RNDr. Hušeková Kristína

Gucmann, F., Nádaždy, P., Hušeková, K., Dobročka, E., Priesol, J., Egyenes, F., Šatka, A., Rosová, A., and Ťapajna, M.: Thermal stability of rhombohedral α- and monoclinic β-Ga2O3 grown on sapphire by liquid-injection MOCVD, Mater. Sci Semicond. Process. 156 (2023) 107289.

1. Jewel, M.U.: Physica Status Solidi A 220 (2023) 2300036.

Dobročka, E., Gucmann, F., Hušeková, K., Nádaždy, P., Hrubišák, F., Egyenes, F., Rosová, A., Mikolášek, M., and Ťapajna, M.: Structure and thermal stability of ε/κ-Ga2O3 films deposited by liquid-injection MOCVD, Materials 16 (2023) 20.

1. Girolami, M.: J. Mater. Chem. C 11 (2023) 3759.

Kadlečíková, M., Vančo, Ľ., Breza, J., Mikolášek, M., Hušeková, K., Fröhlich, K., Procel, P., Zeman, M., and: Isabella, O.: Raman spectroscopy of silicon with nanostructured surface, Optik 257 (2022) 168869.

1. Dong, G.Y.: Optics Laser Technol. 164 (2023) 109517.

Sahoo, P.P., Mikolášek, M., Hušeková, K., Dobročka, E., Šoltýs, J., Ondrejka, P., Kemény, M., Harmatha, L., Mičušík, M., and Fröhlich, K.: Si-based metal-insulator-semiconductor structures with RuO2-(IrO2) films for photoelectrochemical water oxidation, ACS Applied Energy Mater. 4 (2021) 11162-11172.

1. Li, Y.M.: ACS Mater. Lett. 4 (2022) 779.
2. Cheng, C.H.: Energy Sci Engn. 10 (2022) 1526.
3. Xie, J.H.: Inorg. Chem. Front. 9 (2022) 4999.
4. Kubba, D.: ACS Applied Nano Mater. 5 (2022) 16344.
5. Kim, C.: Energy Environ. Sci 16 (2023) 2968.

Egyenes-Pörsök, F., Gucmann, F., Hušeková, K., Dobročka, E., Sobota, M., Mikolášek, M., Fröhlich, K., and Ťapajna, M.: Growth of α- and β-Ga2O3 epitaxial layers on sapphire substrates using liquid-injection MOCVD, Semicond. Sci Technol. 35 (2020) 115002.

1. Tak, B.R.: J. Phys. D 54 (2021) 453002.
2. Zhou, J.G.: J. Mater. Res. 36 (2021) 4832.
3. Yang, D.: Electron. Mater. Lett. 18 (2022) 113.
4. Biswas, M.: APL Mater. 10 (2022) 060701.
5. Liu, Z.: J. Phys. D 56 (2023) 093002.
6. Jewel, M.U.: Physica Status Solidi A 220 (2023) 2300036.

Chymo, F., Fröhlich, K., Kundrata, I., Hušeková, K., Harmatha, L., Racko, J., Breza, J., and Mikolášek, M.: Characterization of MIS photoanode with a thin SiO2 layer for photoelectrochemical water splitting, AIP Conf. Proc. 2131 (2019) 020020.

1. Pastukhova, N.: Adv. Mater. Interfac. 8 (2021) 2002100.

Ťapajna, M., Drobný, J., Gucmann, F., Hušeková, K., Gregušová, D., Hashizume, T., and Kuzmík, J.: Impact of oxide/barrier charge on threshold voltage instabilities in AlGaN/GaN metal-oxide-semiconductor heterostructures, Mater. Sci in Semicond Process.  91 (2019) 356-361.

1. Duong, D.N.: J. Applied Phys. 127 (2020) 094501.
2. Kim, H.: IEEE Access 10 (2022) 68724.

Brytavskyi, I., Hušeková, K., Myndrul, V., Pavlenko, M., Coy, E., Zaleski, K., Gregušová, D., Yate, L., Smyntyna, V., and Iatsunskyi, I.: Effect of porous silicon substrate on structural, mechanical and optical properties of MOCVD and ALD ruthenium oxide nanolayers, Applied Surface Sci 471 (2019) 686-693.

1. Gueye, I.: J. Catal. 380 (2019) 247.
2. Ensafi, A.A.:Electroanal.‏ 32 (2020)  1707.
#    3. Winter, C.H.: In Comprehensive Coord. Chem. III, vol. 1-9. ISBN 978-008102688-5. Elsevier 2021, p. 824.
4. Jogiaas, T.: Nanomater. 12 (2022) 82.
5. Chen, S.T.: Catal. Sci Technol. 12 (2022) 1637.

Gucmann, F., Ťapajna, M., Pohorelec, O., Haščík, Š., Hušeková, K., and Kuzmík, J.: Creation of two-dimesional electron gas and role of surface donors in III-N metal-oxide-semiconductor high-electron mobility transistors, Phys. Status Solidi A  215 (2018) 1800090.

1. Song, K.: J. Phys. D 53 (2020) 345107.
2. Shi, Y.: IEEE Trans. Electron Dev. 67 (2020) 2290.
3. Duong D.N.: J. Applied Phys. 127 (2020) 094501.
4. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021) 159.

Mikolášek, M., Fröhlich, K., Hušeková, K., Racko, J., Rehacek, V., Chymo, F., Ťapajna, M., and Harmatha, L.: Silicon based MIS photoanode for water oxidation: a comparison of RuO2 and Ni Schottky contacts, Applied Surface Sci 461 (2018) 48-53.

1. Quinn, J.: ACS Energy Lett. 4 (2019) 2632.
2. Silva, R.C.: Electron. Mater. Lett. 15 (2019) 645.
3. Hemmerling, J.: Adv. Energy Mater. 10 (2020) 1903354.
4. Li, O.L.: Applied Surface Sci 528 (2020) 146979.
5. Zhao, C.: ACS Applied Energy Mater. 3 (2020)‏ 8216.
6. Hemmerling, J.R.: Accounts Chem. Res. 54 (2021) 1992.
7. Boddula, R.: Chinese J. Catal. 42 (2021) 1387.
8. Karthik, P.E.: ACS Catal. 11 (2021) 12763.
9. Adiga, P.: J. Vacuum Sci Technol. A 40 (2022) 010801.
10. Cheng, C.H.: Energy Sci Engn. 10 (2022) 1526.
11. Li, Y.M.: ACS Mater. Lett. 4 (2022) 779.
12. Yuan, Y.X.: Applied Phys. Lett. 121 (2022) 173902.
13. Hu, S.: In: Springer Handbooks. Springer Sci Business Media Deutschland GmbH 2022, pp. 879.

Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.

1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) ‏ 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.
9. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.
10. Vauche, L.: ACS Applied Electron. Mater. 3 (2021) 1170.
11. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021)159.
12. Kaplar, R.: Ultrawide Bandgap Semicond. 107 (2021) 191.
13. Ahbab, S.S.: Proc. IEEE Inter. Women in Engn. (WIE) Conf. Electr. Computer Engn., WIECON-ECE 2021. IEEE 2022, p. 59.
14. Gong, J.R.: Japan. J. Applied Phys. 61 (2022) 011003.
15. Lin, Y.S.: Sci Adv. Mater. 4 (2022) 1419.
16. Nautiyal, P.: Microelectron. Reliab. 139 (2022) 114800.
17. Brivio, F.: Applied Phys. Lett. 123 (2023) 022104.

Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.

1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.

Gucmann, F., Gregušová, D., Válik, L., Ťapajna, M., Haščík, Š., Hušeková, K., Fröhlich, K., Pohorelec, O., and Kuzmík, J.: DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric prepared by various techniques. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 9-12.

1. Hasan, Md. R.: J. Vacuum Sci Technol. B 35 (2017) 052202.
2. Pan, T.: Materiali in Tehnologije 52 (2018) 795.

Aarik, L., Arroval, T., Rammula, R., Mändar, H., Sammelselg, V., Hudec, B., Hušeková, K., Fröhlich, K., and Aarik, J.: Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors, Thin Solid Films 565 (2014) 19-24.

1. Winzer, A.: J. Vacuum Sci Technol. B 33 (2015) 01A106.
2. Kukli, K.: Thin Solid Films 589 (2015) 597.
3. Simon, D.K.: IEEE Photovoltaic Specialists Conf. 2015.
4. Dirnstorfer, I.: IEEE J. Photovolt. 6 (2016) 86.
5. Aich, S.: Materials Lett. 178 (2016) 135.
6. Dirnstorfer, I.: Nanosci Technol.  (2016) 41.
7. Testoni, G. E.: J. Phys. D 49 (2016) 375301.
8. Lee, G.-H.: ECS Trans. 75 (2016) 53.
9. Yurkevich, O.: J. Synchrotron Radiat. 24 (2017) 775.
10. Bao, Y.: Adv. Electronic Mater. 3 (2017) SI1600491.
11. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
12. Guerra-Nunez, C.: Chem. Mater. 29 (2017) 8690.
13. Atay, F.: J. Electronic Mater. 47  (2018) 1601.
14. Digdaya, I.A.: J. Phys. Chem. C 122  (2018) 5462.
15. Lale, A.: Thin Solid Films 666 (2018) 20.
16. Cergel, M.S.: Ionics 25 (2019) 3823.
17. Berghuis, W.J.H.: J. Vacuum Sci Technol. A 38 (2020) Iss. 2.
18. Atay, F.: J. Electronic Mater.‏ 49 (2020) SI5542.
19. Ghazaryan, L.: Nanotechnol. 32 (2021) 095709.
20. Kwon, D.S.: ACS Applied Mater. Interfac. 13 (2021) 23915.
21. Chiappim, W.: Micromachin. 12 (2021) 588.
22. Kim, B.: ECS J. Solid State Sci Technol. 10 (2021) 083006.
23. Lale, A.: Thin Solid Films 732 (2021) 138761.
24. Buyukuslu, H.: Nuclear Instrum. Methods Phys. Res. B 535 (2023) 234.

Arroval, T., Aarik, L., Rammula, R., Mändar, H., Aarik, J., Hudec, B., Hušeková, K., and Fröhlich, K.: Influence of growth temperature on the structure and electrical properties of high-permittivity TiO2 films in TiCl4-H2O and TiCl4-O3 atomic-layer-deposition processes, Phys. Status Solidi a 211 (2014) 425-432.

1. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
2. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
3. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kim, S.H.: ACS Applied Mater. Interfac. 10 (2018) 41544.
#     6. Cianci, E.: Metal Oxides for Non-volatile Memory: Materials, Technology and Applications. Elsevier 2022, pp. 169-199. ISBN: 978-0-12-814629-3.

Murakami, K., Rommel, M., Hudec, B., Rosová, A., Hušeková, K., Dobročka, E., Rammula, R., Kasikov, A., Han, J., Lee, W., Song, S., Paskaleva, A., Bauer, A., Frey, L., Fröhlich, K., Aarik, J., Hwang, C., : Nanoscale characterization of TiO2 films grown by atomic layer deposition on RuO2 electrodes. ACS Applied Mater. Interfaces 6 (2014) 2486-2492.

1. Azevedo, J.: Energy & Environmen. Sci 7 (2014) 4044.
2. Jeon, W.: ACS Applied Mater. Interfaces 6 (2014) 21632.
3. Azevedo, J.: Nano Energy 24 (2016) 10.
4. Chirakkara, S .: Mater. Res. Express 3 (2016) 045023.
5. Head, A.R .: J. Phys. Chem. C 120 (2016) 243.
6. Porti, M.: IEEE Trans. Nanotechnol. 15 (2016) 986.
7. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
8. Nafria, M.: ECS Trans. 79 (2017) 139.
9. Croizier, G.: TRANSDUCERS 2017. P. 1237.
10. Ruiz, A.: Applied Phys. Lett. 114 (2019) 093502.
11. Ros, C.: ACS Applied Mater. Interfaces 11 (2019) 29725.
12. Ruiz, A.: Microelectron. Engn. 216 (2019) 111048.
13. Mitronika, M.: Applied Surface Sci 541 (2021) 148510.
14. Ruiz, A.: IEEE Access 9 (2021) 90568.
15. Miquelot, A.: J. Mater. Sci 56 (2021) 10458.
16. Ruiz, A.: Solid-State Electron. 186 (2021) 108061.
17. Claramunt, S.: IEEE Trans. Nanotechnol. 22 (2023) 28.

Stoklas, R., Gregušová, D., Hušeková, K., Marek, J., and Kordoš, P.: Trapped charge effects in AlGaN/GaN metal-oxide-semiconductor structures with Al2O3 and ZrO2 gate insulator, Semicond. Sci Technol. 29 (2014) 045003.

 1. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
2. Stuchlikova, L.: 10th Europ. Workshop on Microelectron. Education 2014. P. 116.
3. Mekni, O.: Ceramics Inter. 42 (2016) 8729.
4. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
5. Mekni, O.: IEEE Inter. Conf. Dielectrics – ICD 2016. P. 139.
6. Mekni, O.: Mater. Research Proc. 1 (2016) 167.
#     7. Jiang, H.: MANTECH 2017.
8. Hashizume, T.: Mater. Sci Semicond. Process. 78 (2018) 85.
9. Touati, Z.: J. New Technol. Mater. 8 (2018) 16.
10. Gupta, S.D.: J. Applied Phys. 130 (2021) 015701.
11. Zhang, Y.: IEEE J. Electron Devices Soc 10 (2022) 540.
12. Manjunath, V.: J. Mater. Sci-Mater. Electron. 34 (2023) 792.
13. Hebali, K.: Trans. Electr. Electron. Mater. 24 (2023) 250.

Aarik, J., Arroval, T., Aarik, L., Rammula, R., Kasikov, A., Mändar, H., Hudec, B., Hušeková, K., Fröhlich, K., :Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: Growth of high-permittivity dielectrics with low leakage current. J. Crystal Growth 382 (2013) 61-66.

1. Lecoq, E.: J. Phys. D 47 (2014) 195201.
2. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
3. Pessoa, R.S.: Applied Surface Sci 422 (2017) 73.
4. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Biyikli, N.: Semicond. Sci Technol. 32 (2017) 093002.
6. Gonullu, M.P.: Superlatt. Microstruct. 147 (2020) 106699.
#          7. Cianci, E.: Metal Oxides for Non-volatile Memory: Materials, Technology and Applications. Elsevier 2022, pp. 169-199. ISBN: 978-0-12-814629-3.

Kordoš, P., Stoklas, R., Gregušová, D., Hušeková, K., Carlin, J., Grandjean, N., : Defect states characterization of non-annealed and annealed Zr2/InAlN/GaN structures by capacitance measurements,. Applied Phys. Lett. 102 (2013) 063502.

1. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
2. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
3. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
4. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
5. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
6. Bordoloi, S.: IEEE Access 9 ((2021) 99828.

Hudec, B., Hušeková, K., Rosová, A., Šoltýs, J., Rammula, R., Kasikov, A., Uustare, T., Mičušík, M., Omastová, M., Aarik, J., and Fröhlich, K.: Impact of plasma treatment on electrical properties of TiO2/RuO2 based DRAM capacitor, J. Phys. D 46 (2013) 385304.

1. Pointet, J.: J. Vacuum Sci Technol. A 32 (2014) 01A120.
2. Wang, W.: Sci Reports 4 (2014) 4452.
3. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
4. Jeon, W.: J. Mater. Chem. C 2 (2014) 9993.
5. Seok, J.: Phys. Chem. Chem. Phys. 17 (2015) 3004.
6. Luo, W.-B.: Chemical Comm. 51 (2015) 8269.
7. Liu, C.: Adv. Mater. Interfac. 3 (2016) 1500503.
8. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
9. Kim, H.: J. Nanosci Nanotechnol. 17 (2017) 2906.
10. Nabatame, T.: ECS Trans. 80 (2017) 365.
11. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
12. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
13. Nong, S.: J. American Chem. Soc 140 (22018) 5719.
14. Li, M.: Applied Surface Sci 439 (2018) 612.
15. Li, X.: Applied Surface Sci 470 (2019) 306.
16. Bi, L.: J. Alloys Comp. 845 (2020) 156271.
17. Tsuji, R.: ACS Omega 5 (2020) 6090.
18. Zhang, J.: Catal. Sci Technol. 10 (2020) 1518.
19. Park, H.: Chemosphere ‏265 (2021) 129166.
20. Jung, E.Y.: Nanotechnol. 32 (2021) 045201.
21. dos Reis, M.N.G.: J. Electroanalyt. Chem. 895 (2021) 115461.
22. Thakur, A.V.: Applied Phys. A 127 (2021) 910.
23. Gonzaga, I.M.D.: Electrochim. Acta 426 (2022) 140782.
24. Doria, A.R.: Separat. Purificat. Technol. 319 (2023) 124053.

Gregušová, D., Hušeková, K., Stoklas, R., Blaho, M., Jurkovič, M., Carlin, J., Grandjean, N., and Kordoš, P.:Zr2/InAlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with InAlN barrier of different compositions. Japan. J. Applied Phys. 52 (2013) 08JN07.

1. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
2. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
3. Liu, H.-Y.: IEEE J. Electron Devices Soc 4 (2016) 358.
4. Duan, T.: In Gallium Nitride Power Devices. Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
5. Chen, F.: J. Electron Mater. 48 (2019) Iss. SI11.
6. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Aarik, J., Hudec, B., Hušeková, K., Rammula, R., Kasikov, A., Arroval, T., Uustare, T., Fröhlich, K., : Atomic layer deposition of high-permittivity TiO2 dielectrics with low leakage current on RuO2 in TiCl4-based processes. Semicond. Sci Technol. 27 (2012) 074007.

1. Swerts, J.: IEEE Electron Dev. Lett. 35 (2014) 753.
2. Baryshnikova, M.: Phys. Status Solidi A 212 (2015) 1533.
3. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Dollt, M.: Front. in Neurosci 14 (2020) 552876.
6. Kim, B.: Nanotechnol. 33 (2022) 045705.
#     7. Cianci, E.: Metal Oxides for Non-volatile Memory: Materials, Technology and Applications. Elsevier 2022, pp. 169-199. ISBN: 978-0-12-814629-3.
8. Ye, F.: Adv. Theory Simul. 6 (2023) Iss. 2.

Fröhlich, K., Hudec, B., Ťapajna, M., Hušeková, K., Rosová, A., Eliáš, P., Aarik, J., Rammula, R., Kasikov, A., Arroval, T., Aarik, L., Murakami, K., Rommel, M., and Bauer, A.: TiO2-based metal-insulator-metal structures for future DRAM storage capacitors ECS Transactions 50 (2012) 79-87.

#     1. Schroeder, U.: In Thin Films on Silicon: Electronic and Photonic Appl. 8 (2016) 369.
#     2. Pešić, M.: J. Applied Phys. 119 (2016)  064101.
3. Austin, D.Z.: Chem. Mater.29 (2017)  1107.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kozodaev, M.G.: J. Chem. Phys. 151 (2019) 204701.
6. Khalili, S.: Applied Phys. A 125 (2019) 661.
7. Maier, F.J.: J. Phys. Conf. Ser. 1837 (2021) 012009.
8. Hayes, M.: J. Vacuum Sci Technol. A 39 (2020) 052402.
9. Schneider, J.R.: Small 18 (2022) 2105513.

Hudec, B., Hušeková, K., Dobročka, E., Aarik, J., Rammula, R., Kasikov, A., Tarre, A., Vincze, A., Fröhlich, K., : Atomic layer deposition grown metal-insulator-metal capacitors with RuO2 electrodes and Al-doped rutile TiO2 dielectric layer. J. Vacuum Sci Technol. B 29 (2011) 01AC09.

1. Kaynak, C. B.: Thin Solid Films 520 (2012) 4518.
2. Yota, J.: J. Vacuum Sci Technol. A 31 (2013) 01A134.
3. Yota, J.: J. ECS Trans. 53 (2013) 281.
4. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
5. Dong, W.: ACS Applied Mater. Interf. 7 (2015) 25321.
6. Enriquez, E.: Sci Reports 7 (2017) 46184.
7. Austin, D.Z.: Chem. Mater. 29 (2017) 1107.
8. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
9. Kwon, D.S.: ACS Applied Mater. Interf. 13 (2021) 23915.
10. Padhi, P.S.: J. Mater. Sci-Mater. Electron. 34 (2023) 1160.

Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vacuum Sci Technol. B 29 (2011) 01A808.

1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
4. Bera, M.K.: ECS Trans. 53 (2013) 65.
5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
10. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
#   15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280.
#   16. Schäfer, A.:  J. Alloys Comp. 651 (2015) 514.
17. Tromm, T. C. U.: ECS Trans. 72 (2016) 307.
18. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
19. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 1-20.
20. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.
21. Terkhi, S.: Indian J. Phys. 92 (2018) 847.
22. Adak, S.: Nano 14 (2019) 1950060.
23. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
24. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
25. Kanaga, S.: IEEE Trans. Device Mater. Reliab.‏ 20 (2020)‏
13.
26. Cui, X.: Nano Energy 68 (2020) 104361.
27. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.

Hudec, B., Hušeková, K., Tarre, A., Han, J., Han, S., Rosová, A., Lee, W., Kasikov, A., Song, S., Aarik, J., Hwang, C., and Fröhlich, K.: Electrical properties of TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes. Microelectr. Engn. 88 (2011) 1514-1516.

1. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
2. Bayati, M.: J. Mater. Res. 28 (2013) SI1669.
3. Avril, L.: Applied Surface Sci 288 (2014) 201.
4. Wang, W.: Sci Reports 4 (2014) 4452.
5. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
6. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
7. Shkondin, E.: J. Vacuum Sci Technol. A 34 (2016) 031605.
8. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
*    9. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
*   10. Amiaud A.-Ch.: PhD thesis. Univ. Sorbonne 2018.
11. Yildirim, M.: J. Alloys Comp. 773 (2019) 890.
12. Jenkins, M.: ECS J. Solid State Sci Technol. 8(2019) N159.
13. Dollt, M.: Front. in Neurosci 14 (2020) 552876.
14. Qaid, M.M.: Mater. Chem. Phys. 259 (2021) 124054.
15. Lei, J.: J. Alloys Comp. 870 (2021) 159391.
16. Schneider, J.R.: Small 18 (2022) 2105513.
17. Maier, F.J.: J. Applied Phys. 131 (2022) 095301.
18. Xiong, L.: Molecules 27 (2022) 3951.
19. Lee, A.J.: Applied Surface Sci 590 (2022) 153082.

Fröhlich, K., Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., Rammula, R., Vincze, A., : Low equivalent oxide thickness TiO2 based capacitors for DRAM applications, ECS Trans. 41 no. 2 (2011) 73.

1. Yoo, W.S.: ECS J. Solid State Sci Technol. 4 (2015) N76.
2. Das, D.: IEEE Trans. Electron Dev. 67 (2020) 2489.
3. Das, D.: IEEE Trans. Electron Dev. 69 (2022) 103.
4. Jung, M.: Nano Converg. 9 (2022) 44.
5. Li, Y.B.: IEEE Trans. Electron Dev. 70 (2023) 59.

Fröhlich, K., Hudec, B., Aarik, J., Tarre, A., Machajdík, D., Kasikov, A., Hušeková, K., Gaži, Š., : Post-deposition processing and oxygen content of TiO2-based capacitors. Microelectr. Engn. 88 (2011) 1525-1528.

1. Bayati, M.: J. Mater. Res. 28 (2013) SI1669.
2. Verstraete, R.: Chem. Mater. 31 (2019) 7192.
3. Dollt, M.: Front. in Neurosci 14 (2020) 552876.

Paskaleva, A., Ťapajna, M., Dobročka, E., Hušeková, K., Atanassova, E., and Fröhlich, K.: Structural and dielectric properties of Ru-based gate/Hf-doped Ta2O5 stacks,  Applied Surface Sci 257 (2011) 7876-7880.

1. Liu, S.-S.: J. Theoret. Comput. Chem. 11 (2012) 895.
2. Lorenzi, P.: Microelectr. Reliab. 53 (2013) 1203.
3. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
4. Carretero, E.: Applied Surface Sci 359 (2015) 669.
5. Mahata, C.: J. Mater. Chem. C 3 (2015) 10293.
6. Peralta, J.: Thin Solid Films 693 (2020) 137676.
7. Lim, W.F.: Applied Surface Sci 526 (2020) 146722.
8. Cai, C.X.: Applied Surface Sci 560 (2021) 149960.
9. Lim, W.F.: Inter. J. Energy Res. 46 (2022) 4699.

Kováč, P., Hušek, I., Kulich, M., Hušeková, K., Melišek, T., and Dobročka, E.: Effects influencing the grain connectivity in ex-situ MgB2 wires, Physica C 470 (2010) 340-344.

1. Yucel, E.: J. Mater. Sci-Mater. Electron. 23 (2012) 1284.
2. Yakinci, M. E.: Cryogenics 52 (2012) SI749.
3. Akamaru, S.: Mater. Trans. 54 (2013) 2258.
4. Guo, Z.-C.: Acta Phys. Sinica 63 (2014) 067401.
5. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
6. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.
7. Maulana, M.I.: AIP Conf. Proc. 2232 (2020) 050002.

Ťapajna, M., Paskaleva, A., Atanassova, E., Dobročka, E., Hušeková, K., and Fröhlich, K.: Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures, Semicond. Sci Technol. 25 (2010) 075007.

1. Rao, R.: J. Vacuum Sci Technol. B 32 (2014) 03D120.
2. Vijayakumar, V.: Mater. Res. Express 2 (2015) 046302.
3. Lei, Z.C.: J. Mater Sci-Mater. Electron. 29 (2018) 12888.
#    4. Lei, Z.C.: Selected Topics in Germanium. Nova Sci Publ. 2022, pp. 47-92. ISBN: 979-8-88697-200-9
5. Sharma, U.: Physica Scripta 98 (2023) 055517.

Hušeková, K., Dobročka, E., Rosová, A., Šoltýs, J., Šatka, A., Fillot, F., Fröhlich, K., : Growth of RuO2 thin films by liquid injection atomic layer deposition. Thin Solid Films 518 (2010) 4701-4704.

1. Over, H.: Chemical Rev. 112 (2012) 3356.
2. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
3. Hamalainen, J.: Chem. Mater. 26 (2014) SI786.
4. Park, J.-Y.:  J. Alloys Comp. 610 (2014) 529.
5. Gregorczyk, K.E.: ACS NANO 9 (2015) 464.
6. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
7. Nabatame, T.: ECS Trans. 80 (2017) 365.
8. Lin, C.: J. Electrochem. Soc 166 (2019) D476.
9. Lee, J.H.: Thin Solid Films 701 (2020) 137950.
#   10. Winter, C.H.: Comprehensive Coordination Chem. III, ISBN 978-008102688-5. Elsevier 2021, p. 824.
11. Poonkottil, N.: Chem. Mater. 34 (2022) 8946.

Hudec, B., Hušeková, K., Dobročka, E., Lalinský, T., Aarik, J., Aidla, A., Fröhlich, K., : High-permittivity metal-insulator-metak capacitors with TiO2 rutile dielectric and RuO2 bottom electrode IOP Conf. Series: Mater. Sci Engn. 8 (2010) 012024.

1. Yildiz A.: J. Applied Phys. 108 (2010) 083701.
2. Wu, Y.-H.: IEEE Electron Device Lett. 32 (2011) 1107.
3. Shen, Y.D.: J. Phys. Chem. C 116 (2012) 3449.
4. AlHoshan, M.S.: Electrochim. Acta 62 (2012) 390.
5. Mathew, S.: J. Fluoresc. 22  (2012) 1563.
6. Yen, C.-F.: Solid-State Electron. 73 (2012) 56.
7. Bhattacharya, P.: Express Polymer Lett. 7 (2013) 212.
8. Mamalchel, A.: Crystal Growth & Design 13 (2013) 4730.
9. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
    10. Padmanabhan, R.: Environmen. Sci Engn. (2014) 37.
11. Choi, S.-J.: J. Microelectromech. Systems 24 (2015) 1006.
    12. Yu, L.: Inter. J. Smart Nano Mater. 6 (2015) 268.
13. Gielis, S.: J. European Ceramic Soc 37 (2017) 611.
14. Becherescu, N.: Univ. Politehnica Bucharest Sci Bull.-Ser. A 79 (2017) 203.
15. Cui, Y.: J. Photochem. Photobiol. A 353 (2018) 625.
16. Li, T.: Electrochim. Acta 306 (2019) 71.
17. Kang, W.S.: Ceramics Inter. 47 (2021) 25826.
18. Maier, F.J.: J. Applied Phys. 131 (2022) 095301.

Hušeková, K., Hušek, I., Kováč, P., Kulich, M., Dobročka, E., Štrbik, V., : Properties of MgB2 superconductor chemically treated by accetic acid. Physica C 470 (2010) 331-335.

1. Altin, S.: J. Phys. Chem. Solids 72 (2011) 1070.
2. Sun, Y.: J. Supercond. Novel Magnetism 25 (2012) 1735.
3. Song, K.J.: IEEE Trans. Applied Supercond. 23 (2013) 7100304.
4. Sun, Y.: Scripta Materialia 70 (2014) 55.
5. Owolabi, T.O.: J. Supercond. Novel Magnetism 28 (2015) 75.
6. Owolabi, T.O.: Applied Comput. Intelligence Soft Computing (2016) 1709827.
7. Grivel, J.-C.: Physica C 528 (2016) 65.
8. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
9. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
10. Qaid, S.A.S.: J. Mater. Sci-Mater. Electron. 28(2017) 14696.
11.  Zhang, Y.: Physica C‏ 573 (2020) 1353633.
12. Capra, M.: Mater. Today Comm. 26 (2021) 101731.
13. Olatunji, S.O.: Comput. Mater. Sci 192 (2021) 110392.
14. Olatunji, S.O.: Crystals 12 (2022) 228.
15. Maeda, M.: J. Alloys Comp. 954 (2023) 170148.

Hudec, B., Hranai, M., Hušeková, K., Aarik, J., Tarre, A., Fröhlich, K., : Resistive switching in RuO2/TiO2/RuO2 MIM structures for non-volatile memory application. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 255-258.

       1. Ho, P.W.C.: ICED 2014 7015808, pp. 249.
2. Castan, H.: Thin Solid Films 591 (2015) 55.
3. Ho, P.W.C.: J. Semicond. 37 (2016) 064001.

Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., and Fröhlich, K.: RuO2/TiO2 based MIM capacitors for DRAM application. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 341-344.

1. Siddiqi, M.A.: In Dynamic RAM: Technol. Advancements. CRC 2013, p. 155-188.
2. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
3. Chiappim, W.: Nanomater.‏ 10 (2020) 338.

Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A., Dobročka, E., and Hušeková, K.Epitaxial growth of high-κ TiO2 rutile films on RuO2 electrodes, J. Vacuum Sci Technol. B 27 (2009) 266-270.

 1. Kim, S.K.: Adv. Functional Mater. 20 (2010) 2989.
2. Lee, S.W.: Chem. Mater. 23 (2011) 976.
3. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
4. Kim, S.K.: J. Mater. Res. 28 (2013) 313.
5. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
6. Kaczer, B.: J. Vacuum Sci Technol. B 31 (2013) 01A105.
7. Wei, D.: ECS J. Solid State Sci Technol. 2 (2013) N110.
8. Clima, S.: IEEE Electron Device Lett. 34 (2013) 6425405.
#      9. Jithin, M.A.: Mater. Research Soc Symp. Proc. 1561 (2013) 13.
10. Popovici, M.: Applied Phys. Lett. 104 (2014) 082908.
11. Wang, C.: ACS Nano 8 (2014) 2658.
12. Jeon, W.: J. Mater. Chemistry C 2 (2014) 9993.
13. Jeon, W.: ACS Applied Mater. Interfac. 6 (2014) 21632.
14. Pessoa, R.S.: 29th Symp. Microelectr. Technol. Dev. 2014.
15. Xie, Y.: J. Alloys Compounds 683 (2016) 439.
16. Kassmi, M.: J. Applied Phys. 119 (2016) 244101.
17. Chaker, A.: J. Applied Phys. 120 (2016) 085315.
18. Agashe, K.: Nuclear Instrum. Methods in Phys. Res. B 403 (2017) 38.
19. Cho, C.J.: J. Mater. Chem. C 5 (2017) 9405.
20. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
21. Kim, S.K.: MRS Bull. 43 (2018) 334.
22. Lee, W.: J. Mater. Chem. C 6 (2018) 13250.
23. Pessoa, R.S.: IEEE 33rd Symp. Microelectron. Technol. Devices 2017 (SBMICRO) 2018.
*      24. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
25. Khan, M.S.: SMALL 16 (2020) 2003485.
26. Kim, H.: Nanoscale Res. Lett. 17 (2022) 28.
27. Maier, FJ.: J. Applied Phys. 131 (2022) 095301.
28. Kim, Y.W.: J. Mater. Chem. C 10 (2022) 12957.

Čičo, K., Kuzmík, J., Liday, J., Hušeková, K., Pozzovivo, G., Carlin, J., Grandjean, N., Pogany, D., Vogrinčič, P., and Fröhlich, K.: InAlN/GaN metal-oxide-semiconductor high electron mobility transistor with Al2O3 insulating films grown by metal organic chemical vapor deposition using Ar and NH3 carrier gases, J. Vacuum Sci Technol. B 27 (2009) 218-222.

1. Pang, L.: J. Phys. D 45 (2012) 045105.
2. Bera, M.K.: ECS Trans. 53 (2013) 65.
3. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
4. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
5. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
6. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
7. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.

Hušeková, K., Jurkovič, M., Čičo, K., Machajdík, D., Dobročka, E., Lupták, R., and Fröhlich, K.: Preparation of high permitivity GdScO3 films by liquid injection MOCVD, ECS Trans. 25 (2009) 1061.

1. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
2. Schaefer, A.: J. Alloys Compounds 651 (2015) 514.
3. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
4. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 109-124.
5. Kachhap, S.: J. Alloys Compounds 936 (2023) 168192.

Vincze, A., Lupták, R., Hušeková, K., Dobročka, E., and Fröhlich, K.: Thermal stability of GdScO3 and LaLuO3 films prepared by liquid injection MOCVD. Vacuum 84 (2009) 170.

1. Mitrovic, I. Z.: Microelectronic Engn. 88 (2011) 1495.
2. Mitrovic, I. Z.: J. Applied Phys. 112 (2012) 044102.
3. Wang, Y.: J. Alloys Compounds 571 (2013) 103.
4. Feijoo, P.C.: Semicond. Sci Technol. 28 (2013) 085004.
5. Han, J.H.: Chem. Mater. 26 (2014) 1404.
6. Feijoo, P.C.: Thin Solid Films  593 (2015) 62.
7. Artini, C.: J. European Ceramic Soc 37 (2017) 427.
8. Pampillon, M. A.: Semicond. Sci Technol. 32 (2017) 035016.
9. Agrawal, K.S.: Applied Phys. A‏ 126 (2020) 650.
10. Zhang, L.: Separat. Purif. Technol. 262 (2021) 118314.
11. Kachhap, S.: J. Alloys Compounds 936 (2023) 168192.

Ťapajna, M., Dobročka, E., Paskaleva, A., Hušeková, K., Atanassova, E., Fröhlich, K., : Electrical characterization of Ru- and RuO2/Ta2O5 gate stacks for nanoscale DRAM technology. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 267-270.

       1. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 189.

Fröhlich, K., Ťapajna, M., Rosová, A., Dobročka, E., Hušeková, K., Aarik, J., and Aidla, A.: Growth of high-dielectric-constant TiO2 films in capacitors with RuO2 electrodes, Electrochem. Solid-State Lett. 11 (2008) G19-G21.

1. Niinisto, J.: Advanced Engn. Mater. 11 (2009) 223.
2. Han, J.H.: ECS Trans. 19 (2009) 717.
3. Kim, K.M.: Electrochem. Solid State Lett. 13 (2010) G1.
4. Wang, H.T.: Electrocem. Solid-State Lett. 13 (2010) G75.
5. Lee, W.J.: J. Phys. Chem. C 114 (2010) 6917.
6. Han, J.H.: Chem. Mater. 22 (2010) 5700.
7. Popovici, M.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 19.
8. Han, J.H.: Applied Phys. Lett. 99 (2011) 022901.
9. Leskela, M.: MRS Bull. 36 (2011) 877.
10. Kim, S.K.: Phys. Status Solidi-Rapid Res. Lett. 5 (2011) 262.
11. Popovici, M.: Microelectr. Engn. 88 (2011) 1517.
#   12. Kim, M.-S.: IMW 2011. IEEE 2011, art. no. 5873203. ISBN 978-145770-2259.
13. Over, H.: Chem. Rev. 112 (2012) 3356.
14. Han, J. H.: Chem. Mater. 24 (2012) 1407.
15. Kim, S.K.: ACS Applied Mater. Interf. 4 (2012) 4726.
16. Miikkulainen, V.: J. Applied Phys. 113 (2013) 021301.
17. Zhu, L.: Solar Energy Mater. Solar Cells  111 (2013) 141.
18. Wang, X.: Crystal Growth & Design  13 (2013) 1316.
19. Popovici, M.: ECS J. Solid State Sci Technol. 2 (2013) N23.
20. Ko, C.-T.: J. Phys. Chem. C 117 (2013) 26204.
21. Van Den Berg, J.A.: Applied Surface Sci 281 (2013) 8.
22. Pu, H.: ECS Solid State Lett. 2 (2013) N35.
#   23. Hwang, C.S.: In Atomic Layer Deposition for Semiconductors. Springer 2013. ISBN: 978-1-4614-8053-22013. P. 73.
24. Yang, Z.: IEEE Electron Device Lett. 35 (2014) 557.
25. Park, J.-Y.: J. Alloys Comp.610 (2014) 529.
26. Hernandez-Torres, E.M.: Chem. Pap. 68 (2014) 1257.
27. Ko, C.-T.: ACS Applied Mater. Interfac. 6 (2014) 4179.
28. Jeon, W.: ACS Applied Mater. Interf. 6 (2014) 21632.
29. Peng, J.: J. Sol-Gel Sci Technol. 71 (2014) 458.
30. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
31. Cho, K.: J. Semicond. Technol. Sci 16 (2016) 346.
32. Mondal, J.: Corrosion Sci 105 (2016) 161.
33. Head, A.R.: J. Phys. Chem. C 120 (2016) 243.
34. Wang, M.: RSC Adv. 6 (2016) 4867.
35. Saric, I.: Thin Solid Films  628 (2017) 142.
36. Nabatame, T.: ECS Trans. 80 (2017) 365.
37. Niemela, J.-P.: Semicond. Sci Technol. 32 (2017) 093005.
38. Sawada, T.: J. Vacuum Sci Technol. A 35 (2017) 061503.
39. Moehl, T.: ACS Applied Mater. Interf. 9 (2017) 43614.
40. Ben Elbahri, M.: J. Phys. D 51 (2018) 065101.
41. Wang, W.: Mater. Chem. Phys. 211 (2018) 172.
42. Song. H.: J. Wuhan Univ. Technol.-Mater. Sci Ed. 33 (2018) 1070.
43. Lau, W.S.: China Semicond. Technol. Inter. Conf. 2018 – CSTIC 2018, pp. 1-3.
*      44. Chaker, A.: PhD thesis. Univ. Grenoble 2018.
45. Kim, A.: ACS Applied Nano Mater. 2 (2019) 3220.
46. Choi, W.-H.: J. Vacuum Sci Technol. A 37 (2019) 020924.
47. Son, K.-H.: Coatings 10 (2020) 752.
48. Gants, O.Y.: Izv. Vyss. Ucheb. Zav. Khimiya Khim. Tekhnol. 63 (2020)‏ 26.
49. Kim, B.: Nanotechnol. 33 (2022) 045705.
50. Kim, B.: Nanotechnol. 33 (2022) 115701.
51. Kim, B.: Vacuum 199 (2022) 110957.
52. Jeong, J.: J. Alloys Compounds 927 (2022) 166961.

Hudec, B., Ťapajna, M., Hušeková, K., Aarik, J., Aidla, A., Fröhlich, K., : Low equivalent oxide thickness metal/insulator/metal structures for DRAM applications. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 123-126.

      1. Paskaleva, A.: J. Applied Phys. 106 (2009) 054107.
2. Siddiqi, M.A.: Dynamic Ram: Technol. Advanc. CRC Press 2013. ISBN 978-14398-9373-9. P. 155.

Ťapajna, M., Rosová, A., Hušeková, K., Roozeboom, F., Dobročka, E., Fröhlich, K., : Evidence of hafnia oxygen vacancy defects in MOCVD grown HfxSi1-xOy ultrathin gate dielectrics gated with Ru electrode. Microelectr. Engn. 84 (2007) 2366-2369.

      1. Das, N.C.: J. Applied Phys. 110 (2011) 063527.
2. Zhang, H.Y.: Applied Surface Sci 311 (2014) 117.

Machajdík, D., Kobzev, A., Hušeková, K., Ťapajna, M., Fröhlich, K., Schram, T., : Thermal stability of advanced gate stacks consisting of a Ru electrode and Hf-based gate dielectrics for CMOS technology. Vacuum 81 (2007) 1379-1384.

   1. Kwon, J.: Applied Phys. Lett. 96 (2010) 151907.
2. Kwon, J.: J. Applied Phys. 107 (2010) 123505.

Ťapajna, M., Hušeková, K., Machajdík, D., Kobzev, A., Schram, T., Lupták, R., Harmatha, L., Fröhlich, K., :Electrical properties and thermal stability of MOCVD grown Ru gate electrodes for advanced CMOS technology. Microelectr. Engn. 83 (2006) 2412.

      1. Ozben, E.D.: Applied Phys. Lett. 93 (2008) 052902.
2. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.
3. Lakshminarayana, G.: J. Mater. Sci: Mater. Electron. 27 (2016) 10791.
4. Wasielewski, R.: Acta Phys. Polonica A 132 (2017) 354.

Fröhlich, K., Lupták, R., Dobročka, E., Hušeková, K., Čičo, K., Rosová, A., Lukosius, M., Abrutis, A., Písečný, P., and Espinos, J.: Characterization of rare earth oxides based MOSFET gate stacks prepared by metal-organic chemical vapour deposition, Materials Sci Semicond Process. 9 (2006) 1065-1072.

1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
2. Dabrowski, J.: J. Electrochem. Soc. 155 (2008) G97
3. Losurdo, M.: J. Electrochem. Soc. 155 (2008) G44.
4. Milanov, A.P.: Chem. Mater. 21 (2009) 5443.
5. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
6. Ferreira, A.C.: J.Alloys Compounds 489 (2010) 316.
7. Geppert, I.: J. Applied Phys. 108 (2010) 024105.
8. Geppert, I.: ESC Trans. 28 (2010) 191.
9. Daly, S. R.: Inorganic Chem. 51 (2012) 7050.
10. Huang, L.-Y.: Microelectr. Engn. 94 (2012) 38.
11. Ahren, M.: J. Nanopart. Res. 14(2012) 1006.
#   12. Barquinha, P.: In Transparent Oxide Electronics: From Materials to Devices. Chichester: John Wiley  2012 ISBN 978-0-470-68373-6.
13. Fan, X.: Mater. Res. Express 1 (2014) 045005.
14. Zhuang, J.: ACS Applied Mater. & Interfaces 8 (2016) 31128.
15. Watkinson, E. J.: J. Nuclear Mater. 486 (2017) 308.
16. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
17. Hetherin, K.: J. Mater. Sci-Mater. Electron. 28 (2017) 11994.
18. Hetherin, K.: Applied Phys. A 123 (2017) 510.
19. Morkoc, B.: J. Mater. Sci-Mater. Electron. 32 (2021) 9231.
20. Al-Esaifer, H.R.S.: Radiation Effects Defects in Solids 177 (2022) 783.
21. Ahmad, J.: J. Trace Elements in Medicine Biol. 73 (2022) 127029.
22. Morkoc, B.: Mater. Chem. Phys. 292 (2022) 126875.
23. Sawka, A.: Ceram. Inter. 49 (2023) 23835.

Ťapajna, M., Harmatha, L., Hušeková, K., : Measurement of generation parameters on Ru/HfO2/Si MOS capacitor. Solid-State Electr. 50 (2006) 177-180.

1. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
2. Mukhopadhyay, A.B.: J. Phys. Chem. C 111 (2007) 9203.
3. Mukhopadhyay, A.B.: J. Mater. Sci 45 (2010) 4924.
4. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384.
5. Toprasertpong, K.: Applied Phys. Lett. 116 (2020) Iss.‏ 24.
6. Mukherjee, S.: IEEE Electron Dev. Lett. 44 (2023) 1092.

Rossel, C., Rosová, A., Hušeková, K., Machajdík, D., Fröhlich, K., : Phase stability of La0.5Sr0.5CoO3−y films upon annealing in hydrogen atmosphere. J. Applied Phys. 100 (2006) 044501.

     1. Li, G.: Applied Phys. Lett. 91 (2007) art. no. 163114.
2. Li, G.: J. Phys. D 42 (2009) 065006.
3. Li, Y.W.: Applied Phys. A 95 (2009) 721.
4. Hu, Z.G.: Applied Phys. Lett. 94 (2009) 221104.
5. Li, W.W.: Acs Applied Mater. Interfaces 2 (2010) 896.
6. Li, J.: Nanoscale 9 (2017) 13214.

Ťapajna, M., Hušeková, K., Espinos, J., Harmatha, L., Fröhlich, K., : Precise determination of metal effective work function and fixed oxide charge in MOS capacitors with high-κ dielectric. Materials Sci Semicond Process. 9 (2006) 969-974.

1. Rhee, S.W.: J. Materials Chem. 18 (2008) 5437.
2. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
3. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
4. Chandra, S.V.J.: J. Electrochem. Soc. 157 (2010) H546.
5. Chandra, S.V.J.: Microelectr. Engn. 89 (2012) 76.
6. Jelenkovic, E.V.: ECS Solid State Lett. 2 (2013) P42.
7. Ahmad, S.: J. Polymer Engn. 34 (2014) 279.
8. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
9. Kaczmarski, J.: Semicond. Sci Technol. 33 (2018) 015010.
10. Yuan, G.: ECS J. Solid State Sci Technol. 9(2020) 024010.
11. Sharma, N.: Current Applied Phys. 21 (2021) 58.
12. Kawano, H.: Progress Surface Sci 97 (2022) 100583.
13. Han, J.W.: Nano Lett. 22 (2022) 4589.
14. Chakrabarti, H.: Silicon 14 (2022) 9763.
15. Chernikova, A.G.: Applied Phys. Lett. 122 (2023) 021601.
16. Han, J.W.: J. Mater. Chem. C 11 (2023) 3743.

Fröhlich, K., Lupták, R., Hušeková, K., Čičo, K., Ťapajna, M., Weber, U., Baumann, P., Lindner, J., Espinos, J., : Properties of Ru/HfxSi1-xOy/Si metal oxide semiconductor gate stack structures grown by atomic vapor deposition. J. Electrochem. Soc. 153 (2006) F176-F179.

     1. Son, J.Y.: Thin Solid Films 517 (2009) 3892.
2. Kawano, K.: Electrochem. Solid State Lett. 12 (2009) D80.
3. Luo, B.: RSC Publ. 2009. ISBN 9780854044658. P. 320-356.

Lupták, R., Fröhlich, K., Rosová, A., Hušeková, K., Ťapajna, M., Machajdík, D., Jergel, M., Espinos, J., and Mansilla, C.: Growth of gadolinium oxide films for advanced MOS structure. Microelectr. Engn. 80 (2005) 154-157.

1. Kukli, K.: Chemical Vapour Depos. 13 (2007) 546.
2. Barreca1, D.: Surf. Sci. Spectra 14 (2007) 60.
3. Milanov, A.P.:  ECS Trans. 25 (2009) 143.
4. Kao, C.H.: J. Electrochem. Soc 157 (2010) H915.
5. Laha, A.: Applied Phys. Lett. 99 (2011) 152902.
6. Yang, S.: Mater. Res. Bull. 48 (2013) 37.
7. Tien, C.-Y.: J. Electr. Engn. Technol. 10 (2015) 1720.
8. Mishra, M.: Surface Coat. Technol. 262 (2015) 56.
9. Goh, K.H.:Mater. Sci Semicond. Process. 68 (2017) 302.
10. Pattabi, M.: AIP Conf. Proc. 1832 (2017) 080020.
11. Stadler, D.: J. Nanostr.Chem. 8 (2018) 33.
12. Prasad, C.V.: Applied Surface Sci 427 (2018) 670.
13. Kahraman, A.: J. Mater. Sci-Mater. Electr. 29 (2018) 17473.
14. Accardo, G.: Inter. J. Hydrogen Energy 44 (2019) 12138.
15. Thilipan, G.A.K.: AIP Conf. Proc. 2265 (2020) 030334.
16. Thilipan, G.A.K.:Mater. Sci Semicond. Process. 121 (2021) 105408.
17. Rawat, A.: Thin Solid Films 742 (2022) 139047.
18. Devaray, P.: J. Mater. Sci-Mater. Electr. 33 (2022) 7313.
19. Sawka, A.: Ceram. Inter. 49 (2023) 23835.

Ťapajna, M., Harmatha, L., Hušeková, K., Fröhlich, K., : Measurement of generation parameters on Ru/HfO2/Si MOS capacitor, Measurement Sci Rev. 5 (2005) 42.

     1. Hur’yeva, T.: Chemical Vapour Deposition 12 (2006) 429.
2. Mukhopadhyay, A.B.: J. Phys. Chemistry C 111 (2007) 9203.

Španková, M., Vávra, I., Chromik, Š., Harasek, S., Lupták, R., Šoltýs, J., Hušeková, K., : Structural properties of Y2O3 thin films grown on Si(1 0 0) and Si(1 1 1) substrates,. Materials Sci Engn. B 116 (2005) 30-33.

1. Goto, T.: Surface Coatings Technol. 201 (2007) 5776.
2. Cheng, X.R.: Physica B 404 (2009) 146.
3. Qiao, Y.: J. Rare Earths 27 (2009) 406.
4. Fang, Z.B.: Chinese Phys. B 18 (2009) 3542.
5. Chambers, S.A.: Advanced Mater. 22 (2010 219.
6. Meng, Q.G.: Chem. Mater. 22 (2010) 6056.
7. Zhu, J.: Thin Solid Films 519 (2011) SI4894.
8. Zhang, H.: J. Alloys Compounds 539 (2012) 40.
9. Tsipis, A.C.: Phys. Chemistry Chemical Phys. 14 (2012) 14917.
10. Tsipis, A.: Inter. J. Quantum Chem. 113 (2013) SI694.
11. Li, Q.: Inter. J. Hydrogen Energy 38 (2013) 4266.
12. Lei, P.: Surface Coat. Technol. 229 (2013) 226.
13. Chen, J.: Molecular Phys. 112 (2014) SI508.
14. Wu, Y.: Fusion Engn. Design 90 (2015) 105.
15. Lin, K.C.: Microelectron. Reliab. 55 (2015) 2198.
16. Wu Y.: Inter. J. Hydrogen Energy 41 (2016) 10374.
17. Wu Y.: Inter. J. Hydrogen Energy 41 (2016) 7425.
18. Wu Y.: Inter. J. Hydrogen Energy 41 (2016) SI16101.
19. Liu, Z.: Plasma Sci Technol.19 (2017) UNSP 095602.
20. Xia, J.: Applied Surface Sci 439 (2018) 545.
21. Thangabalu, S.: Mater. Today-Proc. 48 (2022) 229.

Ťapajna, M., Písečný, P., Lupták, R., Hušeková, K., Fröhlich, K., Harmatha, L., Hooker, J., Roozeboom, F., Jergel, M., : Application of Ru-based gate materials for CMOS technology. Materials Sci Semicond. Process. 7 (2004) 271-276.

    1. Manke, C.: Microelectr. Engn. 82 (2005) 242.
#   2. Manke C.: Electrochemical Society Proc. 5 (2005) 207.
#   3. Weber U.: Electrochemical Society Proc. 5 (2005) 293.
4. Lu, Y.K.: Microelectr. Engn. 83 (2006) 371.
5. Buc, D.: Chemical Phys. Lett. 429 (2006) 617.
6. Yim, S.-S.: Applied Phys. Lett. 89 (2006) Art. No. 093115.
7. Zhang, M.: J. Vacuum Sci Technol. A 25 (2007) 775.
8. Li, H.: J. Electrochem. Soc. 154 (2007) D642.
9. Park, S.J.: Microelectr. Engn. 85 (2008) 39.
10. Park, S.J.: Thin Solid Films 513 (2008) 7345.
11. Yim, S.S.: J. Applied Phys. 103 (2008) 113509.
12. Lee, D.J.: Electrochem. Solid State Lett. 11 (2008) K61.
13. Rangan, S.: Phys. Rev. B 79 (2009) 075106.
14. Kukli, K.: J. Electrochem. Soc. 157 (2010) D35.
15. Lee, W.K.: Applied Phys. A 100 (2010) 561.
*  16. Kumar, B.R.: Inter. J. Pure Appl. Sci Technol. 4 (2011) 105.
17. Park, T.: J. Vacuum Sci Technol. A 30 (2012) 01A139.
18. Noh, Y.: Korean J. Metals Mater. 50 (2012) 243.
19. Park, T.: Phys. Status Solidi A 209 (2012) 302.
20. Park, J.: Korean J. Metals Mater. 50 (2012) 557.
21. Scheuermann, A.G.: Energy & Environmen. Sci 6 (2013) 2487.
22. Park, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 05FB05.
23. Noh, Y.: Korean J. Metals Mater. 51 (2013) 239.
24. Kim, J.W.: Nanotechnol. 25 (2014) 435404.
25. Vasilyev, V.Y.: Russian Chem. Rev. 83 (2014) 758.
26. Nomura, K.: ECS Solid State Lett. 4 (2015) N1.
27. Zhang, H.-X.: China Semicond. Technol. Inter. Conf. – CSTIC 2015. Art. no. 7153392.
28. Hwang, S.M.: Thin Solid Films 615 (2016) 311.
29. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
30. Han, J.W.: Nano Lett. 22 (2022) 4589.
31. Han, J.W.: J. Mater. Chem. C 11 (2023) 3743.

Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., : Growth and properties of ruthenium based metal gates for pMOS devices. In: ASDAM 2004. Eds. J.Osvald and Š.Haščík. Piscataway: IEEE 2004. ISBN 0-7803-8535-7. P. 163-166.

1. Zhang, H.-X.: China Semicond. Technol. Inter. Conf.  2015.
2. Hayes, M.: J. Vacuum Sci Technol. A 39 (2021) 052402.

Písečný, P., Hušeková, K., Fröhlich, K., Harmatha, L., Šoltýs, J., Machajdík, D., Espinos, J., Jergel, M., and Jakabovič, J.: Growth of lanthanum oxide films for application as a gate dielectric in CMOS technology, Materials Sci Semicond. Process. 7 (2004) 231-236.

1. Bedoya, C.: Chemical Vapor Deposition 12 (2006) 46.
2. Leskela, M.: J. Alloys Compounds 418 (2006) 27.
3. Wang, X.G.: Materials Lett. 60 (2006) 2261.
4. Dakhel, A.A.: Proc. Inter. Conf. Microelectr. – ICM (2006) 115.
5. Dakhel, A.A.: J. Alloys Compounds 433 (2007) 6.
6. Dakhel, A.A.: Materials Chemistry Phys. 102 (2007) 266.
7. Dakhel, A.A.: Microelectr. Reliability 48 (2008) 395.
8. Tsai, W.C.: EDSSC 2008. IEEE Inter. Conf. P. 61.
9. Zhao, Y.: J. Applied Phys. 105 (2009) 034103.
10. Khanjani, S.: J. Coordination Chem. 62 (2009) 3343.
11. Khanjani, S.: J. Molecular Struct. 935 (2009) 27.
12. Kim, H.J.: J. Electroceram. 23 (2009) 258.
13. Ciontea, L.: Materials Res. Bull. 45 (2010) 1203.
14. Salavati-Niasari, M.: J. Alloys Compounds 509 (2011) 134.
15. Long Y.: J. Rare Earths 30 (2012) 48.
16. Zhao, Y.: Materials 5 (2012) 1413.
#    17. Zhao, Y.:  In High-k Gate Dielectrics for CMOS Technology. Weinheim: Wiley-VCH 2012. ISBN 978-3-527-33032-4. P. 185.
18. Mangla, O.: J.Mater. Sci 49 (2014) 1594.
19. Kharlamova, T.S.: Kinetics  Catal. 55 (2014) 361.
20. Mousavi-Kani, S.N.: Bulgarian Chem. Comm. 47 (2015) 80.
21. Yilmaz, E.: IEEE Trans. Nuclear Sci 63 (2016) 1301.
22. Al Akhrass, G.A.: RSC Adv. 6 (2016) 3433.
23. Pandey, A.: J. Phys. Chem. C 121 (2017) 481.
24. Goh, K.H.: Materials Sci Semicond. Process. 68 (2017) 302.
25. Brachetti-Sibaja, S.B.: Thin Solid Films 636 (2017) 615.
26. Adole, V.A.: J. Nanostruct. Chem. 9 (2019) 61.
27. Hare, B.J.: Industr. Engn. Chem. Res. 58 (2019) 12551.
28. Gangwar, B.P.: CHEMISTRYSELECT 5 (2020) 7548.
29. Morandi, S.: Sustain. Energy Fuels 4 (2020) 1469.
30. Arshad, M.F.: ACS Omega 6 (2021) 22525.
31. Devaray, P.: J. Mater. Sci-Mater. Electron. 33 (2022) 7313.
32. Al-Quaiti, F.: Phys. Rev. Mater. 6 (2022) 043606.

Fröhlich, K., Hušeková, K., Öszi, Z., Hooker, J., Fanciulli, M., Wiemer, C., Dimoulas, A., Vellianitis, G., Roozeboom, F., : Metal oxide gate electrodes for advanced CMOS technology. Annalen der Physik 13 (2004) 31.

1. Li, Q.: Applied Phys. Lett. 85 (2004) 6155.
2. Li, Z.: J. Applied Phys. 101 (2007) art. no. 034503.
3. Kim, H.M.: J. Alloys Comp. 857 (2021) 157627.

Fröhlich, K., Hušeková, K., Machajdík, D., Lupták, R., Ťapajna, M., Hooker, J., Roozeboom, F., Kobzev, A., Wiemer, C., Ferrari, C., Fanciulli, M., Rossel, C., Cabral, C., : Preparation of SrRuO3 films for advanced CMOS metal gates. Materials Sci Semicond. Process. 7 (2004) 265-269.

1. Ito, A.: J. European Ceramic Soc. 30 (2010) 435.
2. Imangholi, B.: IEEE Trans. Electron Dev. 57 (2010) 877.
3. van Zalk, M.: Phys. Rev. B 82 (2010) 134513.
#     4. Khan, M.K.R.: Frontiers Mater. Sci China 4 (2010) 387.
5. Choi, C.: Applied Physics Lett. 98 (2011) 083506.
6. Choi, C.: Applied Phys. Lett. 98 (2011) 123506.
7. Choi, C.: Japan. J. Applied Phys. 51 (2012) 02BA05.
8. Park, J.-Y.: J. Alloys Comp. 610 (2014) 529.
9. Kumar, V. S.: J. Phys. D 49 (2016) 255302.
10. Chiba, H.: Materials Sci Semicond. Process. 70 (2017) SI73.
11. Chen, C.H.: J. Phys. Chem. Solids 152 (2021) 109986.

Fröhlich, K., Hušeková, K., Machajdík, D., Hooker, J., Perez, N., Fanciulli, M., Ferrari, C., Wiemer, C., Dimoulas, A., and Roozeboom, F.: Ru and RuO2 gate electrodes for advanced CMOS technology. Materials Sci Engn. B 109 (2004) 117–121.

1. Kukli, K.: Mater. Sci Engn. B 118 (2005) 112.
2. Kukli, K.: J. Electrochem. Soc. 152 (2005) F75.
3. Fillot, F.: Microelectr. Engn. 82 (2005) 248.
#   4. Deweerd, W.E.: Electrochem. Soc. Proc. 5 (2005) 62.
#   5. Hoover C. A.: Electrochem. Soc. Proc. 5 (2005) 389.
6. Lu, Y.K.: Microelectr. Engn. 83 (2006) 371.
7. Noh, S.J.: Current Applied Phys. 6 (2006) 171.
8. Hur’yeva, T.: Chemical Vapor Deposition 12 (2006) 429.
9. Nabatame, T.: Materials Sci Semicond. Process. 9 (2006) 975.
10. Chen, W.: Applied Surface Sci 253 (2007) 4045.
11. Park, I.S.: Electrochem. Solid State Lett. 10 (2007) H63.
12. Gatineau, J.: Surface & Coatings Technol. 201 (2007) 9146.
13. Zhang, M.: J. Vacuum Sci Technol. A 25 (2007) 775.
14. Zhang, M.: J. Physics D 41 (2008) art. no. 032007.
15. Chatterjee, S.: Microelectr. Engn. 85 (2008) 202.
16. Nowakowski, P.: Applied Surface Sci 254 (2008) 5675.
17. Nowakowski, P.: J. Solid State Chem. 181 (2008) 1005.
18. Nowakowski, P.: Thin Solid Films 518 (2010) 2801.
19. Nowakowski, P.: J. Microscopy 237 (2010) 246.
20. Chambers, S.A.: Advanced Mater. 22 (2010) 219.
21. Lee, D.J.: J. Applied Phys. 107 (2010) 013707.
22. Das, A.: Microelectr. Engn. 87 (2010) 1821.
23. Lee, J.H.: Japan. J. Applied Phys. 49 (2010) 091503.
24. Lee, J.H.: IEEE Trans. Electron Dev. 58 (2011) 672.
25. Kukli, K.: J. Electrochem. Soc 158 (2011) D158.
26. Salauen, A.: Chemical Vapor Deposition 17 (2011) 114.
27. Lee, J.H.: IEEE Trans. Electron Dev. 58 (2011) 3920.
28. Kim, H.K.: Applied Phys. Lett. 101 (2012) 172910.
29. Tuchscherer, A.: Europ. J. Inorganic Chem. 2012 (2012) 4867.
30. Kim, J.-H.: Current Applied Phys. 12 (2012) S160.
31. Chen, J.-Y.: Thin Solid Films 529 (2013) 426.
32. Gu, Q.: J. Catalysis 303 (2013) 141.
33. Wang, X.: Crystal Growth & Design 13 (2013) 1316.
34. Meng, Y.: RSC Adv. 6 (2016) 33666.
35. Hayes, M.H.: ECS Trans. 85 (2018) 743.
36. Hayes, M.H.: ECS Trans. 85 (2018) 1359.
37. Hayes, M.: J. Vacuum Sci Technol. A 39 (2021) 052402.
38. Zhang, F.: Chem. Engn. J. 423 (2021) 30231.
39. Wang, T.Y.: Acta Materialia 250 (2023) 118848.

Toma, S., Hušeková, K., Elečko, P., and Gajda, V.: Reactions of hydroxymethylferrocenes with C-acids catalyzed by Ca-2+-montmorillonite, Chem. Papers 40 (1986) 747-753. (Not IEE SAS).

1. Rockett, B.W.: J. of Organomet. Chem. 357 (1988) 247.
2. Boev, V.I.: Uspekhi Khimii 66 (1997) 677.
3. Swearingen, C.: J. Mol. Catal. A-Chem 199 (2003) 149.

Toma, S., Hušeková, K., and Elečko, P.: Study of the synthesis of biaryls on homoionic forms of bentonite or montmorillonite, Chem. Papers 40 (1986) 755-761. (Not IEE SAS).

     1. Nakajima, A.: Electrochem. Comm. 11 (2009) 305.