RNDr. Gregušová Dagmar, DrSc.

Pohorelec, O., Ťapajna, M., Gregušová, D., Gucmann, F., Hasenöhrl, S., Haščík, Š., Stoklas, R., Seifertová, A., Pécz, B., Tóth, L., and Kuzmík, J.: Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs, Applied Surface Sci 528 (2020) 146824.

1. Tian, Y.: Inter. J. Electrochem. Sci 15 (2020) 12682.

Ťapajna, M., Drobný, J., Gucmann, F., Hušeková, K., Gregušová, D., Hashizume, T., and Kuzmík, J.: Impact of oxide/barrier charge on threshold voltage instabilities in AlGaN/GaN metal-oxide-semiconductor heterostructures, Mater. Sci in Semicond Process.  91 (2019) 356-361.

1. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.

Brytavskyi, I., Hušeková, K., Myndrul, V., Pavlenko, M., Coy, E., Zaleski, K., Gregušová, D., Yate, L., Smyntyna, V., and Iatsunskyi, I.: Effect of porous silicon substrate on structural, mechanical and optical properties of MOCVD and ALD ruthenium oxide nanolayers, Applied Surface Sci 471 (2019) 686-693.

1. Gueye, I.: J. Catal. 380 (2019) 247.
2. Ensafi, A.A.:Electroanal.‏ 32 (2020) 1707.

Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.

1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 (‏ 127101(2020.

Chvála, A., Nagy, L., Marek, J., Priesol, J., Donoval, D., Blaho, M., Gregušová, D., Kuzmík, J., and Šatka, A.: Characterization of monolithic InAlN/GaN NAND logic cell supported by circuit and device simulations, IEEE Trans. Electron Devices 65 (2018) 2666-2669.

1. Guan, H.: Coatings 9 (2019) 318.
2. Liao, B.: Electronics 8 (2019) 406.
3. Hwang, I.-T.: Applied Sci-Basel 9 (2019) 3610.

Chvála, A., Nagy, L., Marek, J., Priesol, J., Donoval, D., Vilhan, M., Blaho, M., Gregušová, D., Kuzmík, J., and Šatka, A.: Simulation analysis of InAlN/GaN monolithic NAND logic cell. In: ASDAM 2018. Eds. J. Breza et al. IEEE 2018. ISBN 978-1-5386-7488-8. P. 167-171.

1. Ding, Y.: Applied Sci-Basel 9 (2019) 5196.
2. Palacios Rodriguez, S.: Revista De La Construc. 18 (2019) 398.
3. Gralow, M.: J. Laser Appl.‏ 32 (2020) 021201.

Graff, A., Simon-Najasek, M., Altmann, F., Kuzmík, J., Gregušová, D., Haščík, Š., Jung, J., Baur, T., Grunenputt, J., and Blanck, H.: High resolution physical analysis of ohmic contact formation at GaN-HEMT devices, Microelectr. Reliab. 76-77 (2017)  338.

1. Zeng, F.: Electronics 7 (2018) 377.
2. Rackauskas, B.: IEEE Electron Device Lett. 39 (2018) 1580.
3. Hou, M.: Chinese Phys. B 28 (2019) 037302.
4. Zhang, X.: 20th Inter. Conf. Electronic Packaging Technol. – ICEPT 2019.
5. Wang, X.: J. Vacuum Sci Technol. B‏ 38 (2020) 062206.

Gucmann, F., Kúdela, R., Rosová, A., Dobročka, E., Mičušík, M., and Gregušová, D.: Optimization of UV-assisted wet oxidation of GaAs, J. Vacuum Sci Technol. B 35 (2017) 01A116.

1. Toyoshima, R.: Chem. Comm. 56 (2020) 14905.

Kuzmík, J., Fleury, C., Adikimenakis, A., Gregušová, D., Ťapajna, M., Dobročka, E., Haščík, Š., Kučera, M., Kúdela, R., Androulidaki, M., Pogany, D., and Georgakilas, A.: Current conduction mechanism and electrical break-down in InN grown on GaN, Applied Phys. Lett. 110 (2017) 232103.

1. Shen, L.: Applied Surface Sci 476 (2019) 418.

Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.

1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) ‏ 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.

Ťapajna, M., Válik, L., Gucmann, F., Gregušová, D., Fröhlich, K., Haščík, Š., Dobročka, E., Tóth, L., Pécz, B., and Kuzmík, J.: Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density, J. Vacuum Sci Technol. B 35 (2017) 01A107.

1. Meer, M.: Semicond. Sci Technol. 32 (2017) 04LT02.
2. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
3. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Takhar, K.: Applied Surface Sci 481 (2019) 219.
6. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
7. Schiliro, E.: AIP Adv. 10 (2020) 125017.

Blaho, M., Gregušová, D.,  Haščík, Š., Ťapajna, M., Fröhlich, K., Šatka, A., and Kuzmík, J.: Annealing, temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs, Applied Phys. Lett. 111 (2017) 033506.

1. Lee, C.-T.: AIP Adv. 4(2018) 045014.
2. Cui, P.: Sci Rep. 8 (2018) 9036.
3. Yahyazadeh, R.: J. Non-Oxide Glass. 11 (2019) 19.
4. Zhu, Q.: Chinese Phys. B 29 (2020) 047304.

Gregušová, D., Blaho, M., Haščík, Š., Šichman, P., Laurenčíková, A., Seifertová, A., Dérer, J., Brunner, F., Wurfl, J., and Kuzmík, J.: Polarization-engineered n+GaN/InGaN/AlGaN/GaN normally-off MOS HEMTs, Physica Status Solidi a 214 (2017) 1700407.

1. Tokuda, H.: Japan. J. Applied Phys. 59 (2020) 084002.
2. Tapajna, M.: Crystals 10 (2020) 1153.

Stoklas, R., Gregušová, D., Blaho, M., Fröhlich, K., Novák, J., Matys, M., Yatabe, Z.,  Kordoš, P., and Hashizume, T.: Influence of oxygen-plasma treatment on AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 by atomic layer deposition: leakage current and density of states reduction, Semicond. Sci Technol. 32 (2017) 045018.

1. Liang, X.: Semicond. Sci Technol. 32 (2017) 095010.
2. Yoon, S.-J.: J. Alloys Compounds 741 (2018) 999.
3. Bazaka, K.: Nanoscale 10 (2018) 17494.
4. Wang, C.: Phys. Status Solidi a 215 (2018) 1800092.
5. Gulseren, M.E.: Mater. Research Express 6 (2019) 095052.
6. Gokhan, K.: Solid-State Electron. 158 (2019) 22.
7. Xu, K.: Chemistry-Europ. J. 25 (2019) 5014.
8. Cai, Y.: ICICDT 2019.
9. Biswas, M.: J. Lumines. 222 (2020) 117123.
10. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
11. Cai, Y.: IEEE Access 8 (2020) 95642.
12. Abo-Kahla, D.A.M.: J. Optical Soc America B 37 (2020) A96.
13. Choi, S.: J. Alloys Compounds 854 (2021) 157186.

Gregušová, D., Gucmann, F., Kúdela, R., Mičušík, M., Stoklas, R., Válik, L., Greguš, J., Blaho, M., and Kordoš, P.:Properties of InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors modified by surface treatment, Applied Surface Sci 395 (2017) 140-144.

1. Silva, J.C.F.: J. Molecular Model. 23 (2017) 204.
2. Kumar, J.: J. Alloys Compounds 727 (2017) 1089.
3. Sharma, I.: J. Alloys Compounds 723 (2017) 50.
4. Zhou, Y.: J. Colloid Interface Sci 560 (2020) 769.

Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.

1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.

Ťapajna, M., Válik, L., Gregušová, D., Fröhlich, K., Gucmann, F., Hashizume, T., and Kuzmík, J.: Treshold voltage instabilities in AlGaN/GaN MOS-HEMTs with ALD-grown Al2O3 gate dielectrics: relation to distribution of oxide/semiconductor interface state density. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 1-4.

1. Ding, L.: IEEE Conf. Computer Vision Pattern Recogn. 2018, pp. 6508-6516.

Gucmann, F., Gregušová, D., Válik, L., Ťapajna, M., Haščík, Š., Hušeková, K., Fröhlich, K., Pohorelec, O., and Kuzmík, J.: DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric prepared by various techniques. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 9-12.

1. Hasan, Md. R.: J. Vacuum Sci Technol. B 35 (2017) 052202.
2. Pan, T.: Materiali in Tehnologije 52 (2018) 795.

Blaho, M., Gregušová, D., Haščík, Š., Seifertová, A., Ťapajna, M., Šoltýs, J., Šatka, A., Nagy, L., Chvála, A., Marek, J., Carlin, J.-F., Grandjean, N., Konstantinidis, G., and Kuzmík, J.: Technology of integrated self-aligned E/Dmode n++GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics, Semicond. Sci Technol. 31 (2016) 065011.

1. Kumar, S.: IEEE Calcutta Conf. – CALCON 2020, pp.‏ 378. ‏.

Mikulics, M., Arango, Y., Winden, A., Adam, R., Hardtdegen, A., Grützmacher, D., Plinski, E., Gregušová, D., Novák, J., Kordoš, P., Moonshiram, A., Marso, M., Sofer, Z., Lüth, H., and Hardtdegen, H.: Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes, Applied Phys. Lett. 108 (2016) 061107.

1. Vassilakopoulou, A.: Applied Mater. Today 5 (2016) 128.
2. Yang, Y.: Optical Mater. 66 (2017) 659.
3. Yuan, J.: Semicond. Sci Technol. 32 (2017) 045001.
4. Jiang, Y.: IEEE Electron Device Lett. 38 (2017) 1684.
5. Zhao, Y.: J. Micromech. Microengn. 27 (2017) 115004.
6. Philip, M.R.: ACS Omega 2 (2017) 5708.
#      7. Wang, Y.: Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban)/J. Nanjing Univ. Posts Telecomm. (Natural Science)  37 (2017) 37.
#      8. Rajan Philip, M.: ACS Omega 2 (2017) 5708.
9. Guo, X.: J. Applied Phys. 123 (2018) 175701.
10. Qin, C.: Applied Phys. Express 11 (2018) 051201.
11. Zhang, S.: Adv. Mater. Technol. 3 (2018) 1700285.
12. Wang, Y.: Light-Sci Appl. 7 (2018) 83.
13. Wang, Q.: J. Mater. Sci 53 (2018) 16439.
14. Huang, J.: J. Mater. Sci 54 (2019) 560.
15. Wang, Q.: Chinese Phys. B 28 (2019) 087802.
16. Hajlaoui, M.E.: Mater. Sci Semicond. Process. 109(2020) 104934.
17. Mackova, A.: Phys. Chem. Chem. Phys. ‏ 22 (2020) ‏ 23563.
18. Kluczyk-Korch, K.: Nanotechnol. 32 (2021) 105203.

Čičo, K., Jančovič, P., Dérer, J., Šmatko, V., Rosová, A., Blaho, M., Hudec, B., Gregušová, D., Fröhlich, K., :Resistive switching in nonplanar HfO2-based structures with variable series resistance. J. Vacuum Sci Technol. B 33 (2015) 01A108.

 1. Hardtdegen, A.: IEEE Inter. Memory Workshop 2016.
2. Hardtdegen, A.: IEEE Trans. Electron Dev. 65 (2018) 3229.
3. Lin, Chih-Y.: J. Phys. D 52 (2019) 095108.
4. Cueppers, F.: APL Mater. 7 (2019) 091105.

Gucmann, F., Kúdela, R., Kordoš, P., Dobročka, E., Gaži, Š., Dérer, J., Liday, J., Vogrinčič, P., and Gregušová, D.: III-As heterostructure field-effect transistors with recessed ex-situ gate oxide by O2 plasma-oxidized GaAs cap, J. Vacuum Sci Technol. B 33 (2015) 01A111.

1. Grabnic, T.: Surface Sci 692 (2020) 121516.

Blaho, M., Gregušová, D., Haščík, Š., Jurkovič, M., Ťapajna, M., Fröhlich, K., Dérer, J., Carlin, J., Grandjean, N., Kuzmík, J., : Self-aligned normally-off metal-oxide-semiconductor n+++GaN/InAlN/GaN high-electron mobility transistors. Phys. Status Solidi A 112 (2015) 1086-1090.

1. Yeh, P.-C.: Applied Phys. Express 8 (2015) 084101.
2. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
3. Freedsman, J.: IEEE Electron Device Lett. 38 (2017) 497.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
6. Meneghini, M.: Mater. Sci Semicond. Process. 78 (2018) 118.
7. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.

Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., and Kuzmík, J.: Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506.

1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
7. Zhang, K.: IEEE SSLChina – IFWS 2016. P. 64.
8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.
9. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
10. Zhou, X. J.: Superlatt. Microstr. 112 (2017) 1.
#    12. Zhang, K.: Inter. Forum on Wide Bandgap Semiconductors China, IFWS 2016. Conf. Proc. (2017) 7803758, pp. 64-67.
#     13. Singh, P.: Comm. Computer Inf. Sci 892 (2019) 380.
14. Supardan, S. N.: J. Phys. D 53(2020) 075303.

Mikulics, M., Hardtdegen, H., Arango, Y.C., Adam, R., Fox, A., Grützmacher, D., Gregušová, D., Stanček, S., Novák, J., Kordoš, P., Sofer, Z., Juul, L., and Marso, M.: Reduction of skin effect losses in double-level-T-gate structure, Applied Phys. Lett. 105 (2014) 232102.

1. Madhulika.: Semicond. Sci Technol. 36 (2021) 035004.

Kuzmík, J., Jurkovič, M., Gregušová, D., Ťapajna, M., Brunner, F., Cho, E., Meneghesso, G., and Würfl, H.:Degradation of AlGaN/GaN high-electron mobility transistors in the current-controlled off-state breakdown, J. Applied Phys. 115 (2014) 164504.

#        1. Jang, S.Y.: New Phys. 65 (2015) 1-13.
#        2. Ren, F.: Advances in Photonics Engn., Nanophoton. Biophotonics. Nova Sci Publ., Inc. 2016 ISBN: 978-163484530-4. P. 57-117.

Ťapajna, M., Killat, N., Palankovski, V., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Kuball, M., and Kuzmík, J.: Hot-electron-related degradation in InAlN/GaN high-electron-mobility transistors,. IEEE Trans. Electron Dev. 61 (2014) 2793-2801.

1. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
2. Petitdidier, S.: Microelectron. Reliab. 55 (2015) 1719.
3. Bisi, D.: IEEE Electron Device Lett. 36 (2015) 1011.
4. Dyson, A.: IEEE Trans. Electron Dev. 62 (2015) 3613.
5. Downey, B.P.: IEEE Trans. Device Mater. Reliab. 15 (2015) 474.
6. Berthet, F.: IEEE RADECS 2015.
7. Chiu, H.-C.: Japan. J. Applied Phys. 55 (2016) 056502.
8. Hilton, A.M.: IEEE Trans. Electron Dev. 63 (2016) 1459.
9. Narita, T.: Semicond. Sci Technol. 31 (2016) 035007.
10. Guo, L.: Sci Reports 6 (2016) 37415.
11. Lang, A.C.: Applied Phys. Lett. 109 (2016) 133509.
12. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.
13. Berthet, F.: IEEE Trans. Nuclear Sci 63 (2016) 1918.
14. Li, W.: Semicond. Sci Technol. 31 (2016) 125003.
15. Berthet, F.: Solid-State Electr. 127 (2017) 13.
16. Petitdidier, S.: Applied Phys. Lett. 110 (2017) 163501.
17. Petitdidier, S.: IEEE Trans. Nuclear Sci 64 (2017) 2284.
#      18. Petitdidier, S.: RADECS Vol. 2016. (2017) P. 1-4.
#      19. Mu, W.: Res. Progress Solid State Electron. 37 (2017) 168+181.
20. Hilton, A.M.: IEEE Trans. Electron Dev. 65 (2018) 59.
21. Duffy, S.J.: IEEE Access 6 (2018) 42721.
22. Cha, S.: IEEE Trans. Electron Dev. 66 (2019) 3740.
23. Ray, A.: J. Electronic Mater.‏ 49 (2020)‏ 2018.
24. Wang, Y.: IEEE J. Electron Dev. Soc 8 (2020)‏ 850.
25. Chen, Y.-C.: IEEE Trans. Nanotechnol. 19 (2020)‏ 415.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., Hashizume, T., and Kuzmík, J.: Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations. J. Applied Phys. 116 (2014) 104501.

1. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
2. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
3. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Liu, X.: J. Applied Phys. 119 (2016) 015303.
6. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
7. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
8. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
9. Son, P.L.: J. Applied Phys. 119 (2016) 204503.
10. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
11. Colon, A.: J. Vacuum Sci Technol. A 34 (2016) 06K901.
12. Colon, A.: J. Vacuum Sci Technol. A 35 (2017) 01B132.
13. Panda, D.K.: AEU-Inter. J. Electron. Comm. 82 (2017) 467.
14. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902 .
15. Kim, T.-S.: J. Phys. D 50 (2017) 39LT03.
16. Le, S.P.: J. Applied Phys. 123(2018) 034504.
17. Upadhyay, B.B.: Solid-State Electr. 141 (2018) 1.
18. Kim, Tae-S.: J. Korean Phys. Soc. 72 (2018)1332.
19. Verma, S.: Superlatt. Microstr. 119 (2018) 181.
20. Anvari, R.: Applied Surface Sci 452 (2018) 75.
21. Anvari, R.: Sensors Actuators B 269 (2018) 62.
22. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
23. Zhu, J.: IEEE Inter. Reliab. Phys. Symp. Proc. 2018. PWB.11-PWB.14.
24. Acurio, E.: IEEE Trans. Electron Dev. 66 (2019) 883.
25. Miyamoto, H.: Japan. J. Applied Phys. 59 (2020) 044002.
26. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
27. Duong, D.N.: J. Applied Phys. 127 (2020) 094501. ‏

Gucmann, F., Gregušová, D., Stoklas, R., Dérer, J., Kúdela, R., Fröhlich, K., and Kordoš, P.: InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors with oxygen-plasma oxide and Al2O3 double-layer insulator, Applied Phys. Lett. 105 (2014) 183504.

1. Kim, S.-H.: IEEE Electron Device Lett. 36 (2015) 884.
2. Kim, S.-H.: J. Nanosci Nanotechnol. 16 (2016) 10389.
3. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
4. Bazaka, K.: Nanoscale 10 (2018) 17494.
5. Kim, S.-H.: ACS Applied Mater. Interfaces 10 (2018) 26378.

Stoklas, R., Gregušová, D., Hušeková, K., Marek, J., and Kordoš, P.: Trapped charge effects in AlGaN/GaN metal-oxide-semiconductor structures with Al2O3 and ZrO2 gate insulator, Semicond. Sci Technol. 29 (2014) 045003.

 1. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
2. Stuchlikova, L.: 10th Europ. Workshop on Microelectron. Education 2014. P. 116.
3. Mekni, O.: Ceramics Inter. 42 (2016) 8729.
4. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
5. Mekni, O.: IEEE Inter. Conf. Dielectrics – ICD 2016. P. 139.
6. Mekni, O.: Mater. Research Proc. 1 (2016) 167.
#     7. Jiang, H.: MANTECH 2017.
8. Hashizume, T.: Mater. Sci Semicond. Process. 78 (2018) 85.
9. Touati, Z.: J. New Technol. Mater. 8 (2018) 16.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., and and Kuzmík, J.: Bulk and interface trapping in the gate dielectric of GaN based metal–oxide–semiconductor high-electron mobility transistors, Applied Phys. Lett. 102 (2013) 243509.

1. Hori, Y.: J. Applied Phys.114 (2013) 244503.
2. Liao, W. C.: Applied Phys. Lett. 104 (2014) 033503.
3. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
4. Ye, D.: J. Phys. D 47 (2014) 255101.
5. Meneghesso, G.: IEEE Inter. Reliab. Phys. Symp. 2014.
6. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
7. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
8. Wu, T.-L.: Solid-State Electron. 103 (2015) 127.
9. Wang, Y.-H.: Applied Phys. Lett. 108 (2016) 233507.
10. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
11. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
12. Colon, A.: J. Vacuum Sci Technol. B 34 (2016) 06K901.
13. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
14. Curatola, G.: Power Electron. Power Systems (2017) 165.
15. Zhou, W.: ASME, Proc. 25th Inter. Conf. Nuclear Engn. 2017, Vol. 9, Art. No. V009T15A036-1.
16. Panda, D. K.: AEU-Inter. J. Electron.Comm. 82 (2017) 467.
17. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
18. Hua, M.: IEEE Electron Device Lett. 39 (2018) 413.
19. Le, S.P.: J. Applied Phys. 123(2018) 034504.
20. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI 04FG05.
21. Hua, M.: Physica Status Solidi A 215 (2018) SI 1700641.
22. Hwang, Il-H.: Physica Status Solidi A 215 (2018) 1700650.
23. He, J.: IEEE Trans. Electron Dev. 65 (2018) 3185.
#   24. He, J.: CS MANTECH 2018.
25. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
26. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
27. Khadar, R.A.: IEEE Electron Dev. Lett. 40 (2019) 443.
28. Huang, S.: J. Applied Phys. 126 (2019) 164505.
29. Hua, M.: Proc. Inter. Conf. ASIC 2019, pp.8983535.
#    30. Bao, S.: Chinese Physics B 28 (2019) 067304
31. Liu, W.: Applied Phys. Lett. 116 (2020) 022104.
32. Liu, W.: J. Applied Phys. 128 (2019) 074101.
33. Elangovan, S.: Energies 13 (2020) 2628.
34. Krukovskyi, R.: Functional Mater.‏ 27 (2020) 482.

Kordoš, P., Stoklas, R., Gregušová, D., Hušeková, K., Carlin, J., Grandjean, N., : Defect states characterization of non-annealed and annealed Zr2/InAlN/GaN structures by capacitance measurements,. Applied Phys. Lett. 102 (2013) 063502.

1. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
2. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
3. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
4. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
5. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Blaho, M., Gregušová, D., Jurkovič, M., Haščík, Š., Fedor, J., Kordoš, P., Fröhlich, K., Brunner, F., Cho, E., Hilt, O., Würfl, H., Kuzmík, J., : Ni/Au-Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOSHEMTs. Microelectr. Engn. 112 (2013) 204-207.

1. Moon, S.-W.: Japan. J. Applied Phys. 53 (2014) 08NH02.
2. Zhang, Z.: Electron. Lett. 51 (2015) 1201.
3. Zhang, Z.: IEEE Trans. Electron Dev. 63 (2016) 731.
4. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
5. Fisichella, G.: Beilstein J. Nanotechnol. 8 (2017) 467.

Jurkovič, M., Gregušová, D., Palankovski, V., Haščík, Š., Blaho, M., Čičo, K., Fröhlich, K., Carlin, J., Grandjean, N., and Kuzmík, J.: Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region,. IEEE Electron Dev. Lett. 34 (2013) 432-434.

1. Ahmadi, E.: Applied Phys. Lett. 104 (2014) 072107.
#       2. Marek, J.: ASDAM 2014. P. 153.
3. Dimitrijev, S.: MRS Bull. 40 (2015) 399.
4. Lee, K.B.: Applied Phys. Express 8 (2015) 036502.
5. Jebalin, B.K.: Superlatt. Microstr. 78 (2015) 210.
6. Chiu, H.-C.: Microelectron. Reliab. 55 (2015) 48.
7. Huang, H.: Solid-State Electr. 114 (2015) 148.
8. Zaidi, Z. H.: Semicond. Sci Technol. 30 (2015) 105007.
9. Nagy, L.: Inter. Conf. Applied Electron. 2015. 7011707, p. 225.
10. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
#      11. Nagy, L.: IEEE 18th DDECS 2015. 7195673, p. 83.
12. Smith, M. D.: Semicond. Sci Technol. 31 (2016) 025008.
13. Chen, P.-G.: Solid-State Electr. 129 (2017) 206.
14. Jena, K.: Region 10 Annual Inter. Conf. TENCON. IEEE 2017. Art.no. 7848652, p. 3253.
15. Freedsman, J.J.: IEEE Electron Device Lett. 38 (2017) 497.
16. Chander, S.: IEEE ICIEEIMT 2017. P.293.
17. Tiwari, N.: IEMENTECH 2017.
#      18. Gupta, S.: SCOPES 2016. Proc. 2017. Art.no. 7955748, pp. 1777.
19. Wei, L.-C.: J. Nanosci Nanotechnol. 18 (2018) 7400.
20. Chen, P.-G.: Sensors 18 (2018) 2795.
21. Smith, M.D.: Applied Surface Sci 521 (2020) 146297.

Gregušová, D., Hušeková, K., Stoklas, R., Blaho, M., Jurkovič, M., Carlin, J., Grandjean, N., and Kordoš, P.:Zr2/InAlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with InAlN barrier of different compositions. Japan. J. Applied Phys. 52 (2013) 08JN07.

1. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
2. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
3. Liu, H.-Y.: IEEE J. Electron Devices Soc 4 (2016) 358.
4. Duan, T.: In Gallium Nitride Power Devices. Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
5. Chen, F.: J. Electron Mater. 48 (2019) Iss. SI11.
6. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Kordoš, P., Kúdela, R., Stoklas, R., Čičo, K., Mikulics, M., Gregušová, D., Novák, J., : Aluminum oxide as passivation and gate insulator in GaAs-based field-effect transistors prepared in situ by metal-organic vapor deposition. Applied Phys. Lett. 100 (2012) 142113.

1. Wang, L.S.: Applied Phys. Lett. 103 (2013) 092901.
2. Wang, L.-S.: Applied Phys. Express 7 (2014) 061201.
3. Aoki, T.: Applied Phys. Express 7 (2014) 106502.
4. Liu, L. N.: Applied Phys. Lett. 107 (2015) 213501.
5. Liu, L.: J. Vacuum Sci Technol. B 33 (2015) 050601.
6. Liu, L.N.: Physica Status Solidi-R 10 (2016) 703.
7. Moille, G.: Laser & Photonics Rev. 10 (2016) 409.
8. Liu, L. N.: Applied Phys. Lett. 110 (2017) 123506.
9. Liu, L.N.: Physica Status Solidi-R 11 (2017) 1700180.
10. Liu, L.N.: IEEE Trans. Electron Dev. 65 (2018) 72.

Ťapajna, M., Gregušová, D., Čičo, K., Fedor, J., Carlin, J., Grandjean, N., Killat, N., Kuball, M., Kuzmík, J., : Early stage degradation of InAlN/GaN HEMTs during electrical stress. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 7-10.

1. Rossetto, I.: Microelectr. Reliab. 53 (2013) 1476.
2. Wu, Y.: IEEE Trans. Electron Dev. 63 (2016) 3487.

Jurkovič, M., Gregušová, D., Haščík, Š., Blaho, M., Molnár, M., Palankovski, V., Donoval, D., Carlin, J., Grandjean, N., Kuzmík, J., : GaN/InAlN/AlN/GaN normally-off HEMT with etched access region. In: WOCSDICE-EXMATEC 2012.Eds. Y. Cordier and J.-Y. Duboz. Island of Porquerolles: CRHEA & CNRS 2012.

     1. Mizutani, T.: J. Applied Phys. 113 (2013) 034502.

Čičo, K., Gregušová, D., Kuzmík, J., Jurkovič, M., Alexewicz, A., di Forte Poisson, M., Pogany, D., Strasser, G., Delage, S., and Fröhlich, K.: Influence of processing and annealing steps on electrical properties of InAlN/GaN high electron mobility transistor with Al2O3 gate insulation and passivation, Solid-State Electr. 67 (2012) 74-78.

1. Liu, X.: J. Electron. Mater. 42 (2013) 33.
2. Singh, S.P.: J. Phys. D 48 (2015) 365104.
3. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
4. Lin, C.-C.: Thin Solid Films 618 (2016) SI118.
5. Xiao, L.: CSTIC 2016.
6. Murugapandiyan, P.: J. Semicond. 38 (2017) 084001.
7. Wang, H.: Japan. J. Applied Phys. 57 (2018) 04FG05.
8. Murugapandiyan, P.: J. Nanoelectron. Optoel. 13 (2018) 183.
9. Kanaga, S.: IEEE Inter.Conf. on Electronics Comput.Comm. Technol. 2018.
10. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020) 13.
11. Ozaki, S.: Semicond. Sci Technol.35 (2020) 035027.
12. Supardan, S. N.: J. Phys. D 53(2020) 075303.

Mikulics, M., Hardtdegen, H., Gregušová, D., Sofer, Z., Šimek, P., Trellenkamp, S., Grützmacher, D., Lüth, H., Kordoš, P.,  and Marso, M.: Non-uniform distribution of induced strain in gate recessed AlGaN/GaN structure evaluated by micro PL measurements, Semicond. Sci Technol. 27 (2012) 105008.

1. Kucera, M.: ASDAM 2012. P. 231.
2. Bai, D.: Applied Phys. B 122 (2016) UNSP 9.
3. Afzal, N.: Mater. Research Express 3 (2016) 085904.
4. Yuan, J.: Semicond. Sci Technol. 32 (2017) 045001.
5. Liu, Q.: AIP Adv. 8 (2018) 115118.

Jurkovič, M., Gregušová, D., Haščík, Š., Blaho, M., Čičo, K., Palankovski, V., Carlin, J., Grandjean, N., Kuzmík, J., : Polarization engineered normally-off GaN/InAlN/AlN/GaN HEMT In: Inter. Workshop on Nitride Semicond. 2012 – IWN. Sapporo 2012..

      1. Mizutani, T.: J. Applied Phys. 113 (2013) 034502.

Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vacuum Sci Technol. B 29 (2011) 01A808.

1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
4. Bera, M.K.: ECS Trans. 53 (2013) 65.
5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
10. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
#   15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280.
#   16. Schäfer, A.:  J. Alloys Comp. 651 (2015) 514.
17. Tromm, T. C. U.: ECS Trans. 72 (2016) 307.
18. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
19. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 1-20.
20. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.
21. Terkhi, S.: Indian J. Phys. 92 (2018) 847.
22. Adak, S.: Nano 14 (2019) 1950060.
23. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
24. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
25. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020)‏ 613.
26. Cui, X.: Nano Energy 68 (2020) 104361.
27. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Mikulics, M., Kordoš, P., Gregušová, D., Adam, R., Kočan, M., Wu, S., Zhang, J., Sobolewski, R., Grützmacher, D., and Marso, M.: Monolithic integration of ultrafast photodetector and MESFET in the GaN material system, IEEE Photonics Technol. Lett. 23 (2011) 1189-1191.

1. Lee, C.Y.: Japan. J. Applied Phys. 51 (2012) 044101.
2. Afzal, N.: Mater. Research Express 3 (2016) 085904.
3. Liu, H.-Y.: IEEE Sensors J. 17 (2017) 5087.
4. Gaubas, E.: Semicond. Sci Technol. 33 (2018) 075015.
5. Lou, G.: J. Phys. D 51 (2018) 19LT01.
6. Sun, K.-X.: Rev. Sci Instrum. 89 (2018) 10K113.

Stoklas, R., Gregušová, D., Gaži, Š., Novák, J., and Kordoš, P.: Performance of AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors with AlN gate insulator prepared by reactive magnetron sputtering. J. Vacuum Sci Technol. B 29 (2011) 01A809.

1. Shih, H.-A.: Japan. J. Applied Phys. 51 (2012) Part 2 02BF01.
2. Shih, H.-A.: Applied Phys. Lett. 101 (2012) 043501.
3. Freedsman, J.J.: Applied Phys. Lett. 101 (2012) 013506.
4. Tuan, Q.N.: Phys. Status Solidi C 10 (2013) 1401.
5. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
6. Son, P.L.: J. Applied Phys. 116 (2014) 054510.
7. Le, S.P.: J. Applied Phys. 119 (2016) 204503.
8. Tan, S.: J. Semicond. 40 (2019) 042801.
9. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.

Cambel, V., Gregušová, D., Eliáš, P., Fedor, J., Kostič, I., Maňka, J., Ballo, P., : Switching magnetization magnetic force microscopy – an alternative to conventional lift-mode MFM, J. Electr. Engn. 62 (2011) 37-43.

1. Sandu, S.G.: Mater. Sci Engn. B 181 (2014) 24.
2. Angeloni, L.: Sci Rep. 6 (2016) 26293.
3. Angeloni, L.: Nanoscale 9 (2017) 18000.
#     4. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
5. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.
6. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
7. Stanciu, A.E.: J. Magnetism Magnet. Mater. 498 (2020) 166173.

Martaus, J., Cambel, V., Gregušová, D., Kúdela, R., Fedor, J., : 50-nm local anodic oxidation technology of semiconductor heterostructures. J. Nanosci Nanotechnol. 10 (2010) 4448-4453.

      1. Chu, H.: J. Nanosci Nanotechnol. 13 (2013) 8055.

Mikulics, M., Stoklas, R., Dadgar, A., Gregušová, D., Novák, J., Grützmacher, D., Krost, A., and Kordoš, P.:InAlN/GaN/Si heterostructures and field-effect transistors with lattice matched and tensely or compressively strained InAlN, Applied Phys. Lett. 97 (2010) 173505.

1. Hasan, M.T.: Applied Phys. Lett. 99 (2011) 132102.
2. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
3. Chen, H.: J. Applied Phys. 113 (2013) 194509.
4. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
5. Yu, Y.-X.: Chinese Phys. B 23 (2014) 047201.
6. Smith, M.D.: J. Mater. Chem. C 2 (2014) 5787.
7. Chen, H.: J. Applied Phys. 116 (2014) 074510.
8. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
9. Afzal, N.: Mater. Research Express 3 (2016) 085904.
#  10. Shen, B.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 3-52.
11. Gaubas, E.: Semicond. Sci Technol. 33 (2018) 075015.
12. Xing, J.: J. Applied Phys. 124 (2018) 034904.
13. Biswas, D.: Semicond. Sci Technol. 34 (2019) 055014.

Cambel, V., Eliáš, P., Gregušová, D., Martaus, J., Fedor, J., Karapetrov, G., and Novosad, V.: Magnetic elements for switching magnetization magnetic force microscopy tips, J. Magnetism Magn. Mater. 322 (2010) 2715-2721.

1. Ishihara, S.: EPJ 40 (2012) UNSP 08003.
2. Kaidatzis, A.: Nanotechnol. 24 (2013) 165704.
3. Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology. Elsevier Sci 2013. ISBN 978-1455730582. P. 207-219.
4. Angeloni, L.: Sci Rep. 6 (2016) 26293.
5. Chen, S.-H.: Microscopy Research Techniq. 79 (2016) 917.
6. Wren, T.: Ultramicroscopy 179 (2017) 41.
7. Datar, A.A.: J. Phys. D 50 (2017) 485004.
8. Liu, J.: J. Magnetism Magn. Mater. 443 (2017) 184.
9. Liu, J.: Micron 102 (2017) 15.|
#   10. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
11.  Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology.  2nd ed. Elsevier 2018. ISBN: 978-012813348-4. P. 245-263.

Cambel, V., Eliáš, P., Gregušová, D., Fedor, J., Martaus, J., Karapetrov, G., Novosad, V., Kostič, I., : Novel magnetic tips developed for the switching magnetization magnetic force microscopy. J. Nanosci Nanotechnol. 10 (2010) 4477-4481.

1. Choi, E.: J. Nanosci Nanotechnol. 14 (2014) 924.
2. Liu, J.: Micron 102 (2017) 15.

Čičo, K., Gregušová, D., Gaži, Š., Šoltýs, J., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Optimization of the ohmic contact processing in InAlN/GaN high electron mobility transistors for lower temprerature of annealing, Phys. Status Solidi c 7 (2010) 108-111.

1. Kim, S.: Applied Phys. Lett. 102 (2013) 052107.
2. Lee, D.S.: Japan. J. Applied Phys. 53 (2014) 100212.
3. Bergsten, J.: Semicond. Sci Technol. 30 (2015) 105034.
4. Li, Q.: AIP Adv. 7 (2017) 125103.
5. Li, Q.: Acta Phys. Sinica 67 (2018) 027303.
6. Yoshida, T.: Japan. J. Applied Phys. 57 (2018) 110302.
7. Lin, Y.-K.: Semicond. Sci Technol.33 (2018) 095019.

Gregušová, D., Gaži, Š., Sofer, Z., Stoklas, R., Dobročka, E., Mikulics, M., Greguš, J., Novák, J., and Kordoš, P.: Oxidized Al film as an insulation layer in AlGaN/GaN Metal–Oxide–Semiconductor heterostructure field effect transistors, Japan. J. Applied Phys. 49 (2010) 046504.

1. Ozen, S.: Mater. Res. Express 3 (2016) 045012.
2. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.

Kordoš, P., Mikulics, M., Fox, A., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Novák, J., and Fröhlich, K.:RF performance of InAlN/GaN HFETs and MOSHFETs with up to 21, IEEE Electron Dev. Lett. 31 (2010) 180-182.

1. Lo C. -F.: J. Vacuum Sci Technol. B 29 (2011) 021002.
2. Lee, J.: Phys. Status Solidi A 208 (2011) 1538.
3. Corrion, A.L.: IEEE Electron Device Lett. 32 (2011) 1062.
4. Lo, C.F.: J. Vacuum Sci Technol. B 29 (2011) 061201.
#   5. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 31 (2011) 421.
6. Tartarin, J.G.: IEEE ICNF 2011 (2011), art. no. 5994367, p. 452.
7. Huang, T.: IEEE Electron Device Lett. 33 (2012) 212.
8. Ketteniss, N.: Semicond. Sci Technol. 27 (2012) 035009.
9. Lo, C.-F.: J. Vacuum Sci Technol. B 30 (2012) 041206.
10. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
11. Lee, K.-W.: ECS Solid State Lett. 2 (2013) Q9.
12. Liu, L.:Proc. SPIE 8625 (2013) 86250W.
13. Rennesson, S.: IEEE Trans. Electron Dev. 60 (2013) 3105.
14. Choi, S.: J.Crystal Growth 388 (2014) 137.
15. Du, J.: J. Applied Phys. 115 (2014) 164510.
16. Lee, C.-S.: ECS J. Solid State Sci Technol. 3 (2014) Q227.
17. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
18. Lee, C.-S.: Japan. J. Applied Phys. 55 (2016) 044102.
19. Du, J.: Micro & Nano Lett. 11 (2016) 503.
20. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2016) Q284.
21. Lee, C.-S.: Semicond. Sci Technol. 32 (2017) 055012.
22. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 68.
23. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
24. Amarnath, G.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 32 (2019) e2456.

Gregušová, D., Stoklas, R., Mizue, C., Hori, Y., Novák, J., Hashizume, T., and Kordoš, P.: Trap states in AlGaN/GaN metal-oxide-semiconductor structures with Al2O3 prepared by atomic layer deposition. J. Applied Phys. 107 (2010) 106104.

1. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
2. Liu, X.: Applied Phys. Lett. 99 (2011) 093504.
3. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
4. Long, R.D.: Materials 5 (2012) 1297.
5. Jackson, C.M.: J. Applied Phys. 113 (2013) 204505.
6. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
7. Hahn, H.: Japan. J. Applied Phys. 52  (2013) 090204.
8. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
9. Zhao, S.L.: Applied Phys. Lett. 103 (2013) 212106.
10. Anand, M.J.: Phys. Status Solidi C 10 (2013) 1421.
11. Kong, Y.: IEEE Electron Device Lett. 35 (2014) 336.
12. Zhang P.: Chinese Physics Lett. 31 (2014) 037302.
13. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
14. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
15. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
16. Liao, X.-Y.: Chinese Phys. B 23 (2014) 057301.
17. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
18. Lu, X.: Applied Phys. Lett. 105 (2014) 102911.
19. Colon, A.: Solid-State Electr. 99 (2014) 25.
20. Kodama, S.: IEEE Inter. Meeting Future Electron Dev. Kansai 2014.
21. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
22. Lee, J.-Y.: J. Semicond. Technol. Sci 15 (2015) 16.
23. Zhang, P.: Chinese Phys. B 24 (2015) 127306.
24. Choi, S.: J. Semicond. Technol. Sci 15 (2015) 497.
25. Schiliro, E.: Phys. Status Solidi C 12 (2015) 980.
#  26. Wang, Y.-H.: MANTECH 2015. P. 367.
#   27. Nagao, K.: ECS Transactions  66 (2015) 11.
28. Lo Nigro, R.: Thin Solid Films 617 (2016) SI138.
29. Clemente, I.E.: Proc. SPIE 10224 (2016) 1022425.
30. Schiliro, E.: J. Vacuum Sci Technol. A 35 (2017) 01B140.
31. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
32. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
33. Jackson, C. M.: ECS J. Solid State Sci Technol. 6 (2017) P489.
34. Panda, A.: NANO Lett. 17 (2017) 7853.
35. Gao, J.: Phys. Status Solidi A 215 (2018) 1700498.
36. Wang, H.: Solid-State Electr. 141 (2018) 13.
37. Bao, S.: Chinese Phys. B 28 (2019) 067304.
38. Lee, H-P.: Mater. Res. Express 6 (2019) 105904.
39. Surana, V. K.: J. Applied Phys. 126 (2019) 115302.
40. Ghosh, J.: Microelectron. Engn. 216 (2019) 111097.
41. Kim, H.: Mater. Trans. 61 (2020) 88.

Kordoš, P., Stoklas, R., Gregušová, D., Gaži, Š., Novák, J., : Trapping effects in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor investigated by temperature dependent conductance measurement. Applied Phys. Lett. 96 (2010) 013505.

1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Arslan, E.: Microelectr. Reliab. 51 (2011) 576.
3. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
4. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
5. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
6. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
7. Lu, X.: Applied Phys. Lett. 104 (2014) 032903.
8. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
9. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
10. Liao, X.-Y.: Chinese Phys. B 23 (2014) 057301.
11. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
12. Ma, J.: Applied Phys. Express 7 (2014) 091002.
13. Zhou, Y.: Semicond. Sci Technol. 29 (2014) 095011.
#  14. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151157.
15. Ramanan, N.: IEEE Trans. Electron Dev. 62 (2015) 546.
16. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
17. Zhang, P.: Chinese Phys. B 24 (2015) 127306.
18. Jiang, H.: IEEE Trans. Electron Dev. 64 (2017) 832.
19. Wang, N.: AIP Adv. 7 (2017) 095317.
20. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
21. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
22. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
23. Bao, S.: Chinese Phys. B 28 (2019) 067304.
24. Ren, Y.: Physica Status Solidi A ‏217 (2020) SI1900701.
25. Rai, N.: IEEE Electron Dev. Technol. Manufact. Conf. – EDTM 2020.
26. Rai, N.: IEEE J. Electron Dev. Soc‏ 8 (2020) ‏ 1145.
27. Whiteside, M.: Mater. Sci Engn. B 262  (2020) 114707.
28. Whiteside, M.: Electronics ‏ 9 (2020) 1858.
29. Duman, S.: J. Mater. Sci-Mater. Electron. ‏ 31 (2020) 21260.

Kordoš, P., Stoklas, R., Gregušová, D., and Novák, J.: Characterization of AlGaN/GaN metal-oxide-semiconductor field-effect transistors by frequency dependent conductance analysis, Applied Phys. Lett. 94 (2009) 223512.

1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Kayis, C.: IEEE Electron Device Lett. 31 (2010) 1041.
3. Kayis, C.: J. Applied Phys. 109 (2011) 084522.
4. Freedsman, J.: Japan. J. Applied Phys. 50 (2011) 04DF03.
5. Freedsman, J.J.: Applied Phys. Lett. 99 (2011) 033504.
6. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
7. Kayis, C.: Physica Status Solidi C 8 (2011) 1539.
8. Lee, B.: ECS Trans. 41 (2011) 445.
9. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
10. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
11. Fiorenza, P.: Applied Phys. Lett. 101 (2012) 172901.
12. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
13. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
14. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
15. Lo Nigro, R.: Surface Coatings Technol. 230 (2013) 152.
16. Fiorenza, P.: Applied Phys. Lett. 103 (2013) 112905.
17. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
18. Anand, M.J.: Phys. Status Solidi C 10 (2013) 1421.
19. Ma, Xiao-H.: Applied Phys. Lett. 104 (2014) 093504.
20. Lu, X.: Applied Phys. Lett. 104 (2014) 032903.
21. Lo Nigro, R.: Thin Solid Films 563 (2014) 50.
22. Lu, X.: Phys. Status Solidi A 211 (2014) 775.
23. Roccaforte, F.: Phys. Status Solidi A 211 (2014) 2063.
24. Lu, X.: Applied Phys. Lett. 105 (2014) 102911.
25. Ma, J.: Applied Phys. Express 7 (2014) 091002.
26. Zhou, Y.: Semicond. Sci Technol. 29 (2014) 095011.
27. Colon, A.: Solid-State Electron. 99 (2014) 25.
28. Qin, X.: Applied Phys. Lett. 105 (2014) 011602.
29. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151157.
30. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151145.
31. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
32. Tham, W.H.: IEEE Electron Device Lett. 36 (2015) 1291.
33. Luo, J.: Chinese Phys. B 24 (2015) 117305.
34. Waller, W.M.: IEEE Trans. Electron Dev. 62 (2015) 2464.
35. Lo Nigro, R.: Mater. Chem. Phys. 162 (2015) 461.
36. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
37. Duan, T. L.: ECS J. Solid State Sci Technol. 5 (2016) P514.
38. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
39. Wang, Q.: RSC Adv. 7 (2017) 11745.
40. Shi, Y.: Nanoscale Research Lett. 12 (2017) 342.
41. Fiorenza, P.: Physica Status Solidi A 214 (2017) 1600366.
42. Duan, T.: In Gallium Nitride Power Devices. Eds.Yu, H., Duan, T. New York: Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
43. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
# 44. Wang, Q.: Proc. Inter. Symp. Power Semicond. Devices and ICs 2017. Art. no. 7988926, P. 215.
45. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI04FG05.
46. Roccaforte, F.: Rivista Del Nuovo Cimento 41 (2018) 625.
47. Taoka, N.: Semicond. Sci Technol. 34 (2019) 025009.
48. Arslan, E.: Microelectr. Reliab. 103 (2019) UNSP 113517.
49. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
50. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
51. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
52. Surana, V.K.: J. Applied Phys. 126 (2019) 115302.
53. Kim, H.: Trans. Electr. Electron. Mater. 20 (2019) 359.
54. Kim, H.: J. Vacuum Sci Technol. B 37 (2019) 041203.
55. Kim, H.: Semicond. Sci Technol. 35 (2020) Iss. 1.
56. Kim, H.: Coatings 10 (2020) 489.
57. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
58. Whiteside, M.: Mater. Sci Engn. B 262 (2020) 114707.

Gregušová, D., Stoklas, R., Eickelkamp, M., Fox, A., Novák, J., Vescan, A., Grützmacher, D., Kordoš, P., :Characterization of AlGaN/GaN MISHFETs on a Si substrate by static and high-frequency measurements. Semicond. Sci Technol. 24 (2009) 075014.

1. Lee, K.W.: Applied Phys. Lett. 96 (2010) 203506.
2. Liu, H.-Y.: IEEE Trans. Electron Dev. 61 (2014) 2760.
3. Chiu, Y.S.: Japan. J. Applied Phys. 55 (2016) 051001.
4. Chiu, Y.S.: Japan. J. Applied Phys. 56 (2017) 094101.

Gregušová, D., Martaus, J., Fedor, J., Kúdela, R., Kostič, I., and Cambel, V.: On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography. Ultramicroscopy 109 (2009) 1080-1084.

1. Wang, L.: Nanoscale Res. Lett. 11 (2016) 342.
2. Liu, Z.-G.: IEEE Access 7 (2019) 79103.

Stoklas, R., Gaži, Š., Gregušová, D., Novák, J., Kordoš, P., : Enhancement of effective carrier velocity in AlGaN/GaN MOSHFETs with Al2O3 gate oxide. Physica Status Solidi c 5 (2008) 1935-1937.

  1. Saadat, O.I.: IEEE Electron Device Lett. 30 (2009) 1254.
2. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.

Donoval, D., Florovič, M., Gregušová, D., Kováč, J., and Kordoš, P.: High-temperature performance of AlGaN/GaN HFETs and MOSHFETs, Microelectron. Reliab. 48 (2008) 1669.

#     1. Vitanov, S.: ISDRS ’09 (2009) art. no. 5378300.
2. Bi, Z.: 2009 IEEE Inter. Conf. Electron Dev. Solid-State Circuits (EDSSC), art. no. 5394226, pp. 419.
3. Vitanov, S.: Solid-State Electr. 54 (2010) 1105.
4. Jankowski, J.: Sensors 11 (2011) 876.
5. Perez-Tomas, A.: Semicond. Sci Technol. 27 (2012) 125010.
6. Husna, F.: IEEE Trans. Electron Dev. 59 (2012) 2424.
#     7. Maize, K.: Annual IEEE Semicond. Thermal Measur. Management Symp. (2012) art. no. 6188846, pp. 173.
8. Perez-Tomas, A.: Mater. Sci Semicond. Process. 16 (2013) SI1336.
9. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
10. Fontsere, A.: ECS Solid State Lett. 2 (2013) P4.
11. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
12. Goyal, N.: Solid-State Electr. 116 (2016) 107.
13. Gao, Z.: IEEE Trans. Electron Dev. 63 (2016) 2729.
14. Aminbeidokhti, A.: IEEE Trans. Electron Dev. 63 (2016) 1013.
15. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
16. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
17. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2016) Q284.
18. Reiner, R.: IEEE APEC 2016. Art. No. 7468154, pp. 2083.
19. Kim, S.: Electron. Mater. Lett. 13 (2017) 302.
20. Li, H.: IEEE ECCE 2017. P. 1995.
21. Luong, T.T.: Microelectron. Reliab. 83 (2018) 286.
22. Gao, Z.: IEEE Trans. Electron Dev. 65 (2018) 3142.
23. Kargarrazi, S.: IEEE J. Electron Devices Soc 7 (2019) 931.

Kordoš, P., Donoval, D., Florovič, M., Kováč, J., and Gregušová, D.Investigation of trap effects in AlGaN/GaN field-effect transistors by temperature dependent threshold voltage analysis, Applied Phys. Lett. 92 (2008) 152113.

1. Tapajna, M.: Semicond. Sci Technol. 24 (2009) 035008.
2. Cuerdo, R.: IEEE Electron Device Lett. 30 (2009) 808.
3. Fang, Z.Q.: J. Applied Phys. 105 (2009) art. no. 123704.
4. Brannick, A.: IEEE Electron Device Lett. 30 (2009) 436.
5. Liu, Z.H.: Applied Phys. Lett. 94 (2009) art. no. 142105.
6. Hu, G.Z.: Chinese Phys. Lett. 27 (2010) 087302.
7. Fang, Z.Q.: J. Applied Phys. 108 (2010) 063706.
8. Fang, Z.-Q.: J. Electronic Mater. 40 (2011) 2337.
9. Liu, L.: J. Vacuum Sci Technol. B 29 (2011) 060603.
10. Cuerdo, R.: Solid-State Electr. 63 (2011) 184.
11. Chu, R.: Proc. Inter. Symp. Power Semicond. Dev. & ICs (2012) 237.
12. Hatano, M.: IEEE Trans. Electron Dev. E95C (2012) 1332.
13. Das, A.: AIP Adv. 2 (2012) 032159.
#   14.  Ren, F.: Mater. Res. Soc Symp. Proc. 1396 (2012) 115.
15. Liu, H.-Y.: ECS J. Solid State Sci Technol. 1 (2012) Q86.
16. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
17. Kim, S.: Japan. J. Applied Phys. 52 (2013) SI UNSP 10MA07.
18. Ma, L.: J. Applied Phys. 114 (2010) 124507.
19. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
20. Du, Y.-D.: Chinese Physics Lett. 31 (2014) 048501.
21. Zhu, J.-J.: AIP ADVANCES  Volume: 4 (2014) 037108.
22. Zhou, Y.: Electronics Lett. 50 (2014) 216.
23. Liu, Y.: ECS J. Solid State Sci Technol. 4 (2014) P30.
24. Liu, C.: 27th IEEE Inter. Symp. on Power Semicond. Devices and IC’s – ISPSD 2015. Art. no. 7123427, p. 213.
25. Liu, C.: IEEE Electron Device Lett. 36 (2015) 318.
26. Ma, L.-H.: Chinese Phys. B 25 (2016) 068103.
27. Im, K.-S.: Solid-State Electron. 120 (2016) 47.
28. Panda, J.: J. Semicond. 37 (2016) 044003.
29. Mleczko, M.J.: IEEE DRC 2016.
30. Kaushik, J. K.: Thin Solid Films 612 (2016) 147
31. Tao, M.: IEEE Trans. Electron Dev. 63 (2016) 4860.
32. Alim, M.A.: Semicond. Sci Technol. 31 (2016) 125016.
33. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
#   34. Lee, J.-H.: Solid-State Electr. 120 (2016) 47.
35. Tzou, A.-J.: Nanoscale Research Lett. 12 (2017) 315.
36. Mleczko, M.J.: Sci Adv. 3 (2017) e1700481.
#  37. Chen, K.J.: In Handbook of GaN Semiconductor Materials and Devices. CRC Press 2017 ISBN: 978-149874714-1, pp. 347-366.
38. Chakraborty, A.: Superlatt. Microstr. 113 (2018) 147.
39. Chakraborty, A.: Chinese J. Phys. 56 (2018) 2365.
40. Chen, Y.-H.: NPJ 2D Mater. Appl. 3 (2019) 49.
41. Lei, D.: Applied Phys. Express 12 (2019) 041001.

Stoklas, R., Gregušová, D., Novák, J., Vescan, A., and Kordoš, P.: Investigation of trapping effects in AlGaN/GaN/Si field-effect transistors by frequency dependent capacitance and conductance analysis, Applied Phys. Lett. 93 (2008) 124103.

1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Demirtas, S.: Microelectr. Reliab. 50 (2010) 758.
3. Bi, Z.W.: Chinese Phys. B 19 (2010) 077303.
4. Tan, S.: Applied Phys. Lett. 97 (2010) 053502.
5. Hu, C.Y.: Applied Phys. Lett. 97 (2010) 222103.
6. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
7. Quan, S.: Chinese Phys. B 20 (2011) 018101.
8. Joh, J.: IEEE Trans. Electron Dev. 58 (2011) 132.
9. Zade, D.: Microelectr. Engn. 88 (2011) 1109.
10. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
11. Quan, S.: Chinese Phys. B 20 (2011) 058501.
12. Arslan, E.: Microelectr. Reliab. 51 (2011) 576.
13. Ma, X.H.: Chinese Phys. B 20 (2011) 027304.
14. Liu, L.: J. Vacuum Sci Technol. B 29 (2011) 060603.
15. Yang, L.-Y.: Chinese Phys. B 20 (2011) 117302.
16. Bi, Z.-W.: Chinese Phys. B 20 (2011) 087307.
17. Freedsman, J.J.: Applied Phys. Lett. 99 (2011) 033504.
18. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
19. Hu, C.-Y.: J. Applied Phys. 111 (2012) 084504.
20. Silvestri, M.: IEEE Electron Device Lett. 33 (2012) 1550.
21.  Zhang, C.: Phys. Status Solidi C 9 (2012) 934.
#     22. Ren, F.: Mater. Res. Soc Symp. Proc. 1396 (2012) 115.
23. Shih, Hong-A.: Applied Phys. Lett. 101 (2012) 043501.
24. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
25. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
26. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
27. Feng, Q.: Chinese Phys. Lett. 30 (2013) 127302.
28. Fiorenza, P.: Applied Phys. Lett. 103 (2013) 112905.
29. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
30. Capriotti, M.: Applied Phys. Lett. 104 (2014) 113502.
31. Ma, Xiao-H.: Applied Phys. Lett. 104 (2014) 093504.
32. Zhu, J.-J.: AIP Advan. 4 (2014) 037108.
33. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
34. Lansbergen, G.P.: Inter. Reliab. Phys. Symp. 2014.
35. Jung, H.:  Phys. Status Solidi C 11 (2014) 940.
36. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
37. Chen, Y.: Applied Phys. Lett. 105 (2014) 193502.
38. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
39. Zhou, Y.: Solid-State Electr. 29 (2014) 095011.
40. Colon, A.: Solid-State Electr. 99 (2014) 25.
#   41. Gaewdang, T.: Advanced Mater. Research 931-932 (2014) 122.
42. Ando, Y.: IEEE Trans. Electron Dev. 62 (2015) 1440.
43. Chakraborty, A.: Applied Phys. Lett. 106 (2015) 082112.
44. Luo, J.: Chinese Phys. B 24 (2015) 117305.
45. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
46. Lu, X.: Applied Phys. Express 9 (2016) 031001.
47. Knyazev, A.V.: Lecture Notes in Computer Sci 9728 (2016) 282.
48. Zheng, X.: Microelectron. Reliab. 63 (2016) 46.
49. Zhang, W.H.: Applied Phys. Lett. 110 (2017) 252102.
50. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
51. Fiorenza, P.: Phys. Status Solidi A 214 (2017) 1600366.
52. Zheng, X.: IEEE Trans. Electron Dev. 64 (2017) 1498.
53. Paine, B.M.: IEEE Trans. Device Mater. Reliab. 17 (2017) 130.
54. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
55. Latrach, S.: Current Applied Phys. 17 (2017) 1601.
56. Kubo, T.: Semicond. Sci Technol. 32 (2017) 125016.
57. Le, S.P.: J. Applied Phys. 123(2018) 034504.
58. Yang, W.: 2018 IEEE 6TH Workshop Wide Bandgap Power Devices Appl. (WIPDA), pp. 103.
59. Ren J.: Acta Phys. Sinica 67 (2018) 247202.
60. Chakraborty, A.: Chinese J. Phys. 56 (2018) 2365.
61. Bao, S.: Chinese Phys. B 28 (2019) 067304.
62. Yang, W.: IEEE Trans. Device Mater. Reliab. 19 (2019) 350.
63. Zheng, X.: Microelectron. Reliab. 93 (2019) 57.
64. Arslan, E.: Microelectron. Reliab. 103 (2019) UNSP 113517.
65. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
66. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
67. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
68. Zhang, H.: J. Supercrit. Fluids 158 (2020) 104746.
69. Liu, M.: Chinese Phys. Lett. 37 (2020) 097101.
70. Ranjan, K.: IEEE Electron Devices Technol. Manufact. Conf. – EDTM 2020.
71. Rai, N.: IEEE J. Electron Dev. Soc‏ 8 (2020)‏ 1145.
72. Ma, Q.: Japan. J. Applied Phys. 59 (2020) 101002.

Cambel, V., Martaus, J., Šoltýs, J., Kúdela, R., Gregušová, D., : Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices. Ultramicroscopy 108 (2008) 1021-1024.

1. Voves, J.: Microelectr. Engn. 86 (2009) 561.
2. Simeone, F.C.: J. Phys. Chem. C 113 (2009) 18987.
#    3. Abdullah, A.M.: Inter. J. Nanosci 9 (2010) 251.
#    4. Hu, K.: Inter. J. Nanomanufact. 9 (2013) 19.

Martaus, J., Gregušová, D., Cambel, V., Kúdela, R., Šoltýs, J., : New approach to local anodic oxidation of semiconductor heterostructures. Ultramicroscopy 108 (2008) 1086-1089.

1. Pust, S.E.: Nanotechnology 20 (2009) 075302.
2. Simeone, F.C.: J. Phys. Chem. C 113 (2009) 18987.
3. Janousek, M.: Microelectr. Engn. 87 (2010) 1066.
#     4. Hu, X.-D.: Nami Jishu yu Jingmi Gongcheng/Nanotechnol. Precision Engn. 8 (2010) 352.
#     5. Abdullah, A.M.: Inter. J. Nanosci 9 (2010) 251.
#    6. Tian, L.: Scientia Sinica Chimica 49 (2019) 455.

Florovič, M., Kordoš, P., Donoval, D., Gregušová, D., Kováč, J., : Performance of AlGaN/GaN heterostructure field – effect transistors at higher ambient temperatures. J. Electr. Engn. 59 (2008) 53-56.

  1. Tokuda, H.: J. Applied Phys. 108 (2010) 104509.
#    2. Wellekens, D.: Europ. Solid-State Device Research Conf. (2012) art. no. 6343393, pp. 302.
3. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.

Kordoš, P., Gregušová, D., Stoklas, R., Gaži, Š., and Novák, J.: Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with Al2O3 of different thickness, Solid-State Electr. 52 (2008) 973-979.

1. Osvald, J.: In: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 319.
2. Chen H.: Proc. 9th Inter. Conf. Solid-State and Integr. Circuits (2008) 1443.
3. Selvaraj, S.L.: J. Electrochem. Soc. 156 (2009) H690.
4. Osvald, J.: J. Applied Phys. 106 (2009) 013708.
5. Maeda, N.: Phys. Status.Solidi C 6 (2009) S1049.
6. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
7. Liu, Z.H.: Applied Phys. Lett. 95 (2009) 223501.
8. Bi, Z.W.: 2009 IEEE Inter. Conf. Electron Dev. Solid-St. Circuits (2009) 419.
9. Taking, S.: Electronics Lett. 46 (2010) 301.
•  10. Osvald, J.: In: ASDAM 2010. Piscataway: IEEE, 2010. ISBN: 978-1-4244-8572-7. P. 167.
11. Bi, Z.W.: Chinese Phys. B 19 (2010) 077303.
12. Kim, K,-W.: Microelectr. Engn. 88 (2011) 1225.
13. Liu, S.: Japan. J. Applied Phys. 50 (2011) 04DF10.
14. Esposto, M.: Applied Phys. Lett. 99 (2011) 133503.
15. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
16. Osvald, J.: J. Applied Phys. 110 (2011) 073702.
17. Kirkpatrick, C.: Phys. Status Solidi C 8 (2011) Is. 7-8.
18. Bi, Z.W.: Chinese Phys. B 29 (2012) 028501.
19. Ji, D.: Applied Phys. Lett. 100 (2012) 132105.
20. Kirkpatrick, C.J.: IEEE Electron Device Lett. 33 (2012) 1240.
21. Osvald, J.: ASDAM 2012 (2012) art. no. 6418555, pp. 59.
22. Hung, T.-H.: Applied Phys. Lett. 102 (2013) 072105.
*   23. Osvald, J.: ADEPT 2013. Žilina: Univ. Žilina 2013. ISBN 978-80-554-0689-3. P. 36.
24. Meng, D.: IEEE Electron Device Lett. 34 (2013) 738.
25. Osvald, J.: J. Electronic Mater. 42 (2013) 1184.
26. Ji, D.: Thin Solid Films 534 (2013) 655.
27. Kambayashi, H.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF09.
28. Pang, L.: 2013 IEEE Power Energy Conf. (2013) 8.
29. Osvald, J.: Phys. Status Solidi A 210  (2013) 1340.
30. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
31. Osvald, J.: Environmen. Sci Engn. (2014) 215.
32. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
33. Feng, Q.: Chinese Phys. Lett. 32 (2015) 017301.
34. Winzer, A.: J. Applied Phys. 118 (2015) 124106.
35. Hung, C.-W.: Solid-State Electron. 124 (2016) 5.
#   36. Zhou, X.J.: J. Applied Phys. 120 (2016) 125706.
37. Teramoto, A.: IEEE Electron Device Lett. 38 (2017) 1309.
38. Liu, J.: Sensors 18 (2018) 813.
39. Koide, Y.: IEEE Inter. Conf. Microelectr. Test Struct. 2019, p. 40.

Cambel, V., Martaus, J., Šoltýs, J., Kúdela, R., and Gregušová, D.AFM nanooxidation process – technology perspective for mesoscopic structures. Surface Sci. 601 (2007) 2717-2723.

   1. Parisse, P.: Mater. Sci Engn. B 165 (2009) 227.
2. Jo, Y.D.: Applied Phys. Lett. 96 (2010) 082105.
3. Bukauskas, V.: Surface Interface Anal. 42 (2010) 991.
4. Lin, C.W.: Applied Surface Sci 264 (2013) 280.
5. Han, C.: Bull. Korean Chem. Soc 36 (2015) 1024.
6. Batkova, M.: Europ. Phys. J.-Applied Phys. 73 (2016) 30301.
7. Mollick, S.A.: Nanotechnol. 27 (2016) 435302.
8. Kozhukhov, A.S.: AIP Adv. 8 (2018) 025113.

Gregušová, D., Stoklas, R., Čičo, K., Lalinský, T., and Kordoš, P.: AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with 4nm thick Al2O3 gate oxide, Semicond. Sci Technol. 22 (2007) 947-951.

1. Talele, K.: Optoelectr. Advanced Mater. 1 (2007) 693.
2. Samuel, E.P.: Optoelectr. Advanced Mater. 1 (2007) 698.
3. Uesugi, T.: J. Applied Phys. 104 (2008) art. no. 016103.
4. Ooyama, K.: Japan. J. Applied Phys. 47 (2008) 5426.
5. Chattopadhyay, M.K.: Proc. Inter. Conf. Recent Advances Microwave Theory Appl. (2008) P. 63.
6. Cumana, J.: In: European Conf. Microwave Integrated Circuit 2008 – EuMIC 2008. Amsterdam: IEEE 2008. ISBN: 978-2-87487-007-1. P. 179-182.
7. Saadat, O.I.: IEEE Electron Device Lett. 30 (2009) 1254.
8. Hori, Y.: Japan. J. Applied Phys. 49 (2010) 080201.
9. Eickelkamp, M.: Phys. Status Solidi A 207 (2010) 1342.
10. Miyazaki, E.: Solid-State Electr. 62 (2011) 152.
11. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
12. Esposto, M.: Applied Phys. Lett. 99 (2011) 133503.
13. Tian, B.: Semicond. Sci Technol. 26 (2011) 085023.
14. Venkatachalam, A.: Semicond. Sci Technol. 26 (2011) 085027.
15. Corrion, A. L.: IEEE Electron Device Lett. 32 (2011) 1062.
16. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
17. Eickelkamp, M.: Physica Status Solidi C 8 (2011) 7.
#   18. Lee, B.: Inter. Semicond. Device Research Symp. – ISDRS 2011. IEEE, art. no. 6135162. ISBN 978-145771-7550.
#   19. Zhang, F.: Gongneng Cailiao/J. Functional Mater. 42 (2011) 992.
20. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
21. Hanna, M.J.: Applied Phys. Lett. 101 (2012) 153504.
22. Hung, T.-H.: Applied Phys. Lett. 102 (2013) 072105.
23. Tian B.-L.: Chinese Phys. Lett. 30 (2013) 026101.
24. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
25. Jackson, C.M.: J. Applied Phys. 113 (2013) 204505.
26. Sato, T.: IEEE Electron Device Lett. 34 (2013) 375.
27. Hori, Y.: J. Applied Phys.114 (2013) 244503.
28. Bouguenna, D.: Superlatt. Microstr. 62 (2013) 260.
29. Gatabi, I.R.: IEEE 2013 8TH DTIS. P. 62.
30. Zhang, Z.: J. Electronic Mater. 43 (2014) 828.
31. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
32. Chou, B.-Y.: IEEE Electron Device Lett. 35 (2014) 1091.
33. Kim, D.-K.: J. Semicond. Technol. Sci 14   (2014) SI601.
34. Chou, B.-Y.: IEEE Electron Device Lett. 35 (2014) 903.
35. Colon, A.: Solid-State Electr. 99 (2014) 25.
36. Chou, B.-Y.: Semicond. Sci Technol. 30 (2015) 015009.
37. Asubar, J.T.: IEEE Trans. Electron Dev. 62 (2015) 2423.
38. Kim, J.-J.: Japan. J. Applied Phys. 54 (2015) 038003.
39. Lee, C.-S.: Semicond. Sci Technol. 31 (2016) 055012.
40. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
41. Chang, S.-J.: Japan. J. Applied Phys. 55 (2016) 044104.
42. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
43. Swain, R.: Mater. Sci Semicond. Process. 53 (2016) 66.
44. Wu, X.: Applied Phys. Lett. 109 (2016) 232101.
45. Lee, C.-S.: Mater. Sci Semicond. Process. 59 (2017) 1.
46. Lee, C.-S.: Mater. Sci Semicond. Process. 66 (2017) 39.
47. Lee, C.-S.: Semicond. Sci Technol. 32 (2017) 055012.
48. Jackson, C.M.: ECS J. Solid State Sci Technol. 6 (2017) P489.
49. Osvald, J.: Physica E 93 (2017) 238.
50. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.
51. Lee, C.-S.: Semicond. Sci Technol. 33 (2018) 065004.
52. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
53. Lin, Y.-S.: IEEE Trans. Electron Dev. 65 (2018) 783.
54. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
55. Reddy, P.: J. Vacuum Sci Technol. A 36 (2018) 061101.
56. Lee, C.-S.: IEEE J. Electron Dev. Soc 7 (2019) 430.
57. Trung, N.H.: ECS J. Solid State Sci Technol. 9 (2019) Iss. 1.
58. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020)‏ 13.
59. Reddy, P.: Semicond. Sci Technol. 35 (2020) 055007.

Bartolome, E., Pavau, A., Guitierrez, J., Granados, X., Pomar, A., Puig, T., Obradors, X., Cambel, V., Šoltýs, J.,Gregušová, D., Chen, D., Sanchez, A., : Artificial magnetic granularity effects on patterned epitaxial YBa2Cu3O7-x thin films. Phys. Rev. B 76 (2007) 094508.

1. Vestgarden, J. I.: Phys. Rev. B 85 (2012) 014516.
2. Janu, Z.: Physica C 501 (2014) 55.

Gregušová, D., Stoklas, R., Čičo, K., Heidelberg, G., Marso, M., Novák, J., Kordoš, P., : Characterization of AlGaN/GaN MOSHFETs with Al2O3 as gate oxide, Physica Status Solidi c 4 (2007) 2720-2723.

1. Basu S.: J. Electrochem. Soc 157 (2010) H947.
2. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
#   3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN: 978-981314673-0. P. 395-433.
4. Suria, A.J.: Applied Phys. Lett. 110 (2017) 253505.
5. Taoka, N.: Japan. J. Applied Phys. 57 (2018) 01AD04.

Gregušová, D., Kučera, M., Hasenöhrl, S., Vávra, I., Štrichovanec, P., Martaus, J., Novák, J., : Impact of growth conditions on the spatial non-uniformities of composition in InGaP epitaxial layers. Physica Status Solidi c 4 (2007) 1419-1422.

1. Simon, J.: J. Applied Phys. 109 (2011) 013708.
2. Tomasulo, S.: IEEE J. Photovolt. 2 (2012) 56.

Kordoš, P., Gregušová, D., Stoklas, R., Čičo, K., and Novák, J.: Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect tranzistor, Applied Phys. Lett. 90 (2007) 123513.

1. Kuzmik, J.: IEEE Trans. Electron Dev. 55 (2008) 937.
2. Miczek, M.: J. Applied Phys. 103 (2008) 104510.
3. Arulkumaran, S.: Applied Phys. Express 2 (2009) 031001.
4. Selvaraj, S.L.: J. Electrochem. Soc. 156 (2009) H690.
5. Feng, Q.: Chinese Phys. B 18 (2009) 3014.
6. Miczek, M.: Japan. J. Applied Phys. 48 (2009) 04C092.
7. Maeda, N.: Phys. Status.Solidi C 6 (2009) S1049.
8. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
9. Bi, Z.W.: Acta Physica Sinica 58 (2009) 7211.
10. Liu, Z.H.: Applied Phys. Lett. 95 (2009) 223501.
11. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
12. Tian, F.: J. Electrochem. Soc. 157 (2010) H557.
13. Kong, Y.C.: IEEE Electron Device Lett. 31 (2010) 93.
14. Liu, Z.H.: IEEE Electron Device Lett. 31 (2010) 96.
15. Basu S.: J. Electrochem. Soc 157 (2010) H947.
16. Eickelkamp, M.: Phys. Status Solidi A 207 (2010) 1342.
17. Mao, W.: Chinese Phys. Lett. 207 (2010) 128501.
18. Kim, K,-W.: Microelectr. Engn. 88 (2011) 1225.
19. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
20. Liu, S.: Japan. J. Applied Phys. 50 (2011) 04DF10.
21. Zhou, B.: Chinese Phys. Lett. 28 (2011) 107303.
22. Tian, B.: Semicond. Sci Technol. 26 (2010) 085023.
23. Kayis, C.: J. Applied Phys. 109 (2011) 084522.
24. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
25. Eickelkamp, M.: Physica Status Solidi C 8 (2011) 2213.
#     26. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Research Progress Solid State Electron. 31 (2011) 319.
27. Bi, Zhi-W.: Chinese Phys. Lett. 29 (2012) 028501.
28. Feng, Q.: Chinese Phys. B 21 (2012) 067305.
29. Liu, H.-Y.: IEEE Electron Device Lett. 33 (2012) 997.
30. Kong, Y.-C.: Chinese Phys. Lett. 29 (2012) 057702.
#     31. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
32. Tian B.-L.: Chinese Phys. Lett. 30 (2013) 026101.
33. Seok, O.: Semicond. Sci Technol. 28 (2013) 025001.
34. Liu, X.: J. Applied Phys. 114 (2013) 027003.
35. Liu, H.-Y.: IEEE Trans. Electron Devices 60 (2013) 213.
36. Tapajna, M. .: Japan. J. Applied Phys. 52 (2013) SI08JN08.
#    37. Tian B.-L.: J. Semicond. 34 (2013) 094003.
38. Kubo, T.: Semicond. Sci Technol. 29 (2014) 045004.
39. Ye, D.: J. Phys. D 47 (2014) 255101.
40. Wang, X.: Nano Lett. 14 (2014) 3014.
41. Liu, H.-Y.: IEEE ISEEE 2014. 1-3 (2014) 591.
42. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
43. Kubo, T.: Japan. J. Applied Phys. 54 (2015) 020301.
44. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
45. Zhou, X. J.: J. Applied Phys. 120 (2016) 125706.
46. Du, J.: Micro & Nano Lett. 11 (2016) 503.
47. Guo, Z.: Applied Phys. Lett. 109 (2016) 062903.
#     48. Hao, Y.: In Nitride Wide Bandgap Semicond. Mater. Electronic Devices. CRC Press 2016. ISBN: 978-149874513-0, pp. 1-368.
49. Takhar, K.: Solid-State Electr. 131 (2017) 39.
50. Zhu, J.: IEEE Trans. Electron Dev. 64 (2017) 840.
51. Lin, Y.-S.: J. Vacuum Sci Technol. B 35 (2017) 011209.
52. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902.
#     53. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 37 (2017) 221+244.
54. Xing, W.: IEEE Electron Device Lett. 39 (2018) 947.
55. Guo, Z.: Phys. Rev. Applied 11 (2019) 024040.
56. Zhang, H.-S.: IEEE Trans. Electron Dev. 66(2019) 3302.
57. Mohanty, S.S.: J. Micromech. Microengn. 29 (2019) 084001.
58. Mohanty, S.S.: J. Nanoelectr. Optoelectron. 14 (2019) 923.
59. Zhu, J.: Semicond. Sci Technol. 35 (2020) 065017.
60. Verma, M.: Trans. Electric. Electron. Mater.‏ 21 (2020) 427.
61. Zhou, X.: Applied Phys. A‏ 126 (2020) 825.
62. Hwang, J. D.: Mater. Sci Engn. B 266 (2021) 115063.

Cambel, V., Karapetrov, G., Novosad, V., Bartolome, E., Gregušová, D., Fedor, J., Kúdela, R., Šoltýs, J., :Novel Hall sensors developed for magnetic field imaging systems. J. Magnetism Magn. Mater. 316 (2007) 232-235.

1. Cheng, Y.H.: Physical Rev. B 80 (2009) 174412.
2. Tian, W.: Rev. Sci Instrum. 84 (2013) 035004.

Čičo, K., Kuzmík, J., Gregušová, D., Stoklas, R., Lalinský, T., Georgakilas, A., Pogany, D., Fröhlich, K., :Optimization and performance of Al2O3/GaN metal-oxide-semiconductor structures. Microelectr. Reliability 47 (2007) 790-793.

1. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
2. Quah, H.J.: IEEE Trans. Electron Devices 59 (2012) 3009.
3. Quah, H.J.: Sci. Advanced Mater. 5 (2013) 1816.
4. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
5. Quah, H.J.: ACS Applied Mater. Interfaces 5 (2013) 6860.
6. Yang, M.: J. Rare Earths 31 (2013) 395.
#    7. Quah, H.J.: Current Applied Phys. 13 (2013) 1433.
      8. Quah, H.J.: Mater. Chem. Phys. 148 (2014) 592.
9. Prasad, C.V.: Applied Phys. A 123 (2017) 279.
10. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
11. Nguyen, H.T.: Materials 13 (2020) 899.
12. Yang, C.: Applied Phys. Lett. 117 (2020) 052105.

Heidelberg, G., Bernát, J., Fox, A., Marso, M., Lüth, H., Gregušová, D., Kordoš, P., : Comparative study on unpassivated and passivated AlGaN/GaN HFETs and MOSHEFTs. Physica Status Solidi a 203 (2006) 1876-1881.

1. Liu, C.: Semicond. Sci Technol. 22 (2007) 522.
2. Aggarwal, R.: Microwave Optical Technol. Lett. 50 (2008) 331.
3. Venkatachalam, A.: Semicond. Sci Technol. 26 (2011) 085027.
4. Lee, K. H.: Applied Phys. Lett. 99 (2011) 153505.
#   5. Rahman, F.: Photonic Crystals: Optical Properties, Fabrication and Appl. 2011.  ISBN: 978-161122413-9. P. 89-108.
#    6. Lee, K.H.: EPJ Applied Phys. 57 (2012) 30102.
7. Liu, H.-Y.: ECS J. Solid State Sci Technol. 1 (2012) Q86.
8. Donmezer, N.: IEEE Trans. Electron Dev. 61 (2014) SI2041.
9. Donmezer, N.: IEEE Trans. Electron Dev. 62 (2015) 2437.
10.  Liu, T.: Nano Energy 39 (2017) 53.
11. Cui, X.: Nano Energy 68 (2020) 104361.

Eliáš, P., Gregušová, D., Martaus, J., Kostič, I., : Conformal AZ5214-E resist deposition on patterned (1 0 0) InP substrates. J. Micromech. Microengn. 16 (2006) 191–197.

1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
*      2. Škriniarová, J.: Vacuum 111 (2015) 5.
*     3. Sečianska, K.: APCOM 2015. P. 189-193.

Eliáš, P., Gregušová, D., Štrichovanec, P., Kostič, I., Novák, J., : Deposition of AZ5214-E layers on non-planar substrates with a “draping” technique. In: ASDAM 2006. Eds. J. Breza et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 97-100.

1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
2. Saller, K.B.: J. Vacuum Sci Technol. B 37 (2019) 040602.

Kordoš, P., Bernát, J., Gregušová, D., Marso, M., Lüth, H., : Impact of surface treatment under the gate on the current collapse of unpassivated AlGaN/GaN heterostructure field-effect transistors. Semicond. Sci Technol. 21 (2006) 67-71.

1. Kuzmik, J.: J. Applied Phys. 106 (2009) 124503.
2. Quay, R.: Gallium Nitride Electronics. Springer 2008. ISBN 978-3-540-71890-1. P. 139.
3. Lee, N.-H.: Japan. J. Applied Phys. 53 (2014) SI04EF10.
4. Mehari, S.: IEEE Trans. Electron Dev. 63 (2016) 4702.

Stoklas, R., Čičo, K., Gregušová, D., Novák, J., Kordoš, P., : Preparation and properties of AlGaN/GaN MOSHFETs with MOCVD Al2O3 as gate oxide. In: ASDAM 2006. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 249-252.

     1. Kong, X.: Chinese Phys. Lett. 29 (2012) 078502.

Gregušová, D., Eliáš, P., Öszi, Z., Kúdela, R., Šoltýs, J., Fedor, J., Cambel, V., Kostič, I., : Technology and properties of a vector hall sensor. Microelectronics J. 37 (2006) 1543-1546.

#     1.Rybak, M.: Przeglad Wlokienniczy 61 (2007) 39.
2. Dai, C.-L.: Microelectronics J. 39 (2008) 744.
3. Peters, V.: IEEE Trans. Magn. 49 (2013) 109.
4. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Čičo, K., Kuzmik, J., Gregušová, D., Lalinský, T., Georgakilas, A., Pogany, D., and Fröhlich, K.: Rapid thermal annealing and performance of Al2O3/GaN metal-oxide-semiconductor structures. In: ASDAM 2006. Proc. 6th Int. Conf. on Advanced Semiconductor Devices and Microsystems. Eds. J. Breza et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 197-200.

1. Kim, H.-D.: J. Alloys Compounds 742 (2018) 822.

Kordoš, P., Kúdela, R., Gregušová, D., Donoval, D., : The effect of passivation on the performance of AlGaN/GaN heterostructure field-effect transistors. Semicond. Sci Technol. 21 (2006) 1592-1596.

1. Shiu, J.Y.: Semicond. Sci Technol. 22 (2007) 717.
2. Adamowicz, B.: Optica Applicata 37 (2007) 327.
#     3. Kaminska, E.: MRS Symp. Proc. 1035 (2008) 104.
4. Romero, M.F.: IEEE Electron Device Lett. 29 (2008) 209.
5. Desmaris, V.: Solid-State Electron. 52 (2008) 632.
6. Kurakin, A.M.: J. Applied Phys. 103 (2008) art. no. 083707.
7. Shim, J.: J. Electrochem. Soc. 156 (2009) H68.
#     8. Chevtchenko, S.A.: 2011 Inter. Conf. Compound Semicond. Manufact. Technol. 100648.
9. McKerracher, I.R.: J. Phys. D 43 (2010) 335104.
10. Cho, S.-J.: Thin Solid Films 520 (2012) 4455.
11. McKerracher, I.: J. Applied Phys. 112 (2012) 113511.
12. Liao, S.Y.: J. Nanosci Nanotechnol. 14 (2014) 6243.
13. Mutta, G.R.: Semicond. Sci Technol. 29 (2014) 095010.
14. Liao, S.Y.: J. Nanosci Nanotechnol. 14 (2014) 6243.
15. Zhang, B.: Applied Phys. Lett. 106 (2015) 093506.
16. Jabli, F.: J. Alloys Compounds 650 (2015)  533.
17. Singh, Sarab P.: J. Phys. D 48 (2015) 365104.
18. Kara, D.: Proc. ASME 2017. Art. No.UNSP V001T04A011.
19. Gulseren, M.E.: Mater. Res. Express 6 (2019) 095052.
20. Khan, D.: Micromachines 11 (2020) 680.
21. Khan, D.: ACS Sensors 5 (2020)‏ 3124.

Gregušová, D., Bernát, J., Držík, M., Marso, M., Uherek, F., Novák, J., and Kordoš, P.: Influence of passivation induced stress on the performance of AlGaN/GaN HEMTs. Phys. Status Solidi c 2 (2005) 2619-2622.

1. Higashiwaki, M.: J. Applied Phys. 100 (2006) Art. No. 033714.
#     2. Desmaris, V.: Doktorsavhandlingar vid Chalmers Tekniska Hogskola (2006).
3. Higashiwaki, M.: Thin Solid Films 516 (2008) 548.
4. Lee, B.: Inter. Electron Devices Meeting 2010.
5. Jabli, F.: J. Alloys Compounds 650 (2015)  533.
6. Singh, S.P.: J. Phys. D 48 (2015) 365104.
7. Liu, C.: Semicond. Sci Technol. 32 (2017) 075003.
8. Bai, Z.: Solid-State Electr. 133 (2017) 31.
9. Ayachi, S.: J. Ovonic Research 13 (2017) 339.
10. Kumar, S.: Defence Sci J. 68 (2018) 572.
11. Zhu, G.: Semicond. Sci Technol. 33 (2018) 095023.
12. Cho, S.-J.: Electron. Lett. 54 (2018) 947.
13. Rawat, A.: Solid-State Electr. 164 (2020) 107702.
14. Kim, H.: J. Vacuum Sci Technol. B 37 (2020) 041203.
15. Ando, Y.: IEEE Trans. Electron Dev. 67 (2020) 5421.

Cambel, V., Fedor, J., Gregušová, D., Kováč, P., Hušek, I., : Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization. Supercond. Sci Technol. 18 (2005) 417-421.

1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Ma, Z. Q.: Inter. Materials Rev. 56  (2011) 267.
3. Higashikawa, K.: Physica C 504 (2014) 62.
4. Rostami, Kh.R.: Instrum. Experimen. Techn. 59 (2016) 273.
5. Shaw, G.: Rev. Sci Instrum. 87 (2016) 113702.
6. Rostami, Kh. R.: Measurement Techn. 59 (2017) 1297.
7. Rostami, Kh.R.: Instrum. Experimen. Techn. 62 (2019) 450.
8. Zhang, W.: Ceramics Inter. 45 (2019) 6413.
9. Shaw, G.: AIP Conf. Proc. 2115 (2019) UNSP 030210.
10. Rostami, Kh.R.: Techn. Phys.‏ 65 (2020) 1975.

Bernát, J., Gregušová, D., Heidelberg, G., Fox, A., Marso, M., Lüth, H., and Kordoš, P.: SiO2/AlGaN/GaN MOSHFET with 0.7 μm gate-length and fmax/fT of 40/24 GHz Electronics Lett. 41 (2005) 667-668.

 1. Maeda, N.: Physica Status Solidi A 203 (2006) 1861.
2. Maeda, N.: Japan. J. Applied Phys. 46 (2007) 547.
3. Maeda, N.: Proc. SPIE 6473 (2007) 647316.
4. Miczek, M.: J. Applied Phys. 103 (2008) 104510.
5. Maeda, N.: Phys. Status Solidi C 6 (2009) S1049.
6. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
7. Li, Y.-R.: Rare Metals 34 (2015) 371.
8. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
9. Chang, S.-J.: ECS J. Solid State Sci Technol. 7(2018) N86.

Cambel, V., Gregušová, D., Fedor, J., Kúdela, R., Bending, S., : Scanning vector Hall probe microscopy. J. Magnetism Magnetic Mater. 272-276 (2004) 2141-2143.

1. Candini, A.: Nanotechnol. 17 (2006) 2105.
2. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
3. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Gregušová, D., Cambel, V., Fedor, J., Kúdela, R., Šoltýs, J., Lalinský, T., Kostič, I., Bending, S., : Fabrication of a vector Hall sensor for magnetic microscopy. Applied Phys. Lett. 82 (2003) 3704-3706.

1. De Leo, C.: Advances Cryogenic Engn. 50 A,B  711 (2004) 709.
2. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.
3. Jordan, A.N.: Phys. Rev. B 77 (2008) 075334.
4. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
5. Kweon, S.: J. Applied Phys. 105 (2009) 093906.
6. Vorobev, A.: Applied Phys. Lett. 103 (2013) 173513.
7. Chang, J.-H.: J. Phys. D 48 (2015) 405004.
8. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Cambel, V., Gregušová, D., Kúdela, R., : Formation of GaAs three-dimensional objects using AlAs “facet-forming” sacrificial layer and H3PO4, H2O2, H2O based solution. J. Applied Phys. 94 (2003) 4643-4648.

1. Weber, F.M.: Applied Phys. Lett. 90 (2007)  161104.
2. Karl, M.: AIP Conf. Proc. 893 (2007) 1133.
3. Karl, M.: Applied Phys. Lett. 92 (2008)  231105
4. Karl, M.: Superlattices Microstr. 43 (2008) 635.
5. Novák, J.: In: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-. P. 219.
6. Bae, J.U.: IEEE Trans. Magnetics 44 (2008) 4706.
7. Karl, M.: IEEE 2008 Conf. Lasers Electro-Optics & Quantum Electr. Laser Sci onf. 1-9 (2008) 3120.
8. Karl, M.: AIP Conf. Proc. 1199 (2009) 369.
9. Deng, G.G.: J. Applied Physics 108 (2010) 074509.
10. Ruelke, D.: J. Crystal Growth 324 (2011) 259.
11. Ruelke, D.: Applied Phys. Lett. 100 (2012) 251101.
12. Okazaki, S.: Japan. J. Applied Phys. 52 (2013) 098002.

Fedor, J., Cambel, V., Gregušová, D., Hanzelka, P., Dérer, J., Volko, J., : Scanning vector Hall probe microscope. Rev. Sci Instruments 74 (2003) 5105-5110.

1. Tang, C.-C.: Rev. Sci Instrum. 85 (2014) 083707.
2. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.

Kicin, S., Cambel, V., Kuliffayová, M., Gregušová, D., Kováčová, E., Novák, J., Kostič, I., Förster, A., :Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer. J. Applied Physics 91 (2002) 878-880.

1. Deneke, C.: Physica E 23 (2004) 269.
2. Golod, S.V.: Thin Solid Films 489 (2005) 169.
3. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
4. Liang, Z.W.: J. Applied Phys. 108 (2010) 074313.

Cambel, V., Kúdela, R., Gregušová, D., Hasenöhrl, S., Eliáš, P., Novák, J., : Characterization of 2DEG Hall probes in high magnetic field at 4,2K. In: ASDAM 98. Ed. J.Breza. Piscataway: IEEE 1998. P. 31.

          1. Gonzalez-Jorge, H.: Cryogenics 46 (2006) 736.

Cambel, V., Gregušová, D., Eliáš, P., Hasenöhrl, S., Olejníková, B., Novák, J., Schaepers, T., Neurohr, K., Fox, A., : Characterization of InGaAs/InP microscopic Hall probe arrays with 2DEG active layer Mater. Sci Engn. B 51 (1998) 188.

1. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
2. Vavra, I.: Sensors Actuators A 91 (2001) 177.

Škriniarová, J., Kováč, J., Breza, J., Gregušová, D., : Wet etching of InGaP and GaAs in HCl, H3PO4: H2O2 Sensors Materials 10 (1998) 213-218.

#     1. Da Silva Filho, A.: J. Electron. Mater. 28 (1999) 1428.
2. Kinder, R.: ASDAM ’02. Piscataway: IEEE 2002. P. 231.
3. Cich, M.J.: Applied Phys. Lett. 82 (2003) 651.
4. Li, C.C.: J. Vacuum Sci Technol. B 28 (2010 635.

Škriniarová, J., Kováč, J., Breza, J., Gregušová, D., : Chemical etching of InGaP and GaAs in solutions of HCl, H3PO4 and H2O2, J. Electr. Engn. 48 (1997) 85.

        1. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.

Kováč, P., Cambel, V., Gregušová, D., Eliáš, P., Hušek, I., Kúdela, R., Hasenöhrl, S., Ďurica, M., : Testing of homogenity of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Series No. 158 (1997) 1311.

1. Gomory, F.: Physica C 308 (1998) 203.
2. Schauer, W.: Proc. 9th CIMTEC. Florence 1998. P. 436
3. Herrmann, J.:  IEEE Trans. Applied Supercond. 9 (1999) 1824.
4. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
5. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.

Gregušová, D., Eliáš, P., Malacký, L., Kúdela, R., Škriniarová, J., : Wet chemical MESA etching of InGaP and GaAs with solutions based on HCl, CH3COOH and H2O2 Physica Status Solidi A 151 (1995) 113.

1. Keckes, J.: J. Applied Phys. 80 (1996) 6204.
*    2. Stuchlíková, L.: ASI NATO SERIES 11 (1996) 95.
*    3. Redhammer, R.: ASI NATO SERIES 11 (1996) 293.
4. Rabah, H.: Applied Surf. Sci 171 (2001) 34.
5. Cich, M.J.: Applied Phys. Lett. 82 (2003) 651.
*    6. Joray, R.: PhD Thesis. Lausanne: EPFL 2005.
7. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.
8. Kordos, P.: Applied Phys. A 87 (2007) 563.
9. Burns, D. W.: MEMS Materials and Processes Handbook. Springer 2011. ISBN 978-0-387-47316-1. P. 457-665.
10. Weber, J.: IEEE J. Photovolt. 7 (2017) 335.

Betko, J., Kordoš, P., Kuklovský, S., Förster, A., Gregušová, D., Lüth, H., : Electrical properties of molecular beam epitaxial GaAs layers grown at low temperature Materials Sci Engn. B 28 (1994) 147.

1.  Arulkumasan,  S.:  Nuclear  Instrum.  Meth.  Phys. Res B 117 (1996) 243
2. Arifin, P.: In: Proc. 1996 Conf. Optoelectr. Microelectron. Mater. Devices. IEEE 1997. P. 349.
3. Dharmarasu, N.: Physica Status Solidi A 167 (1998) 157.
4. Kumar, J.: Nuclear Instr. Methods in Phys. Res. B 156 (1999) 84.
*     5. Novák, J.: Doktorská diz. práca. Bratislava, ElÚ SAV 2000.
6. Ueng, H.J.: J. Applied Phys. 90 (2001) 5637.
7. Korn, T.: J. Applied Phys. 91 (2002) 2333.
*     8. Griebel, M.: Dr. rer. nat. Arbeit. München: Univ. Stuttgart. 2002.
9. Missous, M.: IEEE Sensors J. 13 (2013)  63.
10. Missous, M.: Handbook of Terahertz Technol. Imaging, Sensing and Comm. Woodhead Publ. Ser. Electr. Optical Mater. 34 (2013) 464.
11. Field, R. L.: Applied Phys. Lett. 109 (2016) 252105.
12. Moon, K.: Applied Phys. Lett. 109 (2016) 071105.

Lalinský, T., Gregušová, D., Mozolová, Ž., Breza, J., : High temperature stable Ir-Al/n-GaAs Schottky diodes Applied Phys. Lett. 64 (1994) 1818.

1. Eftekhari, G.: J. of Vacuum Sci and Techn. 14 (1996) 3596.
2. Chen, C.P.: J. of Vacuum Sci & Technology B 17 (1999) 432.
*     3. Venger, E.F.: Mežfaznyje vzaimodeistvija i mechanizmy degradacii v strukturach metall-InP i metall-GaAs. Kyjev: Nac. Akad. Nauk Ukrajiny 1999.
4. Bozhkov, V. G.: J. Applied Phys. 115 (2014) 224505.

Gregušová, D., Lalinský, T., Mozolová, Ž., Machajdík, D., Pochaba, I., Vávra, I., Porges, M., : Characterization of WN x metallization prepared by ion implantation of nitrogen Thin Solid Films 249 (1994) 250.

1. Gokce, O.H.: Thin Solid Films 353 (1999) 149.
#   2. Boukhris, L.: Vide: Sci, Techn. et Appl. 53 (284 Suppl. 1) (1997) 203.

Lalinský, T., Kuzmík, J., Gregušová, D., Mozolová, Ž., Breza, J., Feciško, M., Seidel, P., : Properties of WN x/GaAs Schottky contacts prepared by ion implantation of nitrogen J. Materials Sci 3 (1992) 157.

1. Chiu, H.T.: J. Mater. Res. 8 (1993) 1353.
2. Floyd, L.P.: Solid State Electr. 37 (1994) 1579.
3. Kim, J.D.: Inter. J. Electr. 81 (1996) 285.
*   4. Venger, E.F.: Mežfaznyje vzaimodeistvija i mechanizmy degradacii v strukturach metall-InP i metall-GaAs. Kyjev: Nac. Akad. Nauk Ukrajiny 1999.

Šafránková, J., Lalinský, T., Kuzmík, J., Mozolová, Ž., Porges, M., Gregušová, D., : Preparation and properties of GaAs double-Schottky-interdigitated photodetectors, Crystal Propert. Preparation 19-20 (1989) 315.

     1. Riesz, F.: Proc. SPIE WA 92 (1992).

Lalinský, T., Kuzmík, J., Porges, M., Mozolová, Ž., Gregušová, D., : Technology and characterization of a submicrometer GaAs length GaAs MESFETs, Crystal Propert. Preparation 19-20 (1989) 259.

*    1. Wronka, A.: Proc. Conf. on Surface Sci. Phys. Lodz: Inst. Phys. Univ. Lodz 1989.

Lalinský, T., Chromik, Š., Porges, M., Gregušová, D., Kuzmík, J., Breza, J., : Problémy technológie, elektrickej charakterizácie a spoľahlivosti ohmických kontaktov na GaAs, Elektrotechn. časopis 37 (1986) 354.

       1. Murakami, M.: Sci Technol. Advanced Materials 3 (2002) 1.