (2008) 744.
3. Peters, V.: IEEE Trans. Magn. 49 (2013) 109.
4. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Bartolome, E., Granados, X., Cambel, V., Fedor, J., Kováč, P., Hušek, I., : Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging. Supercond. Sci Technol. 18 (2005) 1135-1140.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Higashikawa, K.: Physica C 504 (2014) 62.

Cambel, V., Fedor, J., Gregušová, D., Kováč, P., and Hušek, I.: Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization. Supercond. Sci Technol. 18 (2005) 417-421.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Ma, Z. Q.: Inter. Materials Rev. 56  (2011) 267.
3. Higashikawa, K.: Physica C 504 (2014) 62.
4. Rostami, Kh.R.: Instrum. Experimen. Techn. 59 (2016) 273.
5. Shaw, G.: Rev. Sci Instrum. 87 (2016) 113702.
6. Rostami, Kh. R.: Measurement Techn. 59 (2017) 1297.
7. Rostami, Kh.R.: Instrum. Experimen. Techn. 62 (2019) 450.
8. Zhang, W.: Ceramics Inter. 45 (2019) 6413.
9. Shaw, G.: AIP Conf. Proc. 2115 (2019) UNSP 030210.
10. Rostami, Kh.R.: Techn. Phys.‏ 65 (2020) 1975.
11. Huang, Z.: Supercond. Sci Technol. 34 (2021) 075007.

Cambel, V., Gregušová, D., Fedor, J., Kúdela, R., Bending, S., : Scanning vector Hall probe microscopy. J. Magnetism Magnetic Mater. 272-276 (2004) 2141-2143.

1. Candini, A.: Nanotechnol. 17 (2006) 2105.
2. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
3. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Gregušová, D., Cambel, V., Fedor, J., Kúdela, R., Šoltýs, J., Lalinský, T., Kostič, I., Bending, S., : Fabrication of a vector Hall sensor for magnetic microscopy. Applied Phys. Lett. 82 (2003) 3704-3706.

1. De Leo, C.: Advances Cryogenic Engn. 50 A,B  711 (2004) 709.
2. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.
3. Jordan, A.N.: Phys. Rev. B 77 (2008) art. no. 075334.
4. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) art. no. 142502.
5. Kweon, S.: J. Applied Phys. 105 (2009) 093906.
6. Vorobev, A.: Applied Phys. Lett. 103 (2013) 173513.
7. Chang, J.-H.: J. Phys. D 48 (2015) 405004.
8. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Cambel, V., Gregušová, D., Kúdela, R., : Formation of GaAs three-dimensional objects using AlAs “facet-forming” sacrificial layer and H3PO4, H2O2, H2O based solution. J. Applied Phys. 94 (2003) 4643-4648.

1. Weber, F.M.: Applied Phys. Lett. 90 (2007)  161104.
2. Karl, M.: AIP Conf. Proc. 893 (2007) 1133.
3. Karl, M.: Applied Phys. Lett. 92 (2008)  231105
4. Karl, M.: Superlattices Microstr. 43 (2008) 635.
5. Novák, J.: In: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-. P. 219.
6. Bae, J.U.: IEEE Trans. Magnetics 44 (2008) 4706.
7. Karl, M.: IEEE 2008 Conf. Lasers Electro-Optics & Quantum Electr. Laser Sci onf. 1-9 (2008) 3120.
8. Karl, M.: AIP Conf. Proc. 1199 (2009) 369.
9. Deng, G.G.: J. Applied Physics 108 (2010) 074509.
10. Ruelke, D.: J. Crystal Growth 324 (2011) 259.
11. Ruelke, D.: Applied Phys. Lett. 100 (2012) 251101.
12. Okazaki, S.: Japan. J. Applied Phys. 52 (2013) 098002.
13. Rudnikov-Keinan, T.: Crystal Growth Design 23 (2023) 5314.

Fröhlich, K., Cambel, V., Machajdík, D., Baumann, P., Lindner, J., Schumacher, M., and Jurgensen, H.: Low-temperature growth of RuO2 films for conductive electrode applications. Materials Sci in Semicond. Processing 5 (2003) 173-177.

1. Morales-Ortiz, U.: Solar Energy Mater. Solar Cells 90 (2006) 832.
2. Wang, X.: Thin Solid Films 510 (2006) 82.
3. Kawano, K.: Electrochem. Solid State Lett. 9 (2006) C175.
$    4. Schneider, A.W.: Doktor-Ingenieur Arbeit. Erlangen: Technischen Fakultät der Univ.  Erlangen-Nürnberg 2006.
5. Schneider, A.: Chemical Vapor Deposition 13 (2007) 389.
6. Kondo, T.: Thin Solid Films 516 (2008) 5864.
7. Nowakowski, P.: Applied Surface Sci 254 (2008) 5675.
8. Kondo, T.: J. Crystal Growth 311 (2009) 642.
9. Nowakowski, P.: J. Microscopy 237 (2010) 246.
10. Methaapanon, R.: Chem. Mater. 25 (2013) 3458.
11. Mousli, F.: Catalysts 9 (2019) 578.
#   12. Winter, C.H.: Comprehensive Coordination Chem. III, ISBN 978-008102688-5. Elsevier 2021, p. 824.

Machajdík, D., Kobzev, A., Fröhlich, K., and Cambel, V.RBS and ERD study of epitaxial RuO2 films deposited on different single crystal substrates. Vacuum 70 (2003) 313-317.

1. Li, X.W.: Rare Metals 25 (2006) 36.
2. Li, L.: Vacuum 109 (2014) SI21.
3. Kutsuzawa, D.: Phys. Status Solidi B 257 (2020) 2000188.

Fedor, J., Cambel, V., Gregušová, D., Hanzelka, P., Dérer, J., Volko, J., : Scanning vector Hall probe microscope. Rev. Sci Instruments 74 (2003) 5105-5110.

1. Tang, C.-C.: Rev. Sci Instrum. 85 (2014) 083707.
2. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Šoltýs, J., Cambel, V., Fedor, J., : Study of tip-induced Ti-film oxidation in atomic force microscopy contact and non-contact mode Acta Physica Polonica A 103 (2003) 553-558.

 1. Tian, W.C.: Functional Thin Films and Nanostructures for Sensors: Synthesis, Physics, and Applications. Springer 2009. ISBN 978-0387362298. P. 65-84.
2. Batko, I.: Europ. Phys. J.-Applied Phys. 58 (2012) 20102.
3. Huang, J.-C.: Scanning 34 (2012) 347.
4. Batkova, M.: Europ. Phys. J.-Applied Phys. 73 (2016) 30301.
5. Batko, I.: Mater. Today-Proc. 3 (2016) 803.

Fröhlich, K., Machajdík, D., Cambel, V., Kostič, I., Pignard, S., : Epitaxial growth of low-resistivity RuO2 films on View the MathML source-oriented Al2O3 substrate. J. Crystal Growth 235 (2002) 377-383.

1. Lai, Y.H.: J. Materials Chemistry 13 (2003) 1999.
2. Lai, Y.H.: Chemistry Materials 15 (2003) 2454.
3. Norton, D.P.: Mat. Sci Engn. R 43 (2004) 139.
4. Chou, T.Y.: Chemical Vapor Depos. 10 (2004) 149.
5. Stringfellow, G.B.: J. Crystal Growth 264 (2004) 620.
6. Miao, G.X.: Thin Solid Films 478 (2005) 159.
*   7. Schneider, A.W.: Doktor-Ingenieur Arbeit. Erlangen: Technischen Fakultät der Univ.  Erlangen-Nürnberg 2006.
8. Schneider, A.: Chemical Vapor Deposition 13 (2007) 389.
9. Nowakowski, P.: Thin Solid Films 518 (2010) 2801.
10. Jipa, I.: J. Materials Chem. 21 (2011) 3014.
11. Jipa, I.: Chemical Vapor Deposition 17 (2011) 15.
12. Tuchscherer, A.: Europ. J. Inorganic Chem. 30 (2012) 4867.
#  13. Jung, W.: New Phys.: Sae Mulli 67 (2017) 696.
14. Herdiech, M.W.: Surface Sci 688 (2019) 51.

Kicin, S., Cambel, V., Kuliffayová, M., Gregušová, D., Kováčová, E., Novák, J., Kostič, I., Förster, A.:Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer, J. Applied Physics 91 (2002) 878-880.

1. Deneke, C.: Physica E 23 (2004) 269.
2. Golod, S.V.: Thin Solid Films 489 (2005) 169.
3. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
4. Liang, Z.W.: J. Applied Phys. 108 (2010) 074313.
5. Nelson, G.T.: Solar Energy Mater. Solar Cells 242 (2022) 111757.

Eliáš, P., Hasenöhrl, S., Fedor, J., Cambel, V., : Hall bar device processing on patterned substrates using optical lithography. Sensors Actuators A 101 (2002) 150-155.

1. Deen, M.J.: J. Mater. Sci 17 (2006) 549¬57.
2. Sakamoto, N.: JSME Inter. J. Ser. C 49 (2006) 361.
*    3. Deen, J.: Springer Handbook Electr. Photonic Materials. Eds. S. Kasap and P. Capper. Springer 2007. ISBN-13: 978-0-387-26059-4. P. 419.
4. Deen, J.: Springer Handbook of Electronic and Photonic Materials. 2nd ed. Eds. S. Kasap and P. Capper. Springer 2017. ISBN-13: 978-3319489315. P. 453.
5. Wang, Y.: J. Phys.-Energy 3 (2021) 012004.

Baumann, P., Doppelt, P., Fröhlich, K., Gueroudji, L., Cambel, V., Machajdík, D., Schumacher, M., Lindner, J., Schienle, F., Burgess, D., Strauch, G., Jurgensen, H., Guillon, H., Jimenez, C., : Platinum, ruthenium and ruthenium dioxide electrodes deposited by metal organic chemical vapor deposition for oxide applications Integrated Ferroelectrics 44 (2002) 135.

1. Dey, S.K.: Applied Physics Lett. 84 (2004) 1606.
2. Wouters, D.J.: J. Applied Phys. 100 (2006) 051603.
3. Thurier, C.: Coordination Chemistry Rev. 252 (2008) 155.
4. Patake, V.D.: Applied Surface Sci 254 (2008) 2820.
5. Premkumar, P.A.: Materials Chem. Phys. 125 (2011) 757.
6. Patil, U. M.: J. Alloys And Compounds 509 (2011) 1677.
7. Narayanan, J.S.: J. Solid State Electrochem. 17 (2013) 937.
8. Masruroh: Applied Mechanics Mater. 467  (2014) 155.
#    9.  Prakash, J.: In Intelligent Coatings for Corrosion Control. Elsevier 2015 ISBN: 978-012411534-7.  P. 93.
10. Chandrashekhar, R.: Phase Trans. 96 (2023) 196.
11. Wang, C.Y.: ACS Applied Electron. Mater. 5 (2023) 2487.

Cambel, V., Kicin, S., Kuliffayová, M., Kováčová, E., Novák, J., Kostič, I., Förster, A., : Preparation of patterned GaAs structures for MEMS and MOEMS. Materials Sci Engn. C 19 (2002) 161-165.

1. Pirzada, D.: J. Applied Phys. 102 (2007) 013519.
*    2. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.
3. Jiang, S.: IEEE Sensors J. 16 (2016) 4816.

Fröhlich, K., Machajdík, D., Cambel, V., Fedor, J., Pisch, A., Lindner, J., : Growth of Ru and Ru2 films by metal-organic chemical vapour deposition J. de Physique 11 (2001) Pr3-325-332.

1. Aaltonen, T.: Chemical Vapor Deposition 10 (2004) 215.
2. Steeves, M.M.: Applied Phys. Lett. 96 (2010) 142103.
3. Guo, L.: Electroch. for Environment. Springer 2010. ISBN 978-0-387-36922-8. P. 55-98.
4. Gregorczyk, K.: Mater. Lett. 73 (2012) 43.

Eliáš, P., Cambel, V., Hasenöhrl, S., Kostič, I., : MOCVD growth of InP and InGaAs on InP non-planar substrates patterned with {1 1 0} quasi facets. J. Crystal Growth 233 (2001) 141-149.

       1. Poole, P.J.: J. Crystal Growth 310 (2008)1069.
*     2. Deura, M.: PhD Thesis. Univ. Tokyo 2010.

Fröhlich, K., Machajdík, D., Cambel, V., Lupták, R., Pignard, S., Weiss, F., Baumann, P., Lindner, J., : Substrate dependent growth of highly conductive RuO2 films J. de Physique 11 (2001) Pr11-77-81.

       1. Halley, D.: Materials Sci Engn. B 109 (2004) 113.

Cambel, V., Karapetrov, G., Eliáš, P., Hasenöhrl, S., Kwok, W., Krause, J., and Maňka, J.: Approaching the pT range with a 2DEG InGaAs/InP Hall sensor at 77 K. Microelectr. Engn. 51-52 (2000) 333-342.

1. Boero, G.: Sensors & Actuators A 106 (2003) 314.
2. Mosser, V.: Proc. SPIE 5115 (2003) 183.
*    3. Li, Y.: PhD Thesis. Florida State Univ. 2003.
4. Popovic, R.: Smart Sensors and MEMS. 2004.
5. Hicks, C.W.: Applied Phys. Lett. 90 (2007) 1333512.
6. Kirtley, J.R.: Reports Progress Phys. 73 (2010) 126501.
*    7. Lipert, K.: Development of a micro-Hall magnetometer and studies of individual Fe – filled carbon nanotubes. PhD Thesis. Heidelberg Univ. 2011.
#     8. Chesnitskiy, A.V.: Russian Microelectr. 45 (2016) 105.
9. Mosser, V.: IEEE Trans. Instrum. Measurement 66 (2017) 637.
10. Alpert, H. S.: IEEE Sensors J. 19 (2019) 3640.
11. Xu, Y.W.: IEEE Sensors J. 22 (2022) 22519.
12. Mostufa, S.: ACS Applied Nano Mater. 6 (2023) 13732.

Karapetrov, G., Cambel, V., Kwok, W., Crabtree, G., Zheng, H., Veal, B., : Contactless characterization of melt-textured superconducting junctions using micro-Hall sensor arrays. Physica B 284-288 (2000) 2065-2066.

1. Al-Omari, I.A.: Phys. Status Solidi c (2004) 1821.
2. Qaseer, M.K.H.: J. Alloys Compounds 387 (2005) 44.

Kováč, P., Cambel, V., Kopera, Ľ., Melišek, T., Pitel, J., Bukva, P., : Quality measurement of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Ser. No. 167 (2000) 531-534.

      1. Kvitkovic, J.: Physica C 370 (2002) 187.

Karapetrov, G., Cambel, V., Kwok, W., Nikolova, R., Crabtree, G., Zheng, H., and Veal, B.: Contactless characterization of melt-textured superconducting junctions using micro-Hall sensor arrays J. Applied Phys. 86 (1999) 6282-6286.

1. Kordyuk, A.A.: Supercond. Sci Technol. 14 (2001) L41-L43.
2. Plyushchaj, O.I.: Metallofizika i Noveishie Tekhnologii 23 (2001) 767-775.
3. Surzhenko, A.B.: Supercond. Sci Technol. 15 (2002) 1353.
4. Klein, B.E.: Rev. Sci Instrum. 73 (2002) 3692.
5. Seo, S.: Proc. Mater. Res. Soc. Symp. 689 (2002) 283.
6. Kwon, C.: Proc. Mater. Res. Soc. Symp. 689 (2002) 295.
7. Wang, L.B.: IEEE Trans. Applied Supercond. 13 (2003) 2611.
8. Kwon, C.: IEEE Trans. Applied Supercond. 13 (2003) 2894.
9. Wang, L.B.: Physica C 405 (2004) 240.
10. Aga, R.S.: Applied Phys. Lett. 86 (2005)  234101.
11. Mishra, Sh.: J. Applied Phys. 100 (2006) 083709.
12. Lefebvre, J.: Physical Rev. B 79 (2009) 184524.
13. Dizon, J.R.: J. Applied Phys. 107 (2010) 043905.
14. Johansen, T.H.: IEEE Trans. Applied Supercond. 29 (2019) 8002304.

Kováč, P., Cambel, V., and Bukva, P.: Measuring the homogeneity of Bi(2223)/Ag tapes by four probe method and Hall probe array Supercond. Sci Technol. 12 (1999) 465-471.

1. Kawano, K.: Supercond. Sci Technol. 13 (2000) 1373.
2. Takacs, S.: Supercond. Sci Technol.  15 (2002) 1377.
3. Gandini, A.: IEEE Trans. Applied Supercond. 13 (2003) 3332.
*    4. González-Jorge, H.: Revista Matéria 10 (2005) 250.
5. Giordanengo, S.: Nuclear Instrum. Methods Phys. Res. A 613 (2010) 317.
6. Talantsev, E.F.: AIP Adv. 7 (2017) 125230.
7. Talantsev, E.F.: AIP Adv. 8 (2018) 075213.
8. Talantsev, E.F.: Mater. Res. Express 6 (2019) 026002.
9. Talantsev, E.F.: Modern Phys. Lett. B 35 (2021) 2150226.

Eliáš, P., Cambel, V., Hasenöhrl, S., Hudek, P., Novák, J., : SEM and AFM characterisation of high MESA patterned InP subtrated prepared by wet etching Mater. Sci Engn. B 66 (1999) 15-20.

1. Clawson, A.R.: Materials Sci Engn. R 31 (2001) 1.
2. Bandaru, P.: Materials Res. Soc. Symp. – Proc. 782 (2003) 471.
3  Kim, J.-H.: J. Electronic Mater. 37 (2008) 361.

Cambel, V., Kúdela, R., Gregušová, D., Hasenöhrl, S., Eliáš, P., Novák, J., : Characterization of 2DEG Hall probes in high magnetic field at 4,2K. In: ASDAM 98. Ed. J.Breza. Piscataway: IEEE 1998. P. 31.

          1. Gonzalez-Jorge, H.: Cryogenics 46 (2006) 736.

Cambel, V., Gregušová, D., Eliáš, P., Hasenöhrl, S., Olejníková, B., Novák, J., Schaepers, T., Neurohr, K., Fox, A., : Characterization of InGaAs/InP microscopic Hall probe arrays with 2DEG active layer Mater. Sci Engn. B 51 (1998) 188.

1. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
2. Vavra, I.: Sensors Actuators A 91 (2001) 177.

Cambel, V., Eliáš, P., Kúdela, R., Novák, J., Olejníková, B., Mozolová, Ž., Majoros, M., Kvitkovič, J., Hudek, P., : Preparation, characterization and application of microscopic Hall probe arrays Solid State Electron. 42 (1998) 247.

      1. Kahng, Y.H.: J. Korean Phys. Soc 69 (2016) 1456.

Kováč, P., Cambel, V., Gregušová, D., Eliáš, P., Hušek, I., Kúdela, R., Hasenöhrl, S., Ďurica, M., : Testing of homogenity of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Series No. 158 (1997) 1311.

 1. Gomory, F.: Physica C 308 (1998) 203.
2. Schauer, W.: Proc. 9th CIMTEC. Florence 1998. P. 436
3. Herrmann, J.:  IEEE Trans. Applied Supercond. 9 (1999) 1824.
4. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
5. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.

Moško, M., Mošková, A., and Cambel, V.: Carrier-carrier scattering in photoexcited intrinsic GaAs quantum wells and its effect on femtosecond plasma thermalization Phys. Rev. B 51 (1995) 16860.

1. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
2. Takahashi, Y.: Phys. Rev. B 53 (1996) 7322-7333.
3. Takahashi, Y.: Semicond. Sci. Technol. 11 (1996) 163-171.
4. Dur, M.: Phys. Rev. B 54 (1996)  17794.
*       5. Ridley, B.K.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 357.
*       6. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
7. Gericke, D.O.: Phys. Rev. B 59 (1999) 10639.
8. Guven, K.: J. Phys. – Cond. Matt. 12 (2000) 2031.
9. Kral, K.: Optical Properties of Semicond. Nanostr. 81 (2000) 405.
$      10. Kral, K.: Arxiv preprint cond-mat/0103061, 2001.
*      11. Ferry, D.K.: In: Ultrafast Phenomena in Semicond. New York: Springer 2001. ISBN 978-1-4613-0203-2. P. 307.
12. Vasileska, D.: Materials Sci & Engn. R 38 (2002) 181.
13. Zhao, H.: Phys. Rev. B 67 (2003) 035 306.
14. Tripathi, P.: J. Phys.-Cond. Matter 15 (2003) 1057.
15. Callebaut, H.: Applied Phys. Lett. 83 (2003) 207.
16. Hu, Q.: Philos. Trans. Roy. Soc. A 362 (2004) 233.
17. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
18. Sun, K.W.: Japan. J. Applied Phys. 44 (2005) 4799.
19. Harrison, P.: Quantum wells, wires and dots: theoretical and
computational physics of semiconductor nanostructures. Oxford: Blackwell Sci Publ. 2005. ISBN: 978-0-470-01081-5.
20. Lu, J.T.: Applied Phys. Lett. 88 (2006) 061119.
21. Lu, J.T.: Phys. Rev. B 73 (2006) 195326.
22. Gao, X.: Applied Phys. Lett. 89 (2006) 191119.
#    23. Cao, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 27 (2006) 304.
#    24. Vasileska, D.: Synthesis Lectures on Comp. Electromagn. 6 (2006) 1-216.
25. Gao, X.: J. Applied Phys. 101 (2007) 063101.
26. Jirauschek, C.: J. Applied Phys. 101 (2007) 086109.
27. Gao, X.: J. Comp. Electronics 6 (2007) 305.
28. Jirauschek, C.: Phys. Status Solidi c 5 (2008) 221.
29. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
30. Lin, T.T.: Applied Phys. Express 2 (2009) 022102.
31. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
32. Jirauschek, C.: J. Applied Phys. 105 (2009) 123102.
33. Knezevic. I.: J. Computat. Theoretical Nanosci 6 (2009) Sp. Iss. SI 1725.
34. Jirauschek, C.: J. Phys.: Conf. Ser. 193 (2009) 012062.
#    35. Freeman, W.: Proc. SPIE 7311 (2009) 73110V.
36. Ridley, B.K.:Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
37. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
38. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
39. Vasileska, D.: In Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press 2010. ISBN 978-1-4200-6484-1. P. 241-334.
40. Lu, I.L.: Phys. Status Solidi c 8 (2011) 2393.
41. Freeman, W.: Proc. SPIE 8023 (2011) 802305.
42. Freeman, W.: Phys. Rev. B 85 (2012) 195326.
43. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
44. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
45. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
46. Freeman, W.: J. Applied Phys. 122 (2017) 045701.
47. Hathwar, R.: J. Phys. D 52 (2019) 093001.
48. Freeman, W.: J. Applied Phys. 128 (2020) 235702.
49. Freeman, W.: Applied Phys. Lett. 118 (2021) 241107.

Cambel, V., Moško, M., : Carrier-carrier scattering in photoexcited quantum wells: Inadequacy of two-particle model at low densities Semicond. Sci Technol. 9 (1994) 474.

1. Kane, M.G.: Phys. Rev. B (1996) 54 16345
2. Ridley, B.K.: J. Phys. – Cond. Matt. 13 (2001) 2799.
3. Kitashima, T.: J. Electrochem. Soc. 150 (2003) G198.

Moško, M., Cambel, V., : Thermalization of one-dimensional electron gas by many-body Coulomb scattering: molecular dynamics model for quantum wires Phys. Rev. B 50 (1994) 8864.

1. Rota, L.: Phys. Rev. B 52 (1995) 5183.
*     2. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
*     3. Jacoboni, C.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 59.
4. Carlberg, M.H.: J. of Phys.-Cond. Matter 11 (1999) 6509.
5. Flores-Hidalgo, G.: J. Phys. A 40 (2007) 13217.

Cambel, V., Moško, M., : The influence of ionized impurities on electron-electron drag between parallel two-dimensional gases: Monte Monte Carlo simulation with molecular dynamics Semicond. Sci Technol. 8 (1993) 364.

1. Tanatar, B.: Phys. Rev. B 58 (1998) 1154.
2. Bonsager, M.C.:  Phys. Rev. B 57 (1998) 7085.
3. Tanatar, B.: Phys. Rev. B 61 (2000) 15959.
#    4. Tanatar, B.: Turkish J. Phys. 24 (2000) 143.
5. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
6. Laikhtman, B.: Phys. Rev. B 72 (2005) Art. No. 125338.
*    7. Volokitin, A.I.: Arxiv preprint cond-mat/0605520 (2006).
8. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.

Moško, M., Cambel, V., Mošková, A., : Electron-electron drag between parallel two-dimensional gases Phys. Rev. B 46 (1992) 5012.

1. Gramila, T.J.: Physica B 197 (1994) 442.
2. Olejníková, B.: Superlattice Microstruct. 14 (1994) 215.
3. Olejníková, B.: Acta Physica Polonica A 87 (1995) 353.
4. Bonsager, M.C.: Phys. Rev. B 46 (1998) 7085.
5. Noh, H.: Phys. Rev. B 59 (1999) 13114.
6. Bostrom, M.: Physica Scripta T79 (1999) 89.
7. Kawashima, I.: Electron Devices Meeting, 2000. IEDM Technical Digest. P. 113.
8. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
9. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
10. Laikhtman, B.: Phys. Rev. B 72 (2005) 125338.
11. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.
#    12. Upadhyay, S.K.: Current Nanomater. 8 (2023) 194.

Cambel, V., Sudek, J., Kovalenko, A., Datskov, V., Voevodin, M., : Simple cooled CCD camera for beam diagnostics Rev. Sci Instrum. 62 (1991) 2723.

     1. Chu, B.: Rev. Sci. Instrum. 63 (1992) 4000.

Cambel, V., : Analýza niektorých vlastností nábojovo viazaných štruktúr. Kand. diz. práca. Bratislava: UK KFPL 1987.

     1. Pina, L.: Leasr. Part. Beam 9 (1991) 579.