RNDr. Mošková Antónia, CSc.

Mošková, A., Moško, M., Precner, M., Mikolášek, M., Rosová, A., Mičušík, M.,  Štrbík, V., Šoltýs, J., Gucmann, F., Dobročka, E., and Fröhlich, K.: Doping efficiency and electron transport in Al-doped ZnO films grown by atomic layer deposition, J. Applied Phys. 130 (2021) 035106.

1. Zhao, K.: Nanomater. 12 (2022) 172.
2. Goikhman, B.V.: J. Mater. Chem. A 10 (2022) 8413.
3. Singh, R.: J. Mater Sci-Mater. Electron. 33 (2022) 6969.
4. Fedorov, F.S.: Applied Surface Sci 606 (2022) 154717.

Kundrata, I., Mošková, A., Moško, M., Mičušík, M., Dobročka, E., and Fröhlich, K.: Atomic layer deposition of lithium metaphosphate from H3PO4 and P4O10 facilitated via direct liquid injection: Experiment and theory, J. Vacuum Sci Technol. A 39 (2021) 062407.

1. Weber, M.: ACS Mater. AU 3 (2023) 274.

Mošková, A. and Moško, M.: Note on the Coulomb blockade of a weak tunnel junction with Nyquist noise: Conductance formula for a broad temperature range. Phys. Status Solidi C 14 (2017) 1700029.

1. Foong, Y.W.: J. Phys. Chem. C 125 (2021) 4343.
2. Morel, T.: Phys. Rev. B 104 (2021) 245417.

Krško, O., Plecenik, T., Moško, M., Haidry, A., Durina, P., Truchly, M., Grančič, B., Gregor, M., Roch, T., Satrapinsky, L., Mošková, A., Mikula, M., Kúš, P., and Plecenik, A.: Highly sensitive hydrogen semiconductor gas sensor operating at room temperature, Procedia Engn. 120 (2015) 618-622.

1. Dascalu, I.: J. Sol-Gel Sci Technol. 86 (2018) 151.
2. Eensalu, Jako S.: Proc. Estonian Acad. Sci 67 (2018) 124.
3. Chachuli, Siti Amaniah M.: Sensors 18 (2018) 2483.
4. Chachuli, S.A.M.: IEEE Sensors Nano 2019, no. 8940042.
#    5. Swain, S.K.: In Handbook of Ecomater. vol. 2. Springer 2019 ISBN 978-331968255-6, pp. 1247-1266.
6. Chachuli, S.A.M.: J. Alloys Comp. 882 (2021) 160671.

Plecenik, T., Moško, M., Haidry, A., Durina, P., Truchly, M., Grančič, B., Gregor, M., Roch, T., Satrapinskyy, L.,Mošková, A., Mikula, M., Kúš, P., and Plecenik, A.: Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt-TiO2-Pt sandwich, Sensors Actuators B 207 (2015) 351-361.

1. Madhi, I.: Ceramics Inter. 41 (2015) 6552.
2. Lv, P.: J. Mater. Chem. A 3 (2015) 16089.
#      3. Hara, K.:  IEEJ Trans. Sensors Micromachines 135 (2015) 270.
4. Xia, X.: Sensors Actuators B 234 (2016) 192.
5. Wu, J.: Solid State Ionics 292 (2016) 32.
6. Gurbuz, M.: Surface Engn. 32 (2016) 725.
7. Peng, X.: Sensors 16 (2016) 1249.
8. He, X.: Materials & Design 106 (2016) 74.
9. Yasuoka, H.: J. Statistical Phys. 165 (2016) 907.
10. Wang, H.: Inter. Conf. Manipul. Manufact. Measurem. Nanoscale (2016) 199.
#    11. Zheng, X.: Optoelectron. Lett. 12 (2016) 308.
#    12. Papanicolaou, G.C.: Ciencia e Tecnologia dos Materiais 28 (2016) 138.
13. Zhang, D.: Sensors Actuators B 245 (2017) 560.
14. Shao, S.: RSC Adv. 7 (2017) 39859.
15. Panta, R.: Inter. J. Hydrogen Energy 42 (2017) 19106.
16. Duran, C.: Electronics 7 (2018)  54.
17. Suga, K.: Phys. Rev. E 97 (2018) 053109.
18. Burratti, L.: Mater. Chem. Phys. 212  (2018) 274.
19. Arachchige, Hashitha M. M. Munasinghe: Sensors Actuators B 269 (2018) 331.
20. Zimnyakov, D.A.: Nanomater. 8 (2018) 915.
21. Burratti, L.: Materials 11 (2018) 1547.
22. Adeyemo, A.: J. Comput. Electron. 17 (2018) 1285.
#     23. Wu, T.: Gongneng Cailiao/J. Functional Mater. 49 (2018) 01197+01208.
24. Hsu, K.-C.: J. Alloys Compounds 794 (2019) 576.
25. Niu, M.: Industr. Engn. Chem. Res. 58 (2019) 10364.
26. Abu Talip, M. A.: J. Mater. Sci-Mater. Electron. 30 (2019) 4953.
27. Lee, J.-H.: Sensors Actuators B 310 (2020) 127870.
28. Francioso, L.: ACS Applied Nano Mater. 3 (2020) 3337.
29. Papanicolaou, G.C.: Polymers 12 (2020) 22.
30. Arenas-Hernandez, A.: Europ. Phys. J.-Applied Phys.‏ 90 (2020) 30102.
31. Ivanco, J.: Ceramics Inter. 46 (2020) 15876.
32. Ramanavicius, S.: Sensors 20 (2020) 6833.
33. Wu, J.: ACS Photonics 7 (2020)‏ 2923.
34. Gupta, V.: 33rd IEEE Inter. Symp. on Defect Fault Toleran. in VLSI Nanotechnol. Systems – DFT 2020, 9250843.
35. Wang, X.: Trends in Food Sci Technol. 110 (2021) 483.
36. Rodrigues, M.S.: Applied Sci 11 (2021) 5388.
37. Simonetti, E.A.N.: Ceramics Inter. 47 (2021) 17844.
#     38. Gorup, L.F.: Nanosensors for Smart Manufact. (2021) 445.
39. Li, X.L.: Sensors Actuators B 350 (2022) 130869.
40. Gupta, V.: IEEE Inter. Symp. Defect Fault Tolerance in VLSI Systems 2021.
41. Ramanavicius, S.: Coatings 12 (2022) 699.
42. Leturcq, R.: Adv. Phys.-X 7 (2022) 2044904.
*     43. Nemec, P.: In: SSSI 2022. Bratislava: Comenius Univ. 2022, p. 35-37. ISBN 978-80-223-5494-3.
44. Shaik, R.: Coord. Chem. Rev. 471 (2022) 214752.
45. Baran, N.: CHEMOSENSORS 10 (2022) 349.
46. Qiu, P.L.: Sensors Actuators B 373 (2022) 132730.
#     47. Horsky, M.: ASDAM 2022.
48. Zhao, J.T.: Inorganics 11 (2023) 366.

Plecenik, A., Haidry, A.A., Plecenik, T., Durina, P., Truchly, M., Moško, M., Grančič, B., Gregor, M., Roch, T., Satrapinsky, L., Mošková, A., Mikula, M., and Kúš, P.: Metal oxide gas sensors on the nanoscale, Proc. SPIE 9083 (2014) 9083OY.

1. Eom, N.S.A.: Sensors 17 (2017) 2750.
2. Shepa, I.: Ceramics Inter. 44 (2018) 17925.
3. Umar, A.: Sensors Actuators B 304 (2020) 127352.
4. Shepa, I.: Mater. Today Chem. 21 (2021) 100543.
5. Bronusiene, A.: Coatings 14 (2024) 88.

Mošková, A., Moško, M., Tóbik, J., : Theoretical study of persistent current in a nanoring made of a band insulator. Phys. Status Solidi B 250 (2013) 147-159.

 1. Shyu, F.L.: Solid State Comm. 188 (2014) 53.
2. Sankar, I.V.: Physica E 73 (2015) 175.
3. Ribeiro, A.V.: Phys. Status Solidi B 253 (2016) 545.
4. Lavanya, C.U.: Physica E‏ 126 (2021) 114500.
5. Tehrani, D.H.T.: Sci Rep 13 (2023) Iss. 1.

Mošková, A., Moško, M., : Phase-shift analysis of two-dimensional carrier-carrier scattering in GaAs and GaN: Comparison with Born and classical approximations. Phys. Rev. B 61 (2000) 3048.

1. Raichev, O.E.: J. of Physics – Cond. Matt. 12 (2000) 6859.
2.  Kwong, N.H.: Phys. Rev. Lett. 87 (2001) 027402-1.
3. Kral, K.: Fortschritte der Physik 49 (2001) 1011.
4. Kral, K.: Inter. J. of Modern Physics B 15 (2001) 3503.
5. Král, K.: Physica E 12 (2002) 908.
6. Král, K.: Physica B 314 (2002) 490.
7. Král, K.: Molecular Low Dimensional and Nanostr. Mater. Advanced Appl. 59 (2002) 267.
8. Binder, R.: Proc. Conf. Progress in Nonequilibrium Green’s Functions II. (2003) P. 301.
9. Axt, V.M.: Reports on Progr. in Phys. 67 (2004) 433.
10. Bilykh, V.V.: J. Experiment. Theoret. Phys. 104 (2007) 814.
11. Reeder, R.: J. Applied Phys. 102 (2007) Art.No. 073715.
12. Kukushkin, V.: IEEE Trans. Nanotechnol. 7 (2008) 344.
13. Kukushkin, V.: Phys. Rev. A 78 (2008) 033838.
#  14. Kukushkin, V.: Bulletin Russian Acad. Sci: Physics 73 (2009) 101.
15. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
16. Nag, S.: Superlatt. Microstr. 48 (2010) 72.
17. Kukushkin, V.: IEEE J. Quantum Electr. 46 (2010) 666.
18. Kukushkin, V.: Semicond. Sci Technol. 25 (2010) 125008.
19. Kukushkin, V.: Semiconductors 44 (2010) 1435.
20. Marchetti, G.: J. Applied Phys. 116 (2014) 163702.

Moško, M., Mošková, A., and Cambel, V.: Carrier-carrier scattering in photoexcited intrinsic GaAs quantum wells and its effect on femtosecond plasma thermalization Phys. Rev. B 51 (1995) 16860.

1. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
2. Takahashi, Y.: Phys. Rev. B 53 (1996) 7322-7333.
3. Takahashi, Y.: Semicond. Sci. Technol. 11 (1996) 163-171.
4. Dur, M.: Phys. Rev. B 54 (1996)  17794.
*       5. Ridley, B.K.: In: Theory of Transport Properties of Semicond. Nanostructures. Spriger 1998. ISBN 978-1-4615-5807-1. P. 357.
*       6. Ryan, J.F.: In: Hot Electrons in Semicond.: Phys. and Devices. Oxford: OUP 1998. ISBN-13: 978-0198500582. P. 183.
7. Gericke, D.O.: Phys. Rev. B 59 (1999) 10639.
8. Guven, K.: J. Phys. – Cond. Matt. 12 (2000) 2031.
9. Kral, K.: Optical Properties of Semicond. Nanostr. 81 (2000) 405.
$      10. Kral, K.: Arxiv preprint cond-mat/0103061, 2001.
*      11. Ferry, D.K.: In: Ultrafast Phenomena in Semicond. New York: Springer 2001. ISBN 978-1-4613-0203-2. P. 307.
12. Vasileska, D.: Materials Sci & Engn. R 38 (2002) 181.
13. Zhao, H.: Phys. Rev. B 67 (2003) 035 306.
14. Tripathi, P.: J. Phys.-Cond. Matter 15 (2003) 1057.
15. Callebaut, H.: Applied Phys. Lett. 83 (2003) 207.
16. Hu, Q.: Philos. Trans. Roy. Soc. A 362 (2004) 233.
17. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
18. Sun, K.W.: Japan. J. Applied Phys. 44 (2005) 4799.
19. Harrison, P.: Quantum wells, wires and dots: theoretical and
computational physics of semiconductor nanostructures. Oxford: Blackwell Sci Publ. 2005. ISBN: 978-0-470-01081-5.
20. Lu, J.T.: Applied Phys. Lett. 88 (2006) 061119.
21. Lu, J.T.: Phys. Rev. B 73 (2006) 195326.
22. Gao, X.: Applied Phys. Lett. 89 (2006) 191119.
#    23. Cao, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 27 (2006) 304.
#    24. Vasileska, D.: Synthesis Lectures on Comp. Electromagn. 6 (2006) 1-216.
25. Gao, X.: J. Applied Phys. 101 (2007) 063101.
26. Jirauschek, C.: J. Applied Phys. 101 (2007) 086109.
27. Gao, X.: J. Comp. Electronics 6 (2007) 305.
28. Jirauschek, C.: Phys. Status Solidi c 5 (2008) 221.
29. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
30. Lin, T.T.: Applied Phys. Express 2 (2009) 022102.
31. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
32. Jirauschek, C.: J. Applied Phys. 105 (2009) 123102.
33. Knezevic. I.: J. Computat. Theoretical Nanosci 6 (2009) Sp. Iss. SI 1725.
34. Jirauschek, C.: J. Phys.: Conf. Ser. 193 (2009) 012062.
#    35. Freeman, W.: Proc. SPIE 7311 (2009) 73110V.
36. Ridley, B.K.:Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
37. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
38. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
39. Vasileska, D.: In Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press 2010. ISBN 978-1-4200-6484-1. P. 241-334.
40. Lu, I.L.: Phys. Status Solidi c 8 (2011) 2393.
41. Freeman, W.: Proc. SPIE 8023 (2011) 802305.
42. Freeman, W.: Phys. Rev. B 85 (2012) 195326.
43. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
44. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
45. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
46. Freeman, W.: J. Applied Phys. 122 (2017) 045701.
47. Hathwar, R.: J. Phys. D 52 (2019) 093001.
48. Freeman, W.: J. Applied Phys. 128 (2020) 235702.
49. Freeman, W.: Applied Phys. Lett. 118 (2021) 241107.

Mošková, A., Moško, M., : Exchange carrier-carrier scattering of photoexcited spin-polarized carriers in GaAs quantum wells: Monte Carlo study Phys. Rev. B 49 (1994) 7443.

1. Kinsler, P.: Phys. Rev. B 58 (1998) 4771.
2. Lee, S.C.: Phys. Rev. B 59 (1999) 10796.
3. Lee, S.C.: Phys. Rev. B 62 (2000) 15327.
4. Wolterink, T.: Phys. Rev. B 67 (2003) 115311.
5. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
6. Dolguikh, M.V.: Phys. Rev. B 73 (2006) 075327.
7. Gao, X.: J. Applied Phys. 101 (2007) 063101.
8. Wu, Z.K.: IEEE J. Quantum Elect. 43 (2007) 486.
9. Gao, X.: J. Comp. Electronics 6 (2007) 305.
10. Li, X.: Applied Phys. Lett. 97 (2010) 082101.
11. Girdhar, A.: Applied Phys. Lett. 99 (2011) 043107.
12. Slingerland, P.: Semicond. Sci Technol. 27 (2012) 065009.
13. Kirk, A.P.: Phys. Rev. B 86 (2012) 165206.
14. Spezia, S.: EPL 104 (2013) 47011.
15. Marchetti, G.: J. Applied Phys. 116 (2014) 163702.
16. Spagnolo, B.: Chaos Solitons Fractals 81 (2015) 412.
17. Spagnolo, B.: Entropy 19 (2017) 20.
18. Borowik, P.: J. Computat. Phys. 341 (2017) 397.
19. Danz, T.: Phys. Rev. B 95 (2017) 241412.
20. Borowik, P.: Optical Quantum Electron. 49 (2017) 96.
21. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
22. Borowik, P.: J. Applied Phys. 122 (2017) 045704.
23. Borowik, P.: Applied Phys. A 124 (2018) 184.
24. Maekawa, K.: Phys. Rev. B 97 (2018) 075435.
25. Adorno, D.P.: J. Stat. Mechanics-Theory Experiment (2019) 094019.

Moško, M. and Mošková, A.: Photoexcited spin-polarized carriers in GaAs quantum wells: Monte Carlo study of exchange carrier-carrier scattering Semicond. Sci Technol. 9 (1994) 478.

1. Kane, M.G.: Phys. Rev. B 54 (1996) 16345.
2. Ridley, B.K.: Electrons and phonons in semiconductor multilayers. Cambridge: Cambridge Univ. Press 2009. ISBN 978-0-521-51627-3.
3. Jirauschek, C.: J. Applied Phys. 107 (2010) 013104.
4. Willis, K.J.: J. Applied Phys. 110 (2011) 063714.
5. Jirauschek, C.: Applied Phys. Rev. 1 (2014) 011307.
6. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
7. Borowik, P.: J. Applied Phys. 122 (2017) 045704.
8. Borowik, P.: Applied Phys. A 124 (2018) 184.

Moško, M., Cambel, V., Mošková, A., : Electron-electron drag between parallel two-dimensional gases Phys. Rev. B 46 (1992) 5012.

1. Gramila, T.J.: Physica B 197 (1994) 442.
2. Olejníková, B.: Superlattice Microstruct. 14 (1994) 215.
3. Olejníková, B.: Acta Physica Polonica A 87 (1995) 353.
4. Bonsager, M.C.: Phys. Rev. B 46 (1998) 7085.
5. Noh, H.: Phys. Rev. B 59 (1999) 13114.
6. Bostrom, M.: Physica Scripta T79 (1999) 89.
7. Kawashima, I.: Electron Devices Meeting, 2000. IEDM Technical Digest. P. 113.
8. Volokitin, A.I.: J. Phys. – Cond. Matt. 13 (2001) 859.
9. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
10. Laikhtman, B.: Phys. Rev. B 72 (2005) 125338.
11. Narozhny, B.N.: Rev. Modern Phys. 88 (2016) 025003.
#    12. Upadhyay, S.K.: Current Nanomater. 8 (2023) 194.

Moško, M. and Mošková, A.: Ensemble Monte Carlo simulation of electron-electron scattering: Improvements of conventional methods, Phys. Rev. B 44 (1991) 10794.

*      1. Rota, L.: Semiconductors `92. Inter. Soc Optics Photon. (1992) 146.
*      2. Bair, J.E.: Semiconductors `92. Inter. Soc Optics Photon. (1992) 157.
3. Collet, J.H.: Phys. Rev. B 47 (1993) 10 279.
4. Rota, L.: Phys. Rev. B. 47 (1993) 4226.
5. Sirenko, Y.M.: Phys. Rev. B 50 (1994) 4631.
*      6. Collet, J.H.: OE/LASE `94. Inter. Soc Optics Photon. (1994) 246.
7. Tomita, A.: Phys. Rev. B 52 (1995) 5445.
8. Rota, L.: Phys. Rev. B 52 (1995) 5183.
9. Fischetti, M.V.: J. Appl. Phys. 78 (1995) 1058.
10. Borowik, P.: J. Applied Physics 82 (1997) 4350.
11. Matulionis, A.: Phys. Rev. B 56 (1997) 2052.
*   12. Hartnagel, H.L.: Microwave Noise in Semicond. Devices. Wiley-Intersci 2001. ISBN: 0-471-38432-1.
13. Kalna, K.: Math. Comput. Simulat. 62 (2003) 357.
14. Bonno, O.: J. Applied Phys. 97 (2005) 043702.
15. Gao, X.: J. Applied Phys. 101 (2007) 063101.
16. Bellotti, E.: Appl. Phys. Lett. 92 (2008) Art. No. 101112.
17. Kalna, K.: IEEE Trans. Electron Dev. 55 (2008) 2297.
18. Xu, K.Y.: IEEE Trans. Nanotechnol. 7 (2008) 451.
19. Bonno, O.: J. Applied Phys. 104 (2008) 053719.
20. Bellotti, E.: J. Applied Phys. 105 (2009) 113103.
21. Pozela. J.: Semiconductors 43 (2009) 1177.
22. Bellotti, E.: J. Electronic Mater. 39 (2010) 1097.
23. Lu, I.-L.: Proc. SPIE 7602 (2010) 76021H.
24. Lu, I.-L.: J. Applied Phys. 108 (2010) 124508.
25. Kamra, A.: J. Applied Phys. 109 (2011) 024501.
26. Willis, K.J.: J. Applied Phys. 110 (2011) 063714.
27. Bishnoi, B.: Proc. 10th IEEE Inter. Conf. Semicond. Electron., ICSE 2012. (2012) art. no. 6417093, pp. 69.
28. Spezia, S.: EPL 104 (2013) 47011.
29. Huthmacher, K.: Proc. SPIE 8777 (2013) 87770S.
30. Katiyar, S.: J. Comput. Theoret. Nanosci 11 (2014) 1983.
31. Ghosh, B.: AIP Adv. 4 (2014) 017116.
32. Ghosh, B.: J. Low Power Electron. 10 (2014) 365.
33. Spagnolo, B.: Chaos Solitons Fractals 81 (2015) 412.
34. Katiyar, S.: Applied Phys. A 122 (2016) Iss. 2.
35. Spagnolo, B.: Entropy 19 (2017) 20.
36. Borowik, P.: J. Computat. Phys. 341 (2017) 397.
37. Borowik, P.: Semicond. Sci Technol. 32 (2017) 125006.
#    38. Wu, Y. R.: In Handbook GaN Semicond. Mater. Devices. CRC Press 2017. ISBN 978-149874714-1. P. 117-140.
39. Korotyeyev, V.V.: Appl. Phys. Lett. 113 (2018) 041102.
40. Manuel Iglesias, J.: Semicond. Sci Technol. 34 (2019) 065011.
41. Adorno, D.P.: J. Stat. Mechanics-Theory Experiment (2019) 094019.
42. Korotyeyev, V.V.: Phys. Rev. B 101 (2020) 235420.
43. Jirauschek, C.: J. Applied Phys. 130 (2021) 203103.